BASIC-2 RELEASE 3.1
FUNCTIONAL SPECIFICATION
DATE: 22 October 1987
Updated on June 10, 1988

REVISION: 3.1.20
Final Update

Summary of BASIC-2 enhancements

EXPANDED MEMORY

-~ 1, 2,

4 and 8 MEG CPUs

Release 3.1 has been modified to support the new 1, 2, 4 and 8 Megabyte
CPU options. The changes allow for up to 1 MB being allocated for
program partitions (1 @ 61KB and 15 @ 56KB). The remaining memory is
allocated to the RAMdisk which was introduced in Release 3.0.

This change also resulted in modifications to the microcoded menu file
(@@), the partition generation program (@GENPART), the partition status
program (@PSTAT), the field service diagnostic menu (@), the CPU
instruction exerciser diagnostic (@A) and the Data Memory diagnostics
(€C).

DISK OPERATIONS

FILE#

Release 3.1 of Multiuser BASIC-2 increases the number of file numbers
allowed to a maximum of 256 (#0 - #255). To use file#'s . #15, the user
must include a SELECT #n statement in the BASIC-2 program, where n is an
integer specifying the largest file# that will be used. During
Resolution phase, the system determines the largest file# specified and
allocates memory from the user partition for each file# from %16 -
largest file#. This effectively reduces the size of the user

partition. Each file# is allocated 8 bytes of memory, when a CLEAR or
LOAD RUN is executed, the memory allocated for file%'s is released back
to the partition.

LISTDC T W

A new feature has been added to the LIST DC T statement. The W option
when invoked results in only the names of the files on the specified
disk to be displayed accross the display or printer line. No index size
information or detailed file information (i.e. start and end sector) is
provided. This option may be used in conjunction with the file name and
file type mask options.

PROGRAM ENTRY AND DEBUGGING

LIST DT

Due to the increase in the number of available device table entries from
16 to a maximum of 256, the information displayed by LIST DT has been
modified. The modification presents itself to the user by NOT
displaying any unused device table entries.

Summary of BASIC-2 corrected anomalies

LIST COM/DIM

Another method for listing defined variables has been added to the
current methods of LIST COM and LIST DIM. LIST COM/DIM lists both the
common variables and noncommon variables, their defined length and
values in their order of definition. This is a useful aid when making
use of the COM CLEAR statement to re-position the common variable
pointer to clear out noncommon variables when succeeding programs are
loaded.

PRINTER DRIVERS

The Generalized Printer Driver has been enhanced to better support
printers which expect ASCII escape sequences instead of hexidecimal.
Further optimization of the printer driver logic has improved output
performance for devices not directed through a printer driver.

@LASRJV0 is a new printer driver table for the LDP8 and LCS1S printers.
@pM50/V0 is a new printer driver table for the DM5300 printer.

CORRECTED ANOMALIES

RESAVE

RESAVE facilitates updating program files by combining the SCRATCH and
SAVE statements. 1In release 3.1, the existing file will be marked as
SCRATCHed prior to attempting to saving the program. This approach
exactly duplicates the results of a SCRATCH and a SAVE. For the case
when the new file requires more sectors than previous, the file will be
marked as SCRATCHed and an error I81 (File Full) is generated.

Release 3.0 would generate the the appropriate I81 error message but did
not mark the file as SCRATCHed.

RENAME

RENAME changes the name of a file in both the catalog index as well as
the program header block stored with the file. Release 3.0 had the
limitation that it would not allow the renaming of SCRATCHed files.
This limitation has been removed in release 3.1

MOVE
In release 3.0, the MOVE statement was enhanced to allow one to specify
the size of the index and catalog area to be created on the destination
platter. However, no check was made to determine if the MOVE would
exceed the user specified limits. Release 3.1 has :wodified the MOVE .
statement to generate the appropriate error message in the event the
user specified limits are to be exceeded.

MOVE FR

In release 3.0, the 2200T MOVE FR statement would not properly move the
catalog from the source to the destination platter. In release 3.1 the
statement has been corrected.

