i

SORT
STATEMENTS

REFERENCE MANUAL

»s?ﬂ!t”n.......,...33333“3'&3333833033333333%..'.w.........?ﬁﬂ
S SUN ...,...maawmmnammmnn..u...?‘l
B aa s .,mmuu..s.,.-.-;-;«...amm-.u.um
“ \,..M-..v.mmu.9«.;...‘.--5.&.'...,;,...3M~,«~w;.~
»oooaw 1;-ww-cu-n\tnsciVtgknng;;vnnﬂdtxatnnmw.“n
coe e FRBBR. . v o . SN0, L
v FERRBIRR. . . cciieariinniiinnnanyineh Snn e o s SSRUKAENOR.
’ .
T A PO~ - S
\ N . :
cewn HAUBIRIII. .. i e aenn e SISO,
l!‘10nWt¢lpqi'!‘l"%."‘i .-vnu.n.s-..m--;_o-
TRy - - O PR - - -~ -~ T
TR - - - R T -~ - -~ - S
Fonnneos o ACOBITRRNIED. ..ol RRIFRIEBIDe e e e
TV o« < FRIIBRANRINNNNNRRFITINIRADININNRNINGS. .. oL NE
TEEENE . L RSN,y

‘Mvm “m“@ w :

Sort
Statements

Reference Manual

©Wang Laboratories, Inc., 1977

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein modifies or
alters in any way the standard terms and conditions of the Wang
purchase, lease, or license agreement by which this software package
was acquired, nor increases in any way Wang’s liability to the customer.
In no event shall Wang Laboratories, Inc., or its subsidiaries be liable
for incidental or conseguential damages in connection with or arising
from the use of the software package, the accompanying manual,
or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in ac-
cordance with the terms and conditions of the Wang Laboratories, inc.
Standard Program Products License; no ownership of Wang Software
is transferred and any use beyond the terms of the aforesaid License,
without = the written authorization of Wang Laboratories, Inc., is
prohibited.

LABORATORIES, INC. .

(U‘ UANG)ON{ INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851. TEL. (617) 851-4111, TWX 710 3436769, TELEX 94-7421

HOW TO USE THIS MANUAL

This manual describes the use of the Sort Statements. It 1is assumed
that the reader is familiar with the operation of the available system, has
access to the following manuals: The Wang BASIC Language Reference Manual and
The Programming In BASIC Manual, and/or a working knowledge of the Wang BASIC
language. Additionally general knowledge of data processing techniques is
desirable.

The Sort statements presented in this manual are:

MAT CONVERT Reformats data from the normal storage format into the
hexdecimal sort format and stores them in an alphanumeric
array.

MAT COPY Copies data byte-by-byte from all or part of one

alphanumeric array to all or part of another; element
boundaries are ignored. The data can be copied in forward
or reverse directions.

MAT MERGE Creates the 1locator-array (merge array) used to merge
alphanumeric array rows into a single (sorted) array (or
file).

MAT MOVE Moves data from one alphanumeric array to specified

locations in another alphanumeric array in the sorted order
specified by the locator-array which contains the subscripts
of elements in the desired order. Elements can be moved
element-by-element, or by fields within each element, to the
desired output device.

MAT SEARCH Searches an alphanumeric array for character strings that
satisfy a given relation; element boundaries are ignored.
The search can be performed at specified intervals and a
variable number of characters can be compared.

MAT SORT Creates the locator-array pointers needed for sorting the
elements of an alphanumeric array into ascending or
descending order; leaves the subscripts of the ordered data
in the output locator-array.

Chapter 1 contains an overview of array fundamentals. Chapter 2
discusses each sort statement in detail. It 1is recommended that novice
programmers rely upon the Wang-supported utilities rather than doing their own
programming with the Sort Statements. Users who have a Wang disk wunit and

wish to do sorting should refer to the Digk Sort Utility = Reference Manual.
Under certain conditions a user may not nee 0 prepare sorted files, but
merely to produce lists of sorted data. Another Wang-supported utility, KFAM
(acronym for Keyed File Access Method), provides this capability. With the
random access method of KFAM, the user can set up a file on which Sort Keys

and pointers to the disk addresses of his data file are both stored. (See the

KFAM Reference Manuals). Finally, ISS (IN D Support System) KFAM & SORT
Utility programs provide extended range in multiplexed disSk environments.
B R e

"
W

i

TABLE OF CONTENTS

Page
CHAPTER 1: GENERAL INFORMATION. 1
1.1 Introduction . 1
1.2 Installation . 2
1.3 Arrays . . 3
1.4 Internal Storage . . 5
1.5 Sort/Merge Operations. 6
The Sort Phase. 7
The Merge Phase . 7
1.6 Descending Sorts . 11
CHAPTER 2: SORT STATEMENTS. . . & & ¢ v v ¢ e o ¢ o o o o o o s o o 21
MAT CONVERT. . . . & ¢ v ¢ v ¢ ¢ o o o o o o o o o « « o« 22
MAT COPY . . . v v it et e e e e e e et e e e e e e e 25
MAT MERGE. & ¢ &« v ¢ ¢t ¢ o ¢ o o o o o o o o » « 27
MAT MOVE & v v vt v 6 e e v v o o o o e s o o o 32
MAT SEARCH & & i i i e v e e v e e o v e v e e e 35
MAT SORT . + v v ¢ ¢ v 4 e v v e v e e e o s v e e o e e 38
APPENDICES
A. Error Codes. . . e e e e e e e e e e e e e 40 ~
B. MAT SORT/MAT MERGE Tlmlng e e e e e e e e e e e e e e e 41
C. Some Useful Definitions. . . e e e e e e 4y
D. Wang HEX, CRT Character Set and VAL Cross
Reference Table. ¢ ¢ ¢ v v ¢ ¢ ¢ o o o o« s 45

ii

CHAPTER 1: GENERAL INFORMATION

1.1 INTRODUCTION

The Sort Statements are a group of programmable statements that provide
high speed data sorting, searching, and moving capabilities.

The six Sort statements can be separated into two categories: those
which are used in specific phases of a data-sorting program to reduce both
sort time and program size (MAT CONVERT, MAT SORT, MAT MOVE, MAT MERGE), and
those of general use to move or search character or data strings (MAT COPY and
MAT SEARCH). The last two can be wuseful in text editing, statistical and
random access data retrieval applications and treat alphanumeric arrays as
groups of characters without regard to array element boundaries.

In a manual of this type it is impossible to enter into a discussion of
all the sorting and merging techniques that have been invented. The examples
have been chosen to provide alternatives and illustrate internal and external
sorts. An internal sort is one in which all sorting takes place inside the
memory of the computer; an external sort is performed when memory is
insufficient to take the entire file to be sorted at one time. In such a
case, various peripheral devices can be used for storage of permanent and
intermediate data files. 1In practice, the most common sort or sort/merge
techniques are of this latter type. '

Examples have been provided to illustrate the rules and the use of the

Sort statements. Remember when using these statements that subscript locate
mode arrays are automatically created by MAT MERGE, MAT SEARCH and MAT SORT.
Locate mode is a means to access data by pointing to its location instead of
moving it. To do a sort, for example, it is possible and very fast to read in
an array, execute MAT SORT to get the ordered pointers for all elements in the
array, and then execute another Sort statement (MAT MOVE) to place all the
elements in the correct order on an output device. Compared to the usual
sort-and-exchange or bubble sort techniques, the ease of use and rapidity of
locate mode excels. This feature opens up important applications where rapid
access to large amounts of data is desirable. For example, in statistical
analysis it may be necessary to pass several times over the same mass of data
" to cull out information according to several parameters. The Sort statements
can do this swiftly without the necessity of physically dumping out all the

data each time.

1.2 INSTALLATION

The Sort Statements are a standard feature of most 2200, WCS, PCS
systems. They are available as Option 5 for the 2200B and 2200C processors
(Option 5, Sort Statements, cannot be installed in a processor that also
contains Option 1, Matrix Statements) and as Option 24 for the 22005 and
WCS/10 processors. For the 2200VP, see the sort statements in the BASIC 2
Language Manual.

For processors that do not include Sort Statements as a standard
feature, the Sort Statement option can be installed at the factory or retrofit
by a Wang Service Representative.

1.3 ARRAYS

The input files for the Sort Statements must be explicitly blocked
(i.e., written in either alphanumeric or numeric-array form).

This section describes briefly the properties of arrays as an aid to the
user of the Sort statements. Users already familiar with arrays and array
notation can skip this section.

