(WANG) usonsronies me.

T0:
FROM:
DATE:
SUBJECT:

2200 Microprogramming Group.
Matthew Lourie.
June 3, 198l.

2600 ASSEMBLER SPECIFICATIONS.

I. INTRODUCTION.

The 2600ASM is an assembler designed to run on the 2200VP/MVP and will

convert 2600 :source code

bootstrap.
use only.

group.

II. HARDWARE REQUIREMENTS:

A.

B.
C.

64K partition.
132 column printer.
Some sort of Disk.

IIT. ASSOCIATED FILES:

A.
B.

"2600ASMS"
"2600ASM2"
"2600ASMB"
"2600ASMG"
"2600ASMD"
"SCROSS"

"READTP"

contains
contains
contains
contains
contains
contains

contains

IV. OVERVIEW OF PROGRAMS:

A.

the
the
the
the
the
the
the

into object code 1loadable by the 2600

start-up program.

assembler program.

block allocating program.

data file generating program.
data file produced by "2600ASMG".
master cross reference program.

9-track tape to printer program.

start-up the following device addresses

Start-up:

1. During
requested:
a.

Assembler output device.

This is the device to which the assembler sends
errors, etc. (see section on printing options).

Th{s is not a released program and is intended for internal
Questions should be directed to the 2200 microprogramming

will be

1istings,

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851 - TEL. (617) 4539-5000 « TWX 710-343-6769 - TELEX 94-7421

b. Source edit file device.

This is the disk address on which the source files are
Tocated.

c. External symbol file device.

This is the disk address on which the symbol files are
Tocated.

d. Block work file device.

This is the disk address on which the block work file
will be kept (see the section on blocks).

Then the following file names will be requested:
a. Object file name.

This is the file in which the object code will be
stored. This file must be created before starting the
assembly.

b. Starting module name.

This is the name of the first module to be assembled.

A11 other modules of the assembly must be specified

within the source code wusing the ASSEMBLE pseudo
. (explained later).

After requesting the previous items, and after asking various
other questions (covered in other sections), the program
chains to the main assembler program.

assembler program.

In order to allow large assemblies, the source code is able to
be -split up into 1logical divisions called modules. To
assemble these modules the assembler must go through three or
four passes:

a. Pass "W1" scans all the modules, getting the size of each
block. It then passes this information to the block
allocator which assigns the blocks addresses. Pass "W1"
is skipped if the assembler is not in block mode.

b. Pass "W2" again scans the entire source, but this time
creates a symbol table for each module and saves the
table on the disk.

c. Pass "WF" scans a single module, building its symbol
table in memory, and then goes on to pass "MF". .

V.

d. Pass "MF" scans a single module, producing the object
code and printing the source file. Then control is

passed back to pass "WF" thus initiating assembly of the
next module.

2. In order to keep the user aware of the progress of an
. assembly, a constantly updated progess report is displayed on
the CRT (i. e. current file, IC's, etc.).

C. Block allocator.
1. This program is chained to after completion of pass "Wi1".
2. Overview of purpose:
a. Reads in block sizes.
b. Creates spans.
c. Allocates addresses to blocks.
e. Prints a memory map out.
f. Chains back to the assembler, thus starting pass "W2".
D. Tape to printer program.

If a printer was specified as the tape output device, the tape to
printer program is chained to after the assembler is done. This
program will find the proper tape file and print its contents on
the printer. The program can also be used as a stand alone for
printing previously recorded tape file(s). To use the program in
the stand alone mode do the following:

a. Run the program called "READTP".

b. Give the tape output address (default 77B) and the printer
output address.

c. Give the file index numbers and the number of copies to be
printed. The maximum number of file indices is ten.

d. Enter "0" in the file index field after all the desired file
index numbers are entered. Thereafter the "READTP" will print
out the files in the order in which their indices were entered.

BLOCKS.
A. Definition of a block.

A block is a segment of code that doesn't conditional reference
addresses outside the segement. This means that a block can be
moved around so long as the whole segment is contained on one page
of memory. If a conditional reference is made outside a block, it
will be flagged as an error.