Summary of BASIC-2 corrected anomalies (continued)

DATA LOAD BA/BM

) In release 3.0, then DATA LOAD BA/BM statments had a weakness in their
syntax checking logic. One case which was not properly handled was -

DATA LOAD B AT (space between the B and the A)

Release 3.1 has been modified to correctly check the syntax of the DATA
LOAD BA/BM statements. '

IF THEN ELSE (IMMEDIATE MODE ONLY)

The IF THEN ELSE statement was not properly handled in release 3.0 when
invoked in Immediate Mode. This problem has been fixed in release 3.1.

LONG LINE ERRCR

In release 3.0, entering a program line that was too long was not
properly flagged with an error, and has been corrected in 3.1.

$BREAK!
$BREAK! put a partition to : “eep permanantly and could not be woken up
by issuing a $ALERT from another terminal. This has been changed to
allow $ALERT to wake up such a partition as in earlier releases.

$GIO
In release 3.0, certain $GIO sequences would hog the disk and not
release the disk at the end of the sequence. This has been changed in
3.1 to release the disk.

SELECT PRINT /000

Release 3.0 inadvertantly slowed down output to the null device, /000.
This has been corrected in release 3.1.

COM CLEAR
Executing a COM CLEAR with a variable name when selected to a global
partition caused the system to hang. This has been correctad in release
3.1

@MOVEPIL
The @MOVEFIL utility had the following two problems corrected:

When wri:ing to an IBM 3741 diskette format, an invalid trailer
record was created.

When an @SPAN file was created with exactly two free sectors, a
program error occurred.

@FORMAT

@FORMAT displayed an inaccurate error message when attempting to format
a device that was being accessed by another partition. This error
/o~ message has been corrected.

@BACKUP

@BACKUP displayed an inaccurate error message if an attempt was made to
backup to an unscratchzd platter. This has been corrected.

@INSTALL

@INSTALL displayed an inaccurate erfor message if an attempt was made to
install the operating system to an unscratched platter. This has been
corrected.

MXE REV 3.02

The @MXEQ microcode has been modified to correct two reported problems.
The fixed problems are -

1) In TC mode, when sending 6-bit or 5-bit data - if a character
shifted relative to the previous character was sent to the MXE, the
shift code was transmitted, but character itself waited until
another character was sent to the MXE. Now all characters are
transmitted as sent to the MXE.

2) When using the 2436WP terminal, under certain circumstances the
print stream to the local printer (204) would stop and not resume
L until the 2200 was re-booted. This has been fixed.

LIST DT

Format:
LIST (S] [title] DT
where:

title = alpha-variable or literal-string

LIST DT lists the contents of the Device Table. The current device
selections for the various I/0 classes and file numbers are shown. The line
width for character output devices is also included.

For data files that are open, the device type in the disk-address of the
associated file number indicates whether the file was opened with the T, F, or
R platter specification. Device type D indicates T, 3 indicates F, and B
indicates R. For example, if a data file has been opened as follows:

SELECT #1/320: DATALOAD DC OPEN R #l, "PLAYERS"

then, LIST DT displays the selection as: #1 /B20. LIST DT also displays
the current sector location within the open data file. For example, for the
file above the display might be:

#1 /B20 at 530 in 500 to 732

This shows that the current location is sactor 530 in the data file that
begins at sector 500 and ends as sector 732.

LIST DT also lists the dewvice entries in the Master Device Table (MDT).
Each entry is displayed in ths following format:

/taal-ppx] where: t
aa
PP

X

device type (3 if disk, otherwise 0)
device address

nunber of the partition using the device

X if device open exclusively for partition
pp, or O if open for partition pp

The Printer Device Table (PDT) is also listed by LIST DT. Aan entry for
each available printer supported by the Generalized Printer Driver is
displayed. Each entry includes the printer address, name of the printer
table, and whether the printer table is enabled (ON) or disabled (OFF).

The S and title parameters of LIST DT are the same as for the other LIST
statements.