An array is a number of mathematical elements arranged in a specified
order. Arrays can be either one- or two-dimensional. A one-dimensional array
can be thought of either as a single row or a single column. A
two-dimensional array is arranged in rows and columns. In this arrangement
each element can be uniquely identified by its position. The wusual array
notation describes position with subscripts. A one-dimensional array has a
single subscript and can also be called a vector. A two-dimensional array has
two subscripts which are always for "row, column", never "column, row". A
two-dimensional array is like a table (see Figure 1-1).

columns
r r r
1,1 1,2 1,3
rows r r r
2,1 2,2 2,3
r r r
3’1 3’2 3’3

Figure 1-1. A Two-Dimensional Array

For example, in the following array the value in element (1,2)
value in element (3,4) is B.

colﬁmns
/7 e Y
Z A Q N
i) W X YA
rows
YA YA Q B
R S T U

Figure 1-2. An Alphanumeric Array

is

A and the

Arrays can contain either numeric or alphanumeric elements as defined by
the assigned array name, e.g., either A() or A$(), respectively. Every array
must not only be appropriately named, but must also be properly dimensioned
with a DIM or COM statement. For example, to define and dimension the array
illustrated in Figure 1-2, the following statement suffices:

10 DIM A$(4,4)

For one-dimensional numeric arrays, the available memory size 1is the
only size restriction. For two-dimensional arrays, a second restriction is
imposed in addition to memory size. The system uses a single byte to
represent each subscript of a two-dimensional array internally. Since the
maximum binary number which can be represented in one byte (eight bits) is
255, each subscript of a two-dimensional array is restricted to a maximum
value of 255. This restriction can be expressed in a different way by stating
that each row in a two-dimensional array 1is limited to a maximum of 255
elements or each column is limited to a maximum of 255 rows. The maximum
total number of elements in a two-dimensional array is 4,096 elements
(bytes). This is equivalent to 32,768 bits.

For alphanumeric-arrays, the length of each element is not fixed by the
system. Instead, it can be set by the programmer to any 1length between one
byte and 124 bytes, inclusive; for example:

10 DIM A$ (4,4) 124

would specify a 16 element array with 124 bytes in each element (1984 bytes
total). In this case, as with numeric arrays, the determining factor in
restricting array size is the available memory space.

In order to indentify each variable in memory, the system automatically
inserts several bytes of control information at the beginning of the variable
area. These additional bytes are completely "transparent" to the programmer
(that is, they are used exclusively by the operating system, and cannot be
accessed by the application program), and they represent a fixed overhead for
each variable defined in a program. The number of control bytes required
differs according to whether the array is alpha or numeric.

Note:

Subscripts defined in DIM statements must be positive
integers (1 to 255). Zero is not allowed as a defining
subscript. Once defined, variables can be used as
subscripts. Space required for an array must not exceed
4096 bytes. In some Sort statements, a subset of an
element can be defined. Numeric array elements are set
to 2zero, and alphanumeric array elements to spaces
(HEX(20)), when memory space is initially allocated,
dimensioned. Mat Sort executes fastest when the array
length is one greater than a power of two. Block 1length
= row length in a merge array. The optimum number of
elements per block (N) in a sort array will be any
logical multiple of (2X+1). The worst case occurs when
the number of elements (N) is an exact power of two. See
Appendix B.

1.4 INTERNAL STORAGE

All data is physically stored by the Wang System in eight byte fields.
The format in which data are stored internally in your system depends upon
whether the data to be stored are numeric, alphanumeric, or MAT converted.
Alphanumeric data are stored as a series of bytes where each byte contains a
single character. A numeric value is stored in exponential form. The first
half of the first byte contains a code for the signs of the mantissa and the
exponent as follows:

half-byte indicates example
0 mantissa and exponent both positive +1.0
8 mantissa positive, exponent negative +0.1
9 mantissa and exponent both negative -0.1
1 mantissa negative, exponent positive -1.0

The next two half-bytes contain the exponents HEX digits (-99E£E<£+99)
and the remaining 6 1/2 bytes contain the 13 digits of ‘the mantissa (see
Figure 1.3), one digit in each half-byte.

1 2 3 4 5 6 7 8
Byte ! i
! 1
1 1
. S — p—— N -,
sign exponent v
mantissa

Figure 1-3. The Eight Byte Storage Field

When operated on or output by Sort statements, the work arrays will
consist solely of hex codes. Only arrays in the mat convert mode can be
operated on by the sort set. This is because sorting requires a special
relationship between a numbers sign and exponent to describe its magnitude.
For example:

0
-1.0 -0.1 +0.1 +1.0
mantissa (-) mantissa (-) mantissa (+) mantissa (+)
exponent (+) exponent (-) exponent (-) "exponent (+)

In each instance, one (1) is represented by the same hexcode (31). Therefore
the sign and exponent codes must precede the code for one (1) in order for the
computer to recognize the differences in magnitude and properly sort these
four values. Note the difference in the storage format's of alphanumeric,
numeric and MAT converted data. Because of this, Appendix D containing
alphanumeric to hex code conversions is provided.

Numeric values are stored sequentially ascending in sort format. If the
elements of the alpha array contain less than eight byties, the stored value is
padded with spaces (at the right). 1If the elements of the alpha-array contain
more than eight bytes, the value is truncated; least significant digits are
lost. The truncation feature can be useful for conserving memory when it is
known that all values to be MAT CONVERTed have few significant digits.

In the MAT converted format the first four bits (half-byte) of each
value in the alpha-array are used to represent the signs of the mantissa and
the exponents as follows:

half-bzte indicates example
9 mantissa and exponent both positive +1.0
8 mantissa positive, exponent negative +0.1
1 mantissa and exponent both negative -0.1
0 mantissa negative, exponent positive -1.0

The next eight bits (two half-bytes) are used to represent the high and
low order digits of the exponent. They are given in decimal or nines
complement form to indicate the size of the value as follows:

form indicates

decimal mantissa and exponent both positive

complemented mantissa positive, exponent negative
decimal mantissa and exponent both negative

complemented mantissa negative, exponent positive

(i.e., exponents are given as their nines complements if the signs of mantissa
and exponent differ). The remaining bytes of the value are the digits of the
mantissa. These digits are in decimal form if the sign of the mantissa is
positive or in the nines complement decimal form if the sign of the mantissa
is negative.

Values in sort format can be stored in a specified field of each
alpha-array element by using the limiting field expressions (s,n). The number
of bytes specified in each field must be at least 2; if more than eight bytes
are specified, the value is truncated at the right, 2 digits per byte. For
example, the statement:

MAT CONVERT N() TO A$() (3,5)
specifies that the numeric values from the array N() are to be stored in the

third through seventh bytes of each element of alpha array A$(). If less than
eight bytes are specified, the field is padded with zeroes.

1.5 SORT/MERGE OPERATIONS

There are many possible sorting techniques which can be used to order
data as needed. A general technique that utilizes the MAT CONVERT, MAT COPY,
MAT MOVE, MAT SORT and MAT MERGE statements is described below. It contains a
Sort Phase and a Merge Phase,in that order, since merging can only be done on
sorted data. The user who also wishes to explore those methods using Random
Access Data Files (on disk) should refer to the KFAM Reference Manual .

6

The Sort Phase

In this phase, data records to be sorted are read from a data file (on
tape or disk), perhaps transferred for efficiency in memory using MAT COPY,
and ordered in strings (small sorted groups) on the basis of a Sort Key. The
Sort Key is a field (or fields) from the data record which is used to do the
ordering; a string is a sub-file of records which are stored in sorted order.
For example, to sort a file by customer number and invoice date, the Sort Key
can contain any number of variables or fields from the data record, even the
entire record if necessary. Using a short Sort Key improves running time

because comparisons between the keys for sorting are done many times in the
process of a sort.

In building the Sort Key, it is essential that both numeric and
alphanumeric data be compared in the same operation, character-by-character.
All numeric values are stored in a floating point exponential format optimum
for numerical calculations; these values must be converted for sorting
purposes to an appropriate alphanumeriec equivalent. MAT CONVERT does this
job. If the full thirteen digits of the mantissa are not required, MAT
CONVERT can truncate the mantissa to conserve memory and shorten the Sort Key.

In the Sort Phase, the number of records and/or keys initially put into
each string is usually determined by the amount of memory available, although
a string is not restricted by memory capacity. Subsequently, the records are
read in groups, Sort Keys are built for each, and the records and/or keys are
sorted into strings and stored (on disk or tape) in at least two Merge Files.
MAT SORT is used to do the job of sorting the initial data groups into
(ordered) strings. To do this, MAT SORT sets up a subscript array called a
locator-array whose elements point in sorted order to the locations of the
records which are in memory. MAT MOVE must then be used to interrogate the

locator-array and actually move the data into sorted order on an output medium
(tape or disk) in files to be merged (Merge Files).

The Merge Phase

The Merge Phase generally consists of a number of merge passes. In each
pass, strings from two or more Merge Files are read, combined into (longer)
strings and stored on two or more new Merge Files. The process 1is repeated
until a single string containing the entire file in sorted order is created.

Note:

It is not necessary for a given string to be completely
stored in memory at one time during the merge process; it
can be loaded in segments.

MAT MERGE is normally executed a number of times 1in each merge pass.
For its use, a two-dimensional alpha array is set up to receive the string
segments being merged. Each row of the array represents one string segment

from one input Merge File. The strings contain the records or keys on which
comparisons are made.