B.

Defining a block.

There are essentially two types of blocks, a floating block and an
absolute block. A Floating block is allowed to be moved around by
the assembler. This freedom enables the assembler to pack the
code, allowing it to compactly fit into memory. This type of block
is defined by starting it with an "ORG *". A1l modules must be
valid blocks. An absolute block is a block which is defined to go
at a certain address. They are defined by starting the code with
an "ORG expression" where the expression is the block's address.
The expression must not contain symbols which are defined within
the current assembly. If the expression does, it will be flagged
as an error. Aside from their predetermined address, absolute
blocks are the same as floating blocks and may not conditionally
reference other blocks.

Setting the LIMITS.

In order to tell the assembler where you want the code to go, you
must use the LIMITS pseudo. The LIMITS pseudo is of the form:

LIMITS lower address, upper address

The addresses should be expressions which do not use symbols
defined during the current assembly. This psuedo effectively tells
the assembler where to put the floating blocks. The floating
blocks will be allocated addresses within the limits inclusively.
Floating blocks will not be allocated addresses which conflict with
absolute blocks. If a LIMITS pseudo is not specified or an invalid
LIMITS pseudo is found, the assembler will give an error after pass
"W1" and then abort. If the allocator cannot pack the code within
the given space, a standard memory map chart will be printed out,
displaying the blocks which have been allocated as well as the ones
which have not. Then an error message will be given and the
assembler will abort. If more than one LIMITS pseudo appears in
the source, the first one will be used, and the others will be
flagged as errors.

Allocation alogorithm.
The scrambling program has four modes:

1. Mode one tries to allocate the blocks in order. If it
succeeds and 1listing order is specified it exits, else it
switches to mode two.

2. Mode two does a fast scramble of all the blocks. Then it goes
to mode three.

3. Mode three is a compression mode. It swaps the blocks around
trying to fit them into smaller spaces. If after getting done
the blocks fit, it exits. Otherwise it goes to mode four.

4. Mode four is idincredibly slow. On a typical assembly of
BASBOL, it took a half hour a pass. It is very, very unlikely
that mode four will ever be needed on a large assembly.

4

E.

Assembler modes.

a.

When the block work file address is requested the user has two
reply options:

1) If the user answers with "000" the assembler will
function in the nonblock mode. This means that "ORG *"
will be treated will be treated as do nothings, and the
LIMITS psuedo is illegal.

2) If the user gives a valid address, the assembler will
function in the block mode. A block work file will be
opened with the name xxWK.TMP where xx are your
initials. Later on, the start-up program will ask if you
want the code in listing order. 1If you answer "Y", then
the allocating program will not attempt to further
compress the code so long as the code fits when it is in
1isting order.

Printing options.

The assembler offers three methods of output. These methods are as
follows: '

1.

Write the assembler output directly to the printer. This is

done by giving a valid printer address for the assembler
output device.

Write the assembler output to the tape only. This is done by
specifying a valid tape address for the assembler output
device and specifying "000" for the tape printing device.

Write the assembler output to the tape, and after assembly
completion have this tape file dumped to the printer. This is
done by giving a valid tape address for the assembler output
device and giving a valid printer address for the tape
printing device.

VI. ASSEMBLER PSEUDOS.

A.

MODULE

Defines a module title (should be first text line).

ORG
When

in nonblock mode sets the assembler's instruction pointer to

the specified address. In block mode it is used to start a block.

ORGD
Sets

the assemblers data pointer to the specified address.

EQU
Assigns a symbol a value.

TITLE

Issue a form feed if not at top of page and print the specified
comment.

SPACE

Skip the specified number of lines. A null operand implies skip
one line.

- EJECT

Issue a form feed if not at top of page.
PAGE

In nonblock mode it sets the assembler's instruction pointer to the

beginning of the next page (1024 instructions) if not at the
beginning of a page. In block mode this pseudo is ignored.

ASSEMBLE

Instructs that the specified module is part of the current assembly
and is to be assembled after all previously specified modules have
been assembled.

SYMBL

Instructs that the specified symbol file contains symbols which may
be referenced in the current module.