Example:

:LIST DT

CI /001 Cco
INPUT /001 PRINT
PLOT /413 LIST
TAPE /000

#0 /D11 #2

#5 /B20 at 530 in 500 to 732 #6

#7 /D12 at 1234 in 1234 to 1945 #10
#15 /320 at 12222 in 11946 to 12223 #128
MDT: /004 /215-120 /310 /320-03%
PDT: /015 @PMO1OVQ0 ON /0lé6 @PMO120V0 OFF

/005
/215
/7005

/D10
/D1F
/D31
/D5SF

width 80
width 132
width 80

RESAVE

Format:
-
RESAVE [DC] [<[W][SI[R]>] T [$] [file%,] [!'] file-name {[start] [,[end]]
[disk-addr,] [P]

where:
file-name = alpha-variable or literal-string
start = starting line #
end = ending line #

RESAVE saves the program in memory over an existing file. The file name
specifies the name of the file to be overwritten and becomes the name of the
program file on disk. The file to be overwritten can be active or scratched,
and can be either a data or a program file. If the file does not exist or is
not large enough to hold the program, an arror results. If the file is not
large enough to hold the program, it is marked in the catalog index as a
SCRATCHed file.

RESAVE operates as a combination of the two statements SCRATCH file and
SAVE over an existing file. The parameters in the RESAVE statement are the
same as for SAVE. See SAVE for a description of the save parameters.

Examples of wvalid syntax:

am RESAVE T "CONVERT"
RESAVE T ! "MONEY" 1000,2000
RESAVE T/D22, F$
RESAVE T#1, "LAYOVER" 100
RESAVE <SR> T $ "PROG"
RESAVE <R> RP "RP" ,200
RESAVE DC <S> F $ /D25, P A$ 100,900

RENAME

Format:

—~ RENAME platter [file#,] old-file-name TO new-file-name
[disk-addr,]

where:

file-name = alpha-variable or literal-string

RENAME changes the name of an existing file to some other name. After
the file has been renamed, the file can only be accessed by using the new file
name. The program header, which is saved along with the program, is also
modified to reflect the name change. This was done to ensure that various
platter recovery utilities would recover the file using the new name. Except
for the program header, the file is not modified, occcupying the same sectors
as it did before the rename.

BExamples of valid syntax: -

RENAME T "OLDFILE" TO "NEWFILE"
RENAME F/320, 0$ TO N$
RENAME T/D10, "TESTO00l" TO A$

MOVE (platter)

Format:

f— MOVE platter [file#,] TO platter [file#,] [LS=exprl] [,END=expr2]
[disk-addr,] (disk-addr,] [END=expr2]

where:

exprl = an expression such that 1 <= value <= 255

expr2 = an expression whose value <= highest sector address on

platter

The MOVE (platter) statement copies all active files from the first
platter specified to the second platter specified. Scratched files and
temporary files are not copied. Thus, MOVE provides a means to recover space
lost to scratched files by creating a new platter containing only the active
files on the old platter.

Before files are copied, MOVE (platter) scratches the destination
platter. The LS parameter specifies the size of the Index to be created on
the destination platter., If LS is not specified the size of the Index will be
the same as the Index on the sourcs platter. The END parameter specifies the
siz= of the Catalog Area on the destination platter; the value of expr2 is the
higi 2st sector address in the Catalog Area. If END is not specified, the
highest sector address is the same as on the source platter.

If the LS and END parameters are not specified, the type of Index
@\ created is the same as that of the source platter (ie, a SCRATCH DISK or
SCRATCH DISK ' index). If LS and/or END is specified, a SCRATCH DISK ' index
is created.

Prior to attempting to move a file from the source to the destination
platter, the statement determines whether there is enough room in the
destination catalog to accomodat= the file. If not, the MCVE statement is
terminated with the appropriate error message.

Following a MOVE, the VERIFY statement can be used to ensure that the
"files were recorded without error. Note, MOVE does not modify the source
platter.