When MAT MERGE executes for the first time, the first key in each row is
compared with the first key in every other row and the lowest key is
selected. The subscript of the lowest key is placed in the pre-defined
locator-array and this key is eliminated from future comparisons. MAT MERGE
is then executed again seeking the 1lowest key not yet merged. MAT MERGE
execution terminates either when a segment from a Merge File (a row) is
exhausted or when the locator-array is full. MAT MOVE must then be used to
move the records being merged into an array where segments of the output
file are being formed. Once an input segment has been exhausted, its
corresponding row can be refilled with MAT COPY. Once an output segment 1is
full it can be written out onto a new Merge File for later use. This entire
process is repeated until all strings from the old Merge Files have been
exhausted and a new merge pass can begin. Merging continues until a single
sorted string containing all records from the original input file has been
created.

A block diagram for a typical Sort program using Sort statements can be
found in Figure 1-4, and for the Merge Phase of a sort routine, in Figure 1-5.

Read a group
of records (from
'/ disk) to form
a string.
Build Sort Use MAT CONVERT to reformat numeric values
Keys for each {in Sort Keys; use MAT COPY to group Records/
record. Keys.
\
Sort record/ Use MAT SORT to prepare locator-array for sorted
keys to order output.
string.
Group and store Use MAT MOVE to place records/keys in sorted
records/keys as order according to pointers of locator-array.
strings on a
Merge File (on
disk).

no

All records

done?

yes

Go to MERGE PHASE (Figure 1-5).

Note:

Due to the many simultaneous operations that proceed when

MAT MERGE executes, there are no simple examples to
illustrate this statement.

Figure 1-4, Block Diagram of a Typical Sort Program, Sort Phase

Read first segments of
first string from each
input file into merge
array (one array row
per file). (Use MAT

COPY.)

Merge segments until -
elther a given segment
13 exhausted or the

locator-array is full.

{Use MAT MERGE.) -

Y
Physically move merge Flag row
segments into output as
buffer array using the empty

pointers of the locator
array and empty the
locator-array. (Use
MAT MOVE.)

no

Any
more
segments in
that string?

yes Read next
segment of

input string
into appropriate
merge array row.

as an inpu
segment

Is output
buffer full?

Write output buffer
onto disk as new
strings of new output
file.

no

N

3
any

segment
exhausted?

all segments
in current
ings exhausted

yes

Are all
strings from
input files
exhausted?

Let output
Merge Files
become Input
Files.

Figure 1.5 Block Diagram of the Merge Phase of a Sort Program

10

1.6 DESCENDING SORTS

Sometimes it is necessary to sort some of the variables in a Sort Key in
descending order. This can be accomplished by inverting the order of an
ascending sort or by complementing (using the XOR statement) those characters
in the final Sort Key which represent descending order key variables. For
numeric data, complementing must be done after data have been put in sort
format using MAT CONVERT.

Example 1 A$(), is a Sort Key to be complemented.
100 XOR (a$(),FF) does the job.

Example (B$(1), is an array element representing a Sort Key and record; its
sixth through tenth characters are part of the Sort Key to be
complemented for a descending sort.

200 XOR (STR(B$(1),6,5),FF) does the job.
EXAMPLES
Example 1. Using MAT SORT and MAT MOVE

In the following short program an input or sort array I$() is processed
by MAT SORT and the locator-array L$() containing pointers is filled. Then
the locator-array is used by MAT MOVE to pick off the elements of the sort
array in sorted order and place them in the sorted output array 0$()

10 DIM I$(10)1, W$(10)2, L$(12)2, 0$(10)1
20 FOR I=1 TO 10 : INPUT I$(I) : NEXT I

30 MAT SORT I$() TO W$(), L$()

40 FOR I=1 TO 12 : HEXPRINT L$(I) : NEXT I
50 M=10

60 PRINT

70 MAT MOVE I$(), L$(1), M TO 0$(1)

80 FOR I=1 TO 10 : PRINT 0$(I) : NEXT I

11

Try it. Input up to ten single letter array elements (not in alphabetical

order). The locator-array is printed in hex-codes; the output array is ‘
printed as usual.

~o-o-o~o-o-o-o-o-o;’
L«UJOK%N»MUM%

?

040109010201030108010A01010106010701050100002020
ABCDEGJSXYZ

Figure 1-6, Output from Example 1

12

Example 2. An External Sort

In this example there are three sorted data files on disk (INPUT1,
INPUT2 and INPUT3). Each has logical records which contain 50 elements; each
element contains 8 bytes. The program illustrated merges the three files into
a single file called output. The diagram illustrates the flow of data from
the input files through the merge process, to the output buffer and hence to
the output file.

The scheme for merging proceeds as follows:

1. Data is brought into memory from disk files wutilizing an input
buffer to transfer whole records at a time.

2. A merge array, is created M$() using MAT COPY. In this example, MAT
COPY is in a subroutine.

3. The first N elements of the primary work array Wi$() are initialized
to 1.

4, MAT MERGE is called to create the subscript locator-array.

5. MAT MOVE is used to empty the locator-array and to move data from
the merge array to the output buffer. The movement of data ceases
when the locator-array has been emptied or an element filled with
zeroes is reached. MAT MOVE automatically keeps track of the number
of elements actually moved.

6. When the output buffer is filled, all data stored in it must be
written to the output file. The buffer is then ready to receive
more data from another execution of MAT MOVE.

7. The last element in the primary work buffer is checked (with the VAL
function) to see if a row in the merge array has been completely
scanned. If all its elements have been used, it is refilled with
data from the input file and the appropriate element in the primary
work array is reset to 1.

8. 1If there are no more records to be input, normal operation continues.
9. Steps 4 through 8 are repeated until the first element in the

locator-array is filled with zeroes when examined by the MAT MOVE
statement.

13

Input Buffer:
18()

Merge Array
e e > MS()

Subscript
} Locator Array

$$()

[DATALOADI
Input
Disk J . . .
Files
[MAT CcOPY]
\ - .
A . .
A
| ﬂ ﬂ [MAT MERGE] |
‘r//////////////;:;;:;;;; |
Work Work
Array Array
w2s() W1s()
Termination [MAT MOVE]
Flag

Output
s v e Buffer O$()

\[DATASAVE]
Arrows indicate the movement of data re-

sulting from execution of the accompanying 4
statement in brackets.

} Output Disk File

Figure 1-7 Schematic Diagram of MAT MERGE External Sort

14

Program Listing

10 REM ARRAY DEFINITIONS . c vttt trenenceeenensonesencnenseseseseacnansnnens
20 DIM M$(3,50)8: REM MERGE ARRAY

30 DIM I$(50)8: REM INPUT BUFFER

40 DIM 0$(50)8: REM OUTPUT BUFFER

50 DIM W1$(4)1: REM WORK BUFFER 1

60 DIM W2$(3)2: REM WORK BUFFER 2

70 DIM S$(50)2: REM SUBSCRIPT BUFFER

80 REM OPEN THE DATA FILES ON DISK..:uveeenereensosnennnassansosssesnannns
90 SELECT #1 310, #2 310, #3 310, #4 310

100 DATA LOAD DC OPEN F #1, "INPUT1"

110 DATA LOAD DC OPEN F #2, "INPUT2"

120 DATA LOAD DC OPEN F #3, "INPUT3"

130 DATA LOAD DC OPEN F #4, "OUTPUT"

140 REM FILL THE MERGE ARRAY.vitireneenenrooneesnonsennosesennosasanas
150 FOR I = 1 TO 3

160 GOSUB '40(I)

170 NEXT I .

180 REM INITIALIZE WORK BUFFER T...''vuvuenennenenrocannannooencnesesnannse
190 INIT(01) W1$()

200 M=1

210 REM MERGE. c vt tvttttteeserensusseenenosossenessssssennasasasenoannnss
220 MAT MERGE M$() TO W1$(), wW2$(), S$()

230 IF S$(1)=HEX(0000) THEN 480: REM EXIT IF DONE

240 REM MOVE THE MERGED DATA TO THE OUTPUT BUFFER.....coecvieorncncnannnns
250 S=1

260 N=50

270 MAT MOVE M$(), S$(S), N TO 0$(M)

280 M=M+N: REM M = NO. OF ELEMENTS IN OUTPUT BUFFER

290 REM PUT DATA INTO OUTPUT FILE IF OUTPUT BUFFER FULL......cevevrensnnns
300 IFZM =50 THEN 350

310 DATA SAVE DC #4, 0$()

320 M=1

330 S=S+N

340 IF S<51 THEN 260: REM BRANCH IF MORE DATA TO MOVE

350 REM CHECK MERGE TERMINATION FLAG....v.ceueoconsonncenronnccnnsnns ceens
360 T=VAL(W1$(4))

370 IF T=0 THEN 220: REM BRANCH IF NO ROWS OF M$() EMPTY

380 GOSUB '40(T): REM REFILL EMPTY ROW OF M$()

390 GOTO 220

GO0 REM. ...ttt iinntnsaeeeeasocnosasosesssssoesasassssasssssssascssssscsns
410 DEFFN'40(R): REM READ THE NEXT BLOCK FROM SPECIFIED

420 REM INPUT FILE AND PUT INTO MERGE ARRAY

430 DATA LOAD DC #R, I$()

440 IF END THEN 470

450 MAT COPY I$() TO M$()<(R-1)%400+1,400>

460 W1$(R)=HEX(01): REM RESET APPROPRIATE WORK BUFFER ELEMENT
470 RETURN

480 END

15

Example 3. An Internal Sort

In this example, two arrays I$#1 and' #2 are merged. Their data are
given in a DATA statement. Only a 1listing of this routine is provided,
followed by a printout of the data which are displayed on the CRT. It is
recommended that this routine be entered on your system and run, since the CRT
display tells much of the story of MAT MERGE. The routine uses MAT COPY to
fill the input array A$(), INIT to initialize the work vector W1$() and the
locator-array L$(), and MAT MERGE to fill the locator-array. Once L$() has
been filled, the data are sent to an output array 0$() with MAT MOVE. Checks
are made to determine whether to terminate merging, and the merge operation
continues. When the first element of the locator-array is still zeroes after
an execution of MAT MERGE, the merge operation is considered complete and the
final merged array is displayed. Not all arrays 'can be displayed directly
with a PRINT statement; for those that cannot the HEXPRINT statement must be
used. This routine requires only a CPU with Sort statements, a keyboard and a
CRT.