CONT

Instructs that the specified source file is part of the current
module and is to be assembled after all previously specified
continue files have been assembled.

LIST and NOLIST

NOLIST causes the assembler to continue assembling, but disables
1isting. LIST causes the assembler to resume listing. At the
start of a module, the assembler is automatically put into 1list
mode. NOLISTs and LISTs are stacked. This way if two. NOLISTs
appear in a row, two LISTs are required before printing will
resume. Cross references and title pages are always printed.

VII. SYMBOLS.

A.

Local and multiply defined symbols.

If a symbol appears in the tag field of a 1ine, that symbol is
entered in the internal symbol table as a "local" symbol. If the
symbol already appears in the symbol table the line which multiply
defines the symbol is flagged with an error. The symbol is still
entered into the symbol table, but as a "multiply defined" symbol.

External, previous, and undefined symbols.

If a symbol is referenced that is not defined within the current
module, the external symbol tables defined by the SYMBL pseudos are
scanned for the symbol. If the symbol is found in an external
symbol table, that symbol is entered into the internal symbol
table. It will be stored as an "external" symbol if it was defined
within one of the modules of the current assembly. It will
otherwise be store as a "previous" symbol. If the symbol is not
found at all, it will be stored as an "undefined" symbol.

Symbol cross reference.

After each module is assembled the assembler will print out a cross
reference of all symbols defined or referenced within the module.
For each symbol the cross reference will display the symbol's
value, the defining module's name (if not the current one), the
defining 1ine number, and the 1ine numbers of all references to the
symbol within the current module. If the symbol is an external
symbol, an "X" will preceed the 1line number. If the symbol is a
previous symbol, a "P" will preceed the 1line number. Otherwise a
blank will preceed it.

VIII. INSTRUCTIONS.

A.

Syntax.

In general an instruction consists of three fields, an opcode
field, a parameter field, and an operand field. The opcode field
contains the basic mnemonic (i.e. "OR", "ANDI", etc.). The
parameter field contains the read/write and/or carry modifiers
(i.e. ",R" etc.). And finally the operand field contains the
register specifications. (For a more detailed explanation of
instruction syntax see the BNF specification in the back).

Move Instructions.

The move instructions are implemented by using the "OR" and "ORI". -

Some examples are:

1. MV Fx,Fy ==> ORI O00,Fx,Fy
2. MVI n,Fx ==> ORI n,,Fx
3. MVX FwFx,FyFz ==> ORX DD,FwFx,FyFz

Omitted opcode field.

If the opcode field is omitted and the parameter field is not
omitted, the source line is assembled as an "ORI" instruction.

Subroutine branch and return instruction.

Although it is not at first obvious, a subroutine branch followed
by a subroutine return can always be replaced by simply a branch to
the subroutine. The best way to see this is to think of the
subroutine you want to call as the tail end of the current
subroutine. For those of you who still l1ike the idea of using a
subroutine branch followed by a subroutine return, don't. Instead
use the "SBR" mnemonic. It stands for "subroutine branch and
return" but translates into a simple branch instruction.

ASSEMBLY LANGUAGE SYNTAX

The following pages define the syntax of the 2200 Assembly Language in
Backus-Naur Form. The following meta symbols are used:

1.
2.
3.
4.

The "<" and ">" charactors enclose syntax classes.
The symbol "::=" means "is defined as".
The charactor "/" means "or".

"[" ... "]"X means that the entries within may be repeated from
u,n

zero to "x" times. If the "x" is omitted, assume a value of one.

... implies a sequence of elements.