To execute a MOVE, approximately 800 bytes of memory must be available
for buffering (not occupied by a BASIC-2 program or variables); otherwise an
error A03 results and the MOVE is not performed. The large buffer minimizes
the time required for the MOVE operation.

Examples of wvalid syntax:

MOVE F TO R

MOVE T/D65, TO T/Dé60,

MOVE T#l, TO T#2, LS=4, END=1279
MOVE T TO T/B20, END=10000

LIST DC

Format:

/o~ LIST [S] [title] DC platter [file#,] [file-name-mask] [file-type] [W]
[disk-addr,]

where:

title
mask

alpha-variable or literal-string
alpha-variable or literal-string

(P)
file-type = (D)
(SP)
(SD)

W = output file names only option

LIST DC lists the contents of the specified disk platter. LIST DC first
shows information regarding the size of the Catalog Index and Catalog Area
followed by a listing of files on the platter. For example,

:LIST DC T
INDEX SECTORS. = 0005
END CAT. AREA = 1231
CURRENT END = 0089

-~ NAME TYPE START END USED FREE
DATA-LL P 00006 00027 00022 00000
2231W P 00028 00030 00003 00000
XPRINT SP 00031 00033 00003 00000
JUNK SD 00034 00043 00009 00001
INVTORY D 00044 00089 00020 00026

INDEX SECTORS is the number of sectors allocated for the Catalog Index.
The single quote (') after the number of index sectors indicates that the
index was created with the SCRATCH DISK °' statement, the (') is not displayed
for indexes created with SCRATCH DISK. END CAT. AREA is the sector address
of the last sector reserved for storing files. CURRENT END is the last sector
that has been used.

Por each cataloged file LIST DC shows the file name, file type, starting
and ending sector addresses of file, the number of sectors used in the file,
and the number of sectors not used. The file type is either;

P for program file
D for data file
SP for scratched program file
SD for scratched data file
? for an invalid entry in the index

For data files, the number of sectors currently used in the file is originally

e, set to one, and is updated only when an end-of-file record is written to the
file.

=

The W option (for wide) directs the system to use a different output
display. This option results in only the file names being displayed across

the screen. For example,
:LISTDC T W

DATA-LL 2231W XPRINT JUNK INVIORY

LIST COM/DIM

Format:

-~

CcOoM
LIST {title] DIM
COM/DIM
where:

title = alpha-variablé or literal-string

LIST COM, LIST DIM, LIST COM/DIM statements list the currently defined
variables and their current values. LIST COM lists the defined common
variables. LIST DIM lists the defined noncommon variables. LIST COM/DIM
lists the defined common variables in their order of definition, and then
lists the defined noncommon variables in their order of definition. The
dimensions of arrays and the length of alpha variables are shown as would
appear in a DIM or COM statement.

Values of alpha variables are displayed in both ASCII and hex notation.
Nonprintable characters (i.e., hex(00)-hex(0F)) are displayed as periods (.)
in the ASCII field. If the wvalue is long, only the first 16 characters are
displayed. Alpha array values are displayed as a single string starting at
the first element.

For numeric arrays, as many elements that fit on a single line are
displayed. The elements in row 1 are displayed, then row 2, etc.

Examples:

:LIST DIM

A 123.45

Bl 0

B2(5) -12000

B$6 "AB..CD" 41 42 0D 0A 43 44

M$(256)1 "Wang Laboratories" 57 61 6E 67 20 4C 61 62 6F 72 61 74 6F
N(3.,4) .874539284 .777430912 .314985239222 -.0002438216 .10138327
:LIST COM/DIM

F$7 "house " 6B 6F 75 73 65 20 20

c 33

P(4) 0130

H$(3)2 "CNLLAL" 43 4E 4C 4C 41 4C

¥$5 " " 20 20 20 20 20

JO(10) 6410000000

Q%11 "001-00-1234" 30 30 31 2D 30 30 2D 31 32 33 34

Examples of valid syntax:

LIST COM

LIST DIM

LIST COM/DIM
LIST "title" DIM