16

Program Listing .

10 REM THIS ROUTINE ILLUSTRATES USE OF MAT COPY, MAT MERGE

20 REM AND MAT MOVE

30 REM DEFINE THE ARRAYS:

40 DIM A$ (4) 5, I$ (4) 5, B$ (4) 5

50 DIM M$ (2,4) 5,0$ (4) 5,W1$ (3) 1,W2$ (2) 2

60 DIM L$ (4) 2,J$ (9) 5,K$ (16) 5

70 S=1:R=1

80 REM GET THE DATA TO BE MERGED

90 FOR I=1 TO 4:READ A$ (I) :NEXT I:FOR I=1TO 4:PRINT A$ (I) ,:NEXT I
100 FOR I=1 TO 4:READ B$ (I) :NEXT I:FOR I=1 TO Y4:PRINT B$ (I) ,:NEXT I
110 STOP "ALL DATA HAVE BEEN INPUT"

120 PRINT HEX(03)

130 PRINT "THIS IS THE ARRAY I$#1"

140 REM FILL THE MERGE ARRAY M$ USING MAT COPY

150 FOR I=1 TO 4:I$ (I) =A$ (I) :PRINT I$ (I) ,:NEXT I:MAT COPY I$ () TO M$ ()
<1,20> :STOP

160 FOR I=1 TO 4:I$ (I) =B$ (I) :PRINT I$ (I) ,:NEXT I:PRINT" "

170 MAT COPY I$ () TO M$ () <21,20>

180 PRINT "THIS IS THE ARRAY I$#2":STOP

190 PRINT "HEX OF THE MERGE ARRAY M$,OUTPUT OF MAT COPY"

200 FOR I=1 TO 2:FOR J=1 TO 4:HEXPRINT M$ (I,J) :NEXT J:NEXT I:STOP

210 REM INITIALIZE THE WORK VECTOR W1$ TO 1

220 INIT (01), W1$ ()

230 PRINT HEX (03)

240 PRINT "THE MERGE ARRAY HAS BEEN FILLED AND THE WORK VECTOR INITIALIZED AS:"
250 PRINT "W1$=":FOR I=1 TO 3:HEXPRINT W1$ (I) :NEXT I:STOP

260 REM CREATE THE LOCATOR ARRAY L$ WITH MAT MERGE

270 M=1

280 INIT (00) L$ O

290 MAT MERGE M$ () TO Wi$ () ,W2$ () ,L$ () :REM #HREEEEEEEERREEREEEEES
300 PRINT "MAT MERGE HAS BEEN EXECUTED":STOP

310 IF L$ (1) =HEX (0000) THEN 570:REM EXIT WHEN DONE

320 S=1

330 REM DISPLAY THE CONTENTS OF L$ AND W1$

340 PRINT HEX (03) :PRINT "THE LOCATOR ARRAY L$=":FOR I=1 TO 4:HEXPRINT L$ (I)
:NEXT I:STOP

350 PRINT HEX (03) :PRINT "WORK VECTOR FROM MAT MERGE IS NOW" FOR I=1 TO 3
HEXPRINT W1$ (I) :NEXT I:STOP

360 REM MOVE THE MERGE ARRAY TO THE OUPUT BUFFER 0$ WITH MAT MOVE

370 PRINT HEX 03 PRINT "COUNTERS AND THE OUTPUT BUFFER ARE:"

380 Nz4:PRINT "M=",M,"S=",S,"N=",N

390 MAT MOVE M$ () ,L$ (S) ,N TO 0% (M)

400 PRINT "N=",N,"ELTS WERE MOVED"

410 REM PUT DATA INTO OUTPUT ARRAY IF OUTPUT BUFFER FULL

420 M=M+N:REM NO. OF ELTS. PLACED IN OUTPUT BUFFER

430 R=R+1:IF M<z4 THEN 520

440 M=1:P=1:Q=4

450 FOR I=P TO Q:J$ (I) =Q$ (I) :NEXT I

460 MAT COPY 0% () TO K$ () <(R-1)%20+1,20>

470 P=P+N:Q=Q+N:S=N+1:PRINT "P=",P,"Q=",Q,"S=",S

17

Program Listing (Continued)

480 IF S<5 THEN 380:REM RETURN TO MOVE IF MORE DATA TO MOVE
490 REM DISPLAY THE CONTENLS OF 0%

500 PRINT "OUTPUT ARRAY BUFFER"

510 FOR I=1TO4:PRINT J$ (I) ,:HEXPRINT 0$ (I) ,:NEXT I:STOP
520 REM CHECK TERMINATION OF MERGE

530 T=VAL<>(W1$ (3)) :PRINT "T=",6T:STOP :IF T=0 THEN 280
540 IF L$ (1)< >HEX (0000) THEN 280

550 PRINT HEX (03) -

560 REM DISPLAY THE MERGED ARRAY

570 PRINT "FINAL MERGED ARRAY" _

580 FOR I=1 TO 4:J$ (I) =0$ (I) :NEXT I

590 FOR I=1 TO 8:PRINT K$ (I) :NEXT I

600 FOR I=1TO 4:PRINT J$ (I) ,:HEXPRINT 0$ (I) ,:NEXT I:STOP

610 PRINT ™ ":PRINT "L$=":FOR I=1 TO U4:HEXPRINT L$ (I) :NEXT I:STOP
620 PRINT " ":PRINT "W1$=":FOR I=1 TO 3:HEXPRINT W1$ (I) :NEXT I
630 DATA "JAKE","JOHN","KARL","KATHY","JANE","JILL","KING","KITTY"
640 END

Program Printout

JAKE JOHN KARL KATHY
JANE JILL KING KITTY
THIS IS THE ARRAY I$#1

JAKE JOHN KARL KATHY
JANE JILL KING KITTY

THIS IS THE ARRAY I$#2

HEX OF THE MERGE ARRAY M$,OUTPUT OF MAT COPY
4ak14B4520

LAL4F48LUE20

UBL41524020

4B4 1544859

4aAk14ELS520

LA494cluC20

4UBLUYLELT20

4B495U45459

THE MERGE ARRAY HAS BEEN FILLED AND THE WORK VECTOR INITIALIZED
AS:

Wig=

01

01

01

MAT MERGE HAS BEEN EXECUTED
THE LOCATOR ARRAY L$=

0101

0201

0202

0102

18

Program Printout (Continued)

Q

WORK VECTOR FROM MAT MERGE IS NOW:

03

03

00

COUNTERS AND THE OUTPUT BUFFER ARE:
M= 1

N= y

N= Y

P= 5

S= 5

OUTPUT ARRAY BUFFER

JAKE LAU14BYS20
JANE UAK14EL520
JILL hadgucucao
JOHN 4A4F4BUE20
T= 0

MAT MERGE HAS BEEN EXECUTED
THE LOCATOR ARRAY L$=

0103

0104

0000

0000

WORK VECTOR FROM MAT MERGE IS NOW:
FF

03

01

COUNTERS AND THE QUTPUT BUFFER ARE:
M= 1

N= 4

N= 2

T= 1

MAT MERGE HAS BEEN EXECUTED
THE LOCATOR ARRAY L$=

0203

0204

0000

0000

S=

S=

ELTS. WERE MOVED
Q=

ELTS. WERE MOVED

WORK VECTOR FROM MAT MERGE IS NOW:

FF
FF
02

COUNTERS AND THE OUTPUT BUFFER ARE:

M=
N=
N=
P=
S=
M=
N=
N=
T=

NO Fa2wWWN =W

19

S=

ELTS. WERE MOVED

Q=

S=

ELTS. WERE MOVED

8

6
3

Program Printout (Continued)

MAT MERGE HAS BEEN EXECUTED
FINAL MERGED ARRAY

JAKE
JANE
JILL
JOHN
KARL
KA THY
KING
KITTY

L$=

0000
0000
0000
0000

Wig=
FF
FF
02

4B41524C20
4B41544859
UBUGUELT20
4BLU95U5U59

20

CHAPTER 2: SORT STATEMENTS

Chapter 2 provides a discussion of syntax and examples using the Sort
statements. As with the verbs and statements of the BASIC language, syntax is
critically important when using the Sort statements. In addition, several of
the Sort statements have array dimensioning requirements which must be
followed. If the rules and restrictions set down in Chapter 2 of this manual
are not followed exactly, programs using Sort statements will not work.