Capital letters and symbols not in "<" ">" are actual letters in
the Tlanguage. Lower case letters represent English language
expositions such as "space". _

ASSEMBLER LINE FORMAT

<micro line>

<pseudo line>

<data line>

[<symbol1>] <delimiter> <delimiter> <comment>
<null>

<assembly line>

N

PSEUDO INSTRUCTION FORMAT

<pseudo line> <pseudo> <delimiter> <comment>

<pseudo> [<symbol>] <delimiter> ORG <delimiter> <address>
[<symbol>] <delimiter> PAGE

[<symbol>] <delimiter> ORGD <delimiter> <address>
<symbol> <delimiter> EQU <delimiter> <word>
<delimiter> LIMITS <address> , <address>
<delimiter> MODULE <delimiter> <comment>
<delimiter> TITLE <delimiter> <comment>
<delimiter> SPACE <delimiter> [<expression>]
<delimiter> EJECT

<delimiter> CONT <delimiter> <file name>

<delimiter> SYMBL <de1imiter> <file name>

NN NN NN NN N NN SSS S

<delimiter> ASSEMBLE <delimiter> <file name>

10

MICRO INSTRUCTION FORMAT

<micro 1line> ::= [<symbol>]

<register instruction>
<extended instruction>
<immediate instruction>
<register multiply or sﬁift>
<extended multiply or shift>
<nibble multiply>

<half byte multiply>
<register branch>

<extended branch>

<nibble branch>

<half byte branch>

<branch instruction>

<aux instruction>

<transfer instruction>

<delimiter>

<micro> <delimeter> <comment>

OR/XOR/AND/DAC/DSC/AC/SC
ORX/XORX/ANDX/DACX/DSCX/ACX/SCX
ORI/XORI/ANDI/AI/DACI/DSCI/ACI
MHH/MHL /MLH/MLL/SHFT
MHHX/MHLX/MLHX/MLLX/SHFTX

MIH/MIL

MIHH/MIHL /MILH/MILL
BLR/BLER/BER/BNR

BLRX/BLERX
BTH/BTL/BFH/BFL/BEQH/BEQL /BNEH/BNEL

BTHH/BTLH/BFHH/BFLH/BEQHH/BEQLH/BNERH/BNELH
BTHL/BTLL/BFHL/BFLL/BEQHL /BEQLL/BNEHL/BNELL

B/SB/SBR

TAP/TPA/TPA+1/TPA+2/TPA+3/TPA-1/TPA-2/TPA-3
XPA/XPA+1/XPA+2/XPA+3/XPA-1/XPA-2/XPA-3

TSP/TPS/TPS+1/TPS+2/TPS+3/TPS-1/TPS-2/TPS-3

<micro> ::= LPI [<rw>] <delimiter> <address>

/ CI0O <delimiter> <byte>

/ SR [<rw>] <delimter> <b-reg>

/ SR <rw control>

/ INSTR <delimiter> <hexdigit> <hexdigit> <hexdigit>
<hexdigit> <hexdigit> <hexdigit>

/ MV [<rw>] <delimiter> <b-reg> , <c-reg>

/ MVI [<rw>] <delimiter> <byte> , <c-reg>

/ MVX [<rw and/or carry>]

<delimiter> <b-ext> , <c-ext>

11

<register instruction> [<rw and/or carry>] <delimiter>
<a-reg> , <b-reg> , <c-reg>

<extended instruction> [<rw and/or carry>] <delimiter>
<a-ext> , <b-ext> , <c-ext>

<immediate instruction> [<rw>] <delimiter>
<byte> , <b-reg> , <c-reg>

<rw and/or carry> <delimter>
<byte> [, <b-reg> [, <c-reg>]]