In the general form provided for each MAT statement, arguments in
brackets are optional. Stacked items in braces are alternatives; one must
ocecur. Uppercase words represent actual characters in the statement;
lowercase words represent parameters that can change.

No array to be used with the Sort statements can contain more than 4096
bytes. Note that dimensional rules must be followed; the locator-array must
always have elements of length 2.

Note:

It is essential that any data set containing numeric
values be passed through a MAT CONVERT operation before
being used with the MAT SORT or MAT MERGE statement.

Note:

Do not use MAT REDIM on an array to reduce its total
number of bytes, and then execute a Sort Statement
operation on the array. MAT REDIM may be used on an
array that 1is subsequently operated on by a Sort
Statement only if the total number of bytes in all
elements after the MAT REDIM is the same as before the
MAT REDIM.

21

MAT CONVERT

General Form:

MAT CONVERT numeric-array-designator TO alpha-array-designator {{s,n}]

where (s,n) are expressions designating a field within each element of the
alpha-array used to store the converted value.

3 specifies the starting position of the field.

n specifies the number of bytes in the field.

Note:

The alpha-array must have at least as many elements as
the numeric-array.

Purpose:

MAT CONVERT converts numeric-array-elements to alpha-array-elements so
that the resulting alpha-array-elements can be sorted (by MAT SORT or MAT

MERGE) in proper numeric sequence. The format of data passed through the MAT
CONVERT statement is called sort format.

Examples of Valid Syntax:

MAT CONVERT A() TO A$() (6,8)
MAT CONVERT N() TO A$()

Working Example:

In the routine below, the numeric-array N() contains four numeric
elements; they are passed to A$() and to B$() according to the MAT CONVERT
statements and printed with the appropriate HEXPRINT statements. The field
expressions in line 90 specify that each converted element value from N() is

to be placed in the corresponding element of B$() starting with the second
character of each element of B$().

10 DIM N (4) ,A$ (2,2) 3,B$ (4) 8

20 N (1) =123: N (2) =-U56: N (3) =12345678:N (4) =0

30 PRINT "NUMERIC ARRAY,N :»

40 FOR I= 1 TO 4:PRINT , N (I) : NEXT I

50 MAT CONVERT N() TO A$()

60 PRINT "ALPHA ARRAY, A$():"

70 PRINT ,:HEXPRINT A$ (1,1) ;:PRINT ,:HEXPRINT A$ (1,2)
80 PRINT ,:HEXPRINT A$ (2,1) ;:PRINT ,:HEXPRINT A$ (2,2)
90 MAT CONVERT N() TO B$() (2,3)

100 PRINT "ALPHA ARRAY, B$():"

110 FOR I= 1 TO Y4:PRINT ,:HEXPRINT B$ (I) : NEXT I

Figure 2.2 A Program Using MAT CONVERT

22

The converted values are stored in both A$() and B$() providing the
exponent and three digits of the mantissa. In the printed output, hex(20)
represents the space character.

NUMBERIC ARRAY,N():
123
-456
12345678
0
ALPHA ARRAY, A$():
902123 097543
898123 800000
ALPHA ARRAY, B$():
2090212320202020
2009754320202020
2039812320202020
2080000020202020

HEXADECIMAL

~
FIELD(2,3)=elements 2, 3 and 4
Figure 2-3. Output from Program Using MAT CONVERT

After values which have been passed through a MAT CONVERT statement have
been used, if it is necessary to reconvert them back into standard internal
format, the Wang "Unconvert" wutility should be used. A listing of this
utility is given below.

23

1000 REM CONVERT BACK FROM SORT FORMAT TO NUMERIC
1010 REM ENTRY Z$ = NUMBER IN SORT FORMAT

1020 REM Z1 = LENGTH OF ALPHA VARIABLE

1030 REM RETURN Z = NUMBER

1040 DIM Z$8,Z1$1,22$2,23$1

1050 DEFFN'200 (Z$,Z1)

1060 Z1$,22¢ = Z$

1070 IF Z2$ = HEX (8000) THEN 1420 : REM ZERO EXIT
1080 Z$ = STR (Z$,2) :REM MOVE UP INTO PACKED FORMAT
1090 AND (STR (Z$,1,1), OF) :REM REMOVE EXTRA BITS
1100 REM EXTRACT THE EXPONENT

1110 Z3$ = STR (Z2%,2)

1120 AND (23$,F0) : REM 2ND EXP. DIGIT
1130 AND (22$,0F) : REM FIRST EXPT. DIGIT
1140 OR (23$,Z2$) : REM EXP. REVERSED
1150 ROTATE (Z3$,4) : REM EXPONENT

1160 REM NOW DETERMINE THE SIGN

1170 AND (Z1$,FO0) : REM SIGN BITS

1180 IF Z1$ = HEX (90) THEN 1350 : REM EXP. +; MANTISSA +
1190 IF Z1$ = HEX (10) THEN 1280 : REM EXP. -; MANTISSA -
1200 REM COMPLEMENT THE EXPONENT

1210 ADD (23$,66)

1220 XOR (Z3$,FF)

1230 IF Z1$ = HEX (80) THEN 1340 : REM EXP. -; MANTISSA +
1240 REM Z1$ = HEX (00) EXP. +; MANTISSA -
1250 Z1$ = HEX (10)

1260 GOTO 1300 : REM COMPLEMENT MANTISSA

1270 REM Z1$ = HEX (10)

1280 21$ = HEX (90)

1290 REM COMPLEMENT MANTISSA

1300 ADD (2$,66)

1310 XOR (Z$,FF)

1320 AND (STR(Z$,1,1),0F)

1330 REM INSERT SIGN

1340 OR (2%$,21%)

1350 STR (2$,8) = Z3$: REM INSERT EXPONENT

1360 REM ZERO UNUSED BYTES

1370 IF Z1>7 THEN 1390

1380 INIT (00) STR (Z$,21,8-Z1) : REM ZERO UNUSED BYTES
1390 UNPACK (+#.#####{HH#H)Z$ TO Z

1400 RETURN

1410 REM ZERO EXIT

1420 Z = 0

1430 RETURN

Figure 2-4. The "Unconvert" Routine

24

MAT COPY

General Form:

MAT COPY [—] source-alpha-array-designator {<s,n>>] TO [—] output-alpha-array-designator [<s,n>>]

where s,n are expressions defining a portion of either array. s specifies the
position of the starting byte to be used; n specifies the number of bytes to

be used.

s must be 0< s
n must be 0< n

< bytes-in-the-array.

< (bytes-in-the-array - s+1).

Each array is treated as a contiguous string of bytes, ignoring element
boundaries. If s,n are omitted, the entire array is used.

Purpose:

MAT COPY transfers data from the source alpha array to the output alpha
array byte-by-byte. The source and output arrays can be the same array. An
array is treated as one contiguous character string, i.e., element boundaries
are ignored. MAT COPY can be used to construct new arrays from old, combine
or divide elements, move data within arrays, and using the (-) inverse
parameter store data in reverse order within arrays.

Data are moved until the output array is filled; if the amount of data
to be moved is insufficient to fill the specified portion of the output array,
the remainder of the array is filled with spaces. A portion of an array can
be specified by using the limiting expressions (s,n). "g" is the counted
position of the first byte to be used in the array. The position is found by
counting bytes across the first row (left-to-right), then across the second
row, etc., until the desired byte is encountered. "n" specifies the number of
bytes to be used at one time.

If a minus sign (-) precedes the input array name (or its specified
portion), data are taken from it in reverse order and stored 1left justified.
In this case, the first byte moved is the last byte specified, and so on. 1r
a minus sign (-) precedes the output array, data are stored in the output

array in reverse order right justified, i.e., the first byte is stored in the
last byte specified, etc.

Examples of Valid Syntax:
MAT COPY B$() TO C$()

MAT COPY - A$() TO B$() <3,27>
MAT COPY A$() < X*Y, 100/X> TO -Q$() <10,20>

25

Examples: DIM A$(5)1, B$(7)1

a0 = [a|Bl c]pD]E]
MAT COPY A$() TO B$()

B$() = [A L,B I C I D [EAI space l space |
MAT COPY A$() TO - B$()

B$() = space| space | E|{ D| C| B | A l
MAT COPY-A$() TO B$()

B$() = E| D C| B| A| space space
MAT COPY - A$() TO - B$()

B$() = Sspace { space | A| B| C| D | E

Working Example: .
In this example, A$() has been dimensioned as a (5)1 element array, and -
B$ as (7)1. If A$() contains the characters A to E, and these data are copied

to B$(), the result is as shown in Figure 2-5.