<register multiply or shift> [<rw>] <delimiter>
<a-reg> , <b-reg> , <c-reg>

<extended multiply or shift> [<rw>] <delimiter>
<a-ext> , <b-ext> , <c-ext>

<nibble multiply> [<rw>] <delimiter>
<nibble> , <b-reg> , <c-reg>

<half byte multiply> [<rw>] <delimiter>
<byte> , <b-reg> , <c-reg>

<register branch> <delimiter>
<a-reg> , <b-reg> , <address>

<extended branch> <delimiter>
<a-ext> , <b-ext> , <address>

<nibble branch>
<nibble> , <b-reg> , <address>

<half byte branch>
<byte> , <b-reg> , <address>

<branch instruction> <delimiter> <address>

<aux instruction> [<rw>] <delimiter>
<b-reg> , <aux-reg>

<transfer instruction> [<rw>] <delimiter> <b-reg>

12

<a-reg>

<a-ext>

<b-reg>
<b-ext>
<c-reg>

<c-ext>

<aux-reg>

<rw>

<carry>

<rw and/or carry>

<rw control>

EXAMPLES :
SR,W1~

sW1
BEQHH

MY

/

FO

23,,F0

75,F2,LAB1

FO,F1

FO/F1/F2/F3/F4/F5/F6/F7/CL-/CH-/CL/CH/CL+/CH+/+/~

F1FO/F2F1/F3F2/FAF3/F5F4/F6F5/F7F6/CLF7
CHCL/CLCH/DCH/DD/FOD

<c-reg>/CH/CL

<c-ext>/CLPH/CHCL/SLCH

FO/F1/F2/F3/F4/F5/F6/F7/PL/PH/SL/SH/K/<null>

F1FO/F2F1/F3F2/F4F3/F5F4/F6F5/FTF6/PLF7
PHPL/SHSL/KSH/DK/F0D

<five bit value>

sR/ ,N1/W2

,0/,1

<rw>

[<carry>]

<carry> [<rw>]

»RCM/ ,WCM

write register FO to data memory and do a
subroutine return.

write a HEX(23) to data memory and copy this
same value to register FO.

branch to "LABl1" if the high nibble of register
F2 equals HEX(7).

copy register FO to register Fl.

13

8-BIT DATA FORMAT

<data line> [<symbol>] <delimiter> <data> <delimiter> <comment>

<data> ::= [<symbol>] DC <delimiter> <value> [<value>]"
<value> ::= <hexdigit> [<hexdigit>Ih*

/ " <character> [<charactor>]" "

/ (<expression>)

*note that "h" must be an odd integer.

EXAMPLES:

DC 81BCOA -- defines a 3-byte constant; each byte represented
by two hex digits.

DC "ABCD" -- defines a 4-byte constant whose value is the
ASCII representation of the string "ABCD".

DC (TAG+3) -- defines a 2-byte constant whose value is the
current value of 'TAG' + 3.

DC 04"STEP" -- defines a 5-byte value.

14

MISCELLANEQOUS

<nibble> ::= <expression>
<byte> ::= <expression>
<word> 1:= <expression>
<address> 1:= <expression>

<five bit value> ::= <expression>

<expression> 1= <term>

/ <expression> + <term>

/ <expression> - <term>
<term> ::= <digit> [<hexstring>]

/ *

/ <symbol>

/ C'<character>'

/ X'<hexstring>'
<symbo1> 1i= <Jetter> [<1etter>/<dig1’t>]7
<delimiter> ::= tab |
<comment> ::= [<character>]N
<héxstring> ::= <hexdigit> [<hexdigit>]n"
<hexdigit> 1i= <digit>

/ A/oo-/F
<letter> ti= A/.../Z
<digit> e:= 0/.../9
<null> 1=

15

ASSEMBLER ERROR CODES

ERRORS:

invalid A-bus specification.
invalid B-bus specification.
invalid C-bus specification.
multiple LIMITS statement.

too many operands.

illegal immediate value.

invalid CIO operand.

origin lower than address of last instruction plus one.
multiply-defined symbol.

invalid R/W field for SR.

name required.

illegal opcode field.

out of page or out of block branch.
invalid HEX codes.

name not allowed.

illegal read/write/carry specification.
invalid HEX on 'INSTR'.

improper or too many file names.
undefined symbol referenced.
illegal value.

invalid AUX register specification.

X< CH NV O UV OVOZZIICrXRXmMOOm >
| U A [T N T N | (N Y Y O C N T ¢ N S AN O T T N 1 O |}

WARNINGS:

1 = A bus Non-extended register

2 = B bus mnemonics used with

4 = C bus an extended instruction.