10 DIM A$(5)1, B$(7)1

20 FOR I=1 TO 5 : READ A$(I) : NEXT I

30 MAT COPY A$() TO B$()

uo DATA nA"’ NB"’ "C"’ "Dl!’ "E"

50 FOR I = 1 TO 5 : PRINT A$(I) : NEXT I
60 PRINT "v

70 HEXPRINT B$()

ABCDE
1424344452020

Figure 2-5 Output from MAT COPY

26

MAT MERGE

General Form:

MAT MERGE merge-alpha-array-desig. TO work-vector-1-desig., work-vector-2-desig., locator-array-desig.

Note:

1. The merge-array must be a two-dimensional alpha-array

with not more than 254 rows or columns; its number of
rows (n) must be=xl.

2. Work-vector-1 must be one-dimensional. It must have
at least as many elements as the merge-array has rows
(+1); each element must have length = 1. Each of its
elements must be initialized to HEX(0l) . before
initial use of the MAT MERGE statement.

3. Work-vector-2 must be one-dimensional; it must have at
least as many elements as the merge-array has rows
each element must have length = 2. It does not need
to be accessed by the user but must be defined.

y, The larger the locator-array, the faster the merge.
The locator-array must be one-dimensional; it should
have at least as many elements as there are in a
single row of the merge-array. Let it have as many
elements as possible. Each of its elements must have
length = 2.

5. Each row of the merge-array must be pre-sorted.

Purpose:

MAT MERGE enables the programmer to quickly combine several ordered data
file into a single large ordered file. Each row of the merge-array represents
a set of sorted data elements (one datum per element) to be merged. Each row
is essentially a merge buffer for a given input file. A merge operation is
done in a series of passes, each pass being the execution of a MAT MERGE
statement. As each pass occurs, the data in each of the rows of the
merge-array are scanned and compared. The subscripts corresponding to these
data are then stored in the locator-array in order of increasing data value.
The merge operation halts when either:

1. the locator-array is filled with subscripts

HEX 00
2. a row of the merge-array has been completely used (emptied of
elements).
HEX 01 ---- HEX FF {row O to FF)

27

At this point the program processes the data merged so far, and if
necessary, replenishes an empty row (in the merge array) from disk or tape.
MAT COPY can be used to refill a row, and MAT MOVE to move merged data to an
output buffer array.

The remaining elements in work-vector-1 are used to indicate the current
status (pointer to next element to be used) in each row of the merge array.
Before initial execution of MAT MERGE, the merge array must be filled with
data (using MAT COPY) and all elements of work-vector-1 must be initialized to
hex(01) (using INIT).

Each ith element of work-vector-1 receives the subscript of the ‘next
element in the ith row to be compared with elements in the other rows. When a
row has been completely scanned, hex(FF) is placed in its corresponding
work-vector element. The program must then refill that row with data from the
corresponding data file and reinitialize the respective subscripts in
work-vector-1 to hex(01). If there are insufficient data to fill the row, the
data must be right-justified in the row and the starting subscript in the
work-vector set appropriately. If no data remain to be placed in an empty row
of the input array, hex(FF) in the corresponding element of the work-array
indicates that MAT MERGE is to ignore that row. When MAT MERGE determines
that all rows are to be ignored, hex(0000) is returned to the first element of
the locator-array and execution of the current merge pass is complete.

Whenever MAT MERGE begins execution, the locator-array is filled with
the subscripts of the merged data beginning with the first element. The
locator-array must therefore always be emptied before execution of MAT MERGE.
Once MAT MERGE has executed, the locator-array should be used to transfer the
specified data to another output array or file. If the locator-array has not
been filled by the execution of MAT MERGE, the element following the last
valid subscript contains hex(0000).

Examples of Valid Syntax:

10 DIM A$(10,50)10,W$(11)1,W1$(10)2,5$(50)2
20 MAT MERGE A$() TO W$(), w1$(), S$()

Example 1. A Three-row Merge

In the following example, the three rows of the merge array A$ are
merged using MAT MERGE. Each of the rows may be thought of as a merge
buffer. Prior to the merge, each row must be sorted; in the case illustrated,
each row in the array is already in alphabetical order.

col: 1 2 3 4 5 6
row
1] A D H I L P |«—- merge buffer 1
A$()= 2! B C F J M Q |«——merge buffer 2
= SR .ﬁ_...“ﬁk .
3| E G K N 0 R («—— merge buffer 3

28

Work-vector-1 W1l$ contains pointers, the starting/current element in
each row to be scanned for the merge; each of its elements is 1initially set
(using INIT) to hex(01l). Each of its first three elements corresponds to a
row of the input array, as follows:

wisO= (01 | o1 [o1 [o1]

row 1 row 2 row 3 condition code
pointer pointer pointer

The last element receives a code from MAT MERGE to indicate how the
merge pass halted; its value prior to execution of MAT MERGE is unimportant.

The following statements, given the arrays A$() and W1$() as described
above:

10 DIM A$(3,6)1, Wi1$(4)1, w2$(3)2, L$(12)2
20 MAT MERGE A$() TO W1$(), wW2$(), L$()
produce the following merge results.
The subscript locator-array L$ is filled with the subscripts of the

twelve lowest-order elements from the three rows; the subscripts are placed in
the locator-array following the order of the merge-array as follows:

L$()=[0101| 0201 | 0202 { 0102 {0301 | 0203 |0301}| 0103 | 0104 | 0204 | 0303 | 0105

ot

row 1 row 2 row 2 row 1 row 3
col 1 col 1 col 2 col 2 col 1
(») (B) (c) (D) (E) etc.

Work-vector-1 W1$ is rewritten to indicate which element in each row is
to be taken in the next merge pass. Since MAT MERGE halted because the
locator-array was full, the last element of W1$ is set to zero (00). W1$ thus
contains:

wis() = (06 [o5 [os [oo
A
row 1 row 2 ;}; 3 '
elt 6 elt 5 elt & indicates locator-array full.
(elt = element in above row)

The twelve records indicated in the locator-array L$ can now be moved to
an output array or file and row 1 of the merge-array can be refilled for
reexecution of the MAT MERGE statement. If row 1 is refilled with new data,
the current-element position for row 1 in work-vector-1, W1$(1), should be
reset to hex(01). If there are no more data to fill the row, the
current-element position for the row should be left as hex(FF). When MAT
MERGE is again executed, the row will be ignored.

29

Example 2. Termination of MAT MERGE with Emptying of Merge-Array

This example illustrates termination of MAT MERGE execution when a row .
of the merge array has been exhausted. Given a 3 by 6 merge array A$():

row/col 1 2 3 y 5 6

1 A B E F H I

A$() = 2 c G J K N Q
3 D L M 0 P R

All elements in the four-element work-vector-1 are initialized to
hex(01) using INIT, to indicate the starting column of each row as 1. W1$,
work- vector-1, thus contains:

element contents function
1 01 row 1 pointer
2 01 row 2 pointer
3 01 row 3 pointer
y 01 condition code

The Dimensioning and MAT MERGE statements:

10 DIM A$(3,6)1,W1$(4)1,Ww2$(3)2,L$(12)2
20 MAT MERGE A$() TO W1$(),W2$(),L$()

when executed once create two arrays as follows:

L$() = |0101| 0102 | 0201 | 0301 | 0103 | 0104 | 0202 | 0105 | 0106 {0000
FF F 3
row 1 row 1 row 2 row 3 row 1 row 1 row 2 row 1 row 1
points to: col 1 col 2 col 1Tcol 1 col 3 col 4col 2 col 5 col 6
containing: (A4) (B) (c) (D) (E) (F) (G) (H) (1)

W1s$() FF 03 02 01

X X
row/exhausted
points to element 3, row 2

points to element 2, row 3

condition code indicates that row 1 has
been exhausted (termination of MAT MERGE
was due to row-exhaustion, not filling
of locator-array).

30

In L$(), the locator-array, hex(0000) in the tenth element indicates the first
unused position of the locator-array. The locator-array is filled with the
subscripts of the nine lowest elements in the merge array. Elements from all
three rows in the merge array are used because MAT MERGE continues to extract
subscripts until all the elements in row 1 have been exhausted, since the
locator-array contains more elements than any row of the merge array.
Pointers to subsequent elements in each row are stored in work-vector-1; since
row 1 was exhausted (all elements read), the pointer for row 1 1is set to
hex(FF). At this point the data pointed to by the locator-array must be moved
to an output array (using MAT MOVE). Then either row 1 of the merge array can
be refilled and the row 1 pointer in Wl$ reset to hex(01), or merge passes can
continue leaving W1$(1)=FF if there are no more data to add. With the element
in W1$() left as FF, the row is ignored in subsequent processing.

31

MAT MOVE

General Form:

MAT MOVE has two general forms:

MAT MOVE source-alpha-array-designator [{s,n}], starting-locator-array-element [,m] TO output-alpha-array-element

and

MAT MOVE source-numeric-array-designator, starting locator-array-element [,m] TO output-numeric-array-element

(s,n) are expressions defining a field within each element of the source-
alpha-array; s specifies the starting position of the field within an array
element, while n specifies the number of bytes in the field.

m is a numeric scalar variable specifying the maximum number of bits to be
moved.

m must be 0 £ m o 32767. When MAT MOVE executes, the number of elements
actually moved is returned to this variable. The starting
locator-array-element is the first element to be used from the locator-array.
The locator-array is normally constructed by a MAT MERGE or MAT SORT statement.

Purpose:

Used to transfer data from one array into another MAT MOVE effectively
: orders data by moving it element-by-element from one array to another in the
order specified by the subscript locator-array. Source and receiving arrays
can be either alphanumeric or numeric so long as they are not of different
types.

Data is directly moved from the move-array beginning with the first
element to the receiver-array beginning at the specified
receiver-array-element if a locator-array is not specified. If the
locator-array is specified, data is moved indirectly from the move-array in
the order given by the subscripts in the locator-array, starting with the
subscript in the specified locator-array-element, or in the first element of
the locator-array, if no element is specified.

Data 1is transferred into sequential bytes in the receiver-array,
beginning with the specified element, row by row. If both the move-array and
receiver-array are alphanumeric, data may be moved to and from specified
fields of each element. MAT MOVE continues to transfer data until:

1. an element whose value is (hex (0000)) is found in the locator-array,

2. the end of the locator-array is reached,

3. m elements have been moved, or

4. the output array has been filled.

32

The locator-array is an array of row/column subscripts which point to
the data in the source array that are to be moved to the output array. The
first subscript used is stored in the element specified as the starting
locator-array element. The first element in the output array to receive data
is specified as the output-array element. Data are moved sequentially,
row-by-row, from that point on. If the field expressions (s,n) are given,
only data in the specified field of each element of the source-array are
moved. If no locator-array is specified, data 1is transferred sequentially
from the move-array, starting with the first element, into sequential elements
of the receiver-array, beginning with the specified receiver-array element,
row by row_ Either the move-array or the receiver-array or both are
alphanumeric, data may be moved to and from designated fieras o7 eacu
element. For example, the statement:

MAT MOVE A$() (2,3), L$(1) TO B$(1)

specifies that only three bytes (the second, third and fourth) from each
element of A$() are to be MOVED. If values in the source-array are shorter
(in number of bytes) than the values in the output array, values are padded
with spaces at the right; if values are 1longer, they are truncated on the

right.

When MAT MOVE has finished moving data, a count of the number of
elements moved is returned to the variable m, if m has been specified.

Examples of valid syntax:

DIM A$(10,50)5,L$(50)2,AI$(100)5,42$(50)5,4(10,50)
MAT MOVE A(), L$(1) TO A1(1)

MAT MOVE A$(),L$(10), G TO A2$(25)

MAT MOVE A$() (3,2), L$(1) TO A2$(1)

Examples of working programs:
Given an array of data called A$() and an associated locator-array

called L$(), the following statements move the elements of A$() to B$(), the
output array, in the order specified by the locator-array. Given:

row/col 1 2 3 i

1 F A G I

A$(Q) = 2 H E J D
3 C L B K

This is the source array to be moved.

0102 0303 0301 0204
(4) (B) (c) (D)

L$() = |0202 0101 0103 0201
(E) (F) (G) (H)

0104 0203 0304 0302
(1) (J) (K) (L)

33

This is the locator-array which provides the order in which the source array
is to be moved. L$(1,1) = 0102 means "move the element in row 1, column 2 of
A$() first", L$(1,2) = 0303 means "move the element in row 3, column 3 next",
etc. Subscripts in the locator-array are shown in hexadecimal notation;
letters in parentheses are the corresponding elements from A$().

When the following statements are executed:

10 DIM A$(3,4)1,L$(3,4)2,B$(3,4)1
20 MAT MOVE A$(),L$(1,1) TO B$(1,1)

the array B$() is created as:

A B cC | D
B$§() = | E F G H
I J | K L

This is the output array after execution of MAT MOVE.

34

MAT SEARCH

GENERAL FORM:

il

MAT SEARCH search-alpha-array-desig. [<s,n>], alpha-variable TO location-array-desig. [STEP expression]

AVVIILANA

Vo

where<s,n>are expressions defining a portion of the search-array. s specifies
the starting position of the first byte to search; n is the number of bytes
within the area to be searched. "s" is determined by counting bytes
left-to~-right across the first row, left-to-right across the next row, and so
on, ignoring element boundaries. '

0 < s < bytes in the search-array.

0<n (bytes in the search-array -s+1).

(1

The STEP expression specifies that only substrings starting at every ith byte,
where i = value of the STEP expression, are to be checked.

The STEP expression must be 0 < expression < 255.

The location-array can have a minimum of one element. The 1length of each
element must be two.

Purpose:

MAT SEARCH scans the search-array for substrings that satisfy the
relation defined and stores the 1location of each such substring in the
location~array. The locations are stored in the order in which they are found
and are stored as two-byte binary values giving the location of the substring
from the beginning of the search-array (or specified portion of the
search-array). A portion of the search array can be scanned by using the
numeric expressions (s,n). If these expressions are omitted, the entire array
is scanned. The search-array is treated as a single contiguous character
string, i.e., element boundaries are ignored. The length of the substrings in
the search array equals the length of the value of the alpha~-variable compared.

Note:

Trailing spaces are not considered to be part of any
alpha-variable-value being compared. If it 1is necessary
to check for trailing spaces (hex(20)), use the STR()
function to specify the exact number of characters to
check, e.g., MAT SEARCH A$(), = STR(Z$,1,5) TO B$()
specifies a search for five-character substrings in A$()
which equal the first five characters of 2Z$, including
any trailing spaces. The STR() function ensures that
trailing spaces are included in the value of Z$.

35

If the location~array is too small to accept all positions of the
substrings satisfying the given relation, the search terminates when the
location-array is full. If there is space remaining in the location-array
after the search is complete, the next element to be used is filled with
zeroes (hex(0000)).

If the STEP parameter is not wused, MAT SEARCH starts at the first
character in the search-array and checks to see if the character string
starting there satisfies the given relation. If so, the 1location of the
string is stored in the first element of the location-array, the substring
starting at the second character is checked, and so on. If, however, the STEP
parameter is used, the position of the next substring to check is the position
of the last substring checked + STEP expression. The search terminates when
the number of characters remaining to be checked in the search-array is less
than the length of the value of the variable being compared.

Note:

The binary values in the location-array, produced by MAT
SEARCH, are byte locations, not element subscripts. The
first byte in the array area to be searched is byte 0001,
the second byte is 0002, the third byte is 0003, ete.
The MAT SEARCH location-array cannot be used by MAT MOVE.

Examples of valid syntax:

MAT SEARCH A$(), = B$ TO L$()

MAT SEARCH A$(), < 2$ TO L1$()

MAT SEARCH A$(), < R$ TO S1$() STEP 4

MAT SEARCH A$() <S,N>, > STR(Q$,3,5) TO S$()

Example: Given array G$() as follows:

row/col = 1 2 3 y

1 B A C D

G$() = 2 i C |{BIE |A

3 1A F | A |E

and a location-array P$() dimensioned P$(2,6)2, when the statements:

20 INIT (FF) P$() : V$="aA"

30 MAT SEARCH G$(), =V$ TO P$()

36

"

are executed, the array P$() receives the locations of the character "A" 1in
array G$(). Locations are counted from the first element, down each row left
to right and stored as binary values. A binary zero is stored after the last
location stored in P$(). P$() will contain:

row/col 1 2 3 L 5 6

P$() = 1 {0002 | 0008 | 0009 | 000OB | 0000 | FFFF

2 |FFFF | FFFF | FFFF | FFFF | FFFF | FFFF

If necessary, the two-byte binary values in the location-array can be
converted to decimal form, and assigned to a numeric variable, with a
statement such as:

D = 256%VAL(L$(J)) + VAL(STR(L$(J),2))

where:
L$() is the location-~-array.
J is the subscript of the location-array element
. to be converted.
D is the numeric variable that is assigned the
equivalent of the two-byte binary location.

37

MAT SORT

General Form:

MAT SORT sort-array-designator TO work-array-designator, locator-array-designator

Note:

The work-array and the locator-array must have at least

as many elements as the sort-array; their elements must
be of length 2.

The sort-array cannot contain more than 4096 elements.

Purpose:

MAT SORT takes the elements of the sort-array and creates an output
locator-array of subscripts arranged according to the ascending order of
elements from the sort-array. Subscripts in the locator-array are two-byte
values; the first byte is the row subscript, the second the column subscript.
If the locator-array contains more elements than the sort-array (n), then the
nth + 1 element of the locator-array contains zero (hex(0000)).

The locator-array can be used (with MAT MOVE) to create a new data array
in sorted order.