16

MNEMONIC

AC
ACX
AND
ANDX
BEQH
BEQHL
BEQLH
BER
BFHH
BFL
BFLL
BLERX
BLRX
BNEH
BNELH
BNELL
BTHH
BTHL
BTL
CIo
DACI
DSC
DSCX
LPI
MHHX
MHLX
MIHH
MIL
MILL
MLHX
MLLX
MVI
NOP
ORI
SB
SCX
SHFTX
TAP
TPA+1
TPA+3
TPA-2
TPS
TPS+2
TPS-1
TPS-3
XORI
XPA
XPA+2
XPA-1
XPA-3

MICRO INSTRUCTION CODES

SKELETON CODE

180000
1A0000
080000
0A0000
740000
740000
700000
500000
6C0000
680000
680000
4C0000
440000
7C0000
780000
780000
640000
640000
600000
178000
300000
140000
160000
190000
1EC000
1E8000
3C8000
3C0000
3C0000
1E4000
1E0000
20000F
200000
200000
540000
OE0000
124000
0B8000
018200
018600
01C400
058000
058400
05C200
05C600
240000
038000
038400
03C200
03C600

17

MNEMONIC

ACI
Al
ANDI
B
BEQHH
BEQL
BEQLL
BFH
BFHL
BFLH
BLER
BLR
BNEHH

- BNEHL

BNEL
BNR
BTH
BTLH
BTLL
DAC
DACX
DSCI
INSTR
MHH
MHL
MIH
MIHL
MILH
MLH
MLL
MV
MVX
OR
ORX
SC
SHFT
SR
TPA
TPA+2
TPA-1
TPA-3
TPS+1
TPS+3
TPS-2
XOR
XORX
XPA+1
XPA+3
XPA-2

SKELETON CODE

380000
2C0000
280000
5C0000
740000
700000
700000
6C0000
6C0000
680000
480000
400000
7€0000
7€0000
780000
580000
640000
600000
600000
100000
120000
340000
000000
1CC000
1€8000
3C8000
3C8000
3C0000
1C4000
1C0000
200000
0200E0
000000
020000
0C0000
104000
078000
018000
018400
01C200
01C600
058200
058600
05C400
040000
060000 -
038200
038600
03C400

AC[X]
ACI

Al
AND[X]
ANDI

BEQY L

BER

HH
HL
H
BF{L
LH
LL

BLER[X]
BLR[X]

HL
H
BNE y L
LH
LL

BNR

HH
HL

BTL
LH
LL

cI0
DAC[X]
DACI
DSCLX]
DSCI
LPI

HH

M {Eh} [X]
LL

INSTRUCTION SUMMARY

Binary add with carry.

Binary add with carry immediate.
Binary add immediate.

Logical and.

Logical and immediate.

Branch.

Branch equal immediate.

Branch equal.

Branch false.

Branch less than or equal.
Branch less than.

Branch not equal immediate.

Branch not equal.

Branch true.

Control 1/0.

Decimal add with carry.

Decimal add with carry immediate.
Decimal subtract with carry.

Decimal subtract with carry immediate.
Load PC's immediate.

Binary multiply.

18

HH
HL
H
MI §L
LH
LL.

MVLX]
MVI
NOP
ORL[X]
ORI

SB
SCLX]

HH

HL
SH{LH} [x]

LL

SR
TAP

o)
TPA | +2
TPS | +2

TSP
XOR[X]
XORI

[;1
XPA |¥2
¥3

Binary multiply immediate.

Move.

Move immediate.

No operation.

Logical or.

Logical or immediate.
Subroutine branch.

Binary subtract with carry.

Shift.

Subroutine return.
Transfer auxiliary to PC's.

Transfer PC's to auxiliary.

Transfer PC's to stack.

Transfer stack to PC's.
Logical exclusive or.

Logical exclusive or immediate.

Exchange PC's to auxiliary.

19

SPECIAL NOTATION

. OPCODE SUFFIXES:

H = high 4-bits of register.

L = low 4-bits of register.

HH = high 4-bits of A and B.

HL = high 4-bits of B, low 4-bits of A.
LH = Tow 4-bits of B, high 4-bits of A.
LL = Tow 4-bits of A and B.

X = extended operation.

PARAMETER FIELD MNEMONICS:

R = read.
Wl = write 1.
W2 = write 2.
RCM = read control memory.
WCM = write control memory.
0 = set carry to 0.
1 = set carry to 1.

20