Note:

Sort-array elements of identical value have contiguous
elements in the locator-array, but they are not
necessarily ordered as in the sort-array.

38

Example of Valid Syntax:

‘/ MAT SORT A$() TO W$(), L$()

The following routine takes a sort-array of twelve elements (G$()) and
creates a subscript array G1$().

row/col: 1 2 3 4

1 c A E I

If G$() = 2 L J G B
3 H D K E

the statements:

10 DIM G$(3,4)1, W$(3,4)2, G1$(3,4)2
20 MAT SORT G$() TO W$(), G1$()

create the following locator (subscript) array when executed:

G1$ = 0102 0204 0101 0302
0304 0103 0203 0301
0104 0202 0303 0201
., Thus, the lowest value is in element (1,2) (i.e., the letter A in row 1,

column 2); the second lowest value is in element (2,4) (i.e., the letter B in
row 2, column 4), etc.

The example on p. 9 also illustrates the use of MAT SORT.

Note:

Every byte of an alphanumeric array in the System 2200 1is
set to all blank characters (HEX(20)) when initially
defined unless explicitly set to some other character
with an INIT statement. Since HEX(20) is 1lower in the
collating (sorting) sequence than any other usual
character, HEX(20)'s will always float to the top
(beginning) of any sorted array. It is therefore good
practice to initialize arrays to be sorted with an
INIT(FF) statement which will ensure that the unused

elements of any array will sink to the bottom (end) of
the sorted array.

39

APPENDIX A: ERROR CODES

Code:

Error:

Cause:

Action:

Example:

Code:

Error:

Cause:

Action:

Example:

Code:

Error:

Cause:

Action:

Example:

=1

MISSING NUMERIC ARRAY DESIGNATOR

A numeric array designator (e.g., N()) was expected.
Correct the statement in error.

100 MAT CONVERT A$() TO N()

ERR=1
100 MAT CONVERT N() TO A$() v (Possible Correction)
=2
ARRAY TOQ LARGE
The specified array contains too many elements. For example, the

number of elements cannot exceed 4096.
Correct the program.

10 DIM A$(100,50)2, B$(100,50)2, W$(100,50)2

ioo MAT SORT A$() TO S$(), B$()
§ ERR-2

10 DIM A$(100,40)2, B$(100,40)2, W$(100,40)2
' (Possible Correction)

=3

ILLEGAL DIMENSIONS

The defined dimensions or element length of the array are illegal.

Dimension the array properly.

10 DIM A$(63), B$(63)1, W$(63)2

100 MAT SORT A$() TO W$(), B$()
} ERR=3

10 DIM A$(63), B$(63)2, W$(63)2 (Possible Correction)

4o

APPENDIX B MAT SORT/MAT MERGE TIMING

The timing characteristics of the algorithms chosen to implement MAT
SORT should be considered when planning sorting applications. The speed with
which data are sorted depends upon the number of passes made through the data,
the amount of work done on each pass to reduce the data to sorted order and
the characteristics of the data. It is a feature of the MAT SORT algorithm
that judicious choice of array size and dimensions can produce marked
improvements in execution time for sorting operations.

Execution time for MAT SORT is generally proportional to the expression:

2
n(log n)
2.
where n is the number of elements in the array to be sorted. Worst case
results occur when n is a power of two (i.e., n=2X); best case, when
n=(2¥4+1) see (Table and Figure B-1). As n increases, substantial

improvements in overall sorting time can be achieved by separating the
elements to be sorted into groups, sorting within each group and then using
MAT MERGE to merge the groups together.

When using both MAT SORT and MAT MERGE, while each additional row of
data added to the merge array causes a linear increase in the time required
for sorting (see Table and Figure B.2), this bookkeeping time reduces the
potentially exponential effect of the necessary across-row comparisons.
Therefore the user is advised to choose a constant row size to correspond to
one of the 'sweetspots' in the MAT SORT routine. A good choice might be 129
elements in a row since 128 is the largest power of two less than 255, the
maximum row length.

While these characteristics of MAT SORT and MAT MERGE can be of value to
the experienced user, it is most likely that setup time for large arrays will
greatly exceed actual sorting time. To aid in minimizing setup time, MAT MOVE
and MAT COPY should be used for their ability to move large volumes of data
rapidly within memory. The greatest total sort speeds will be exhibited by
BASIC programs which utilize all the Sort ROM commands effectively.

The tables and graphs illustrating MAT SORT/MAT MERGE timing for several

array sizes have been empirically determined; dots are actual times as given
in the tables. -

41

!eb (&} .000is(03) !
ARdiae .

= freDILT

|

I

i
_44.___ —_—

IR

(N=2TD

Time (in seconds)

LAYE,

MAT SORT Timing

/— WORLST

Table B-1.

100

128*

129

200

256%*

258

300

400

500

510

512*

513

600

800

1000

1024*

1025
2000

*Powers of 2

N

f

Number of Elements

ey

- wazouuw., M- BNL

1

A;,-.A,z;\

‘

MAT SORT Timing

42

Figure B-1.

Time (in seconds)

Table B-2. MAT SORT/MAT MERGE Timing

Number of Elements

\ i 1 ' .
4. -
A |) : s
R .,
; E- Sa—
.) e
e 2]
-
N
R—F~
-
e
———]
e o ..ﬂ
~D_]
o -
~
)) ~/
WOOOO0OO0OOO - -
FTONONO—MAN : w
—e—r— . N ~ R
. &
. o
I YT
- M
.5
Cam Toame Y
A~~~ e~ (Y O e .
OO NO :
OANANANN AN — e— :
—— - .
x X
X X X X X X _ .
(e Nan] ; \
OWWMNOO e— N . ! !
e e S L L L — [S SR IS SN [- — e e
: ; , - :
QULILONN—OO) : o ; |
OFNOMONO ! . . . : L
LONOO—~NO - : L
—r——Ql ; , ' i “ ! ,
H “e : w)]
e tuntalel skt A - I A - T 3 e
R P : _ « i , " _
. i . N . . .
' : - .y . . . H f .
%. b % i : h B r , s
e R g T R SN U SRR, NI ...:#.---.”-izVil”---J
i : i _ i - ! _ X b
) . ; _ . '] : .
- . LTS NI 3w .
i sl TN j
. . .] 1 v -
f ; ! ; : : I
RIS IO R T T B RGIRERRLEE SE b
b : " ! ! T “ _ !
L w i m G ; ‘ : _

Figure B-2, MAT SORT/MAT MERGE Timing
43

APPENDIX C:

array:

byte:

field:

key:

locate mode:

merge:

pointer:

record:

sort:
string:

subscript:

vector:

work array:

SOME USEFUL DEFINITIONS

a number of related mathematical elements arranged in a
specified order. Arrays can be one- or two-dimensional in the
world of your Wang system. A one-dimensional array has one row
and is sometimes called a vector; a two-dimensional array has
both rows and columns.

a sequence of adjacent binary digits (bits) operated on as a
unit; one byte contains eight bits.

a set of bytes within a record (or array) specified for use of a
particular category of data.

one or more characters or fields within a record that are used
to identify it or control its use.

a means of accessing data by pointing to its location instead of
moving it.

to combine items from two or more similarly ordered sets into a
single set that is arranged in the same order.

an address or other indication of location.

a collection of related items of data treated as a unit (for
example, one line of an invoice may form a record; one item in
the line such as quantity is a field).

to segregate items into groups according to some rule or rules.

A subfile of records stored in sorted order.

an identifying character or number written below and to the
right of another character. In Sort statements, the

locator-arrays contain subscripts of alpha-array elements.

a one-dimensional array.

an intermediate array used for temporary storage of data between
phases.

4y

APPENDIX D: Wang HEX, CRT Character Set and VAL Cross Reference Table

&

Wang
CRT Wang Wang Wang
Wang Character Wang Wang CRT Wang Wang CRT Wang Wang CRT Wang
HEX Set VAL HEX Set VAL HEX Set VAL HEX Set VAL
00 NUL 0 40 @ 64 80 128 co 192
01 cursdér home 1 41 A 65 51 129 C1 193
02 2 42 B 66 82 130 c2 194
03 Clear screen 3 43 C 67 33 131 Cc3 195
G4 4 44) 68 B4 132 Ch 196
05 5 45 E 69 85 133 cs 197
06 6 46 F 70 86 134 cé 198
07 alarm 7 47 71 87 135 c7 199
08 backup cyrsor 8 48 H 72 88 136 [or:] 200
09 HY 9 49 f 73 89 137 c9 201
0A LF 10 4A J 7 BA 138 CA 202
0B VT 11 45 K 75 8B 139 CB K 203
0cC FF 12 4 L 76 BC 140 cC 204
0D CR 13 4D M 77 8D 141 CD E 205
OE S0 14 4E N 78 BE 142 CE 206
OF ST 15 ‘ 4F 0 79 8F K 143 CF Y 207
10 16 50 P 80 90 144 DO 208
11 X-ON 17 51 Q 31 91 E 145 D1 W 209
12 18 52 R 82 92 146 D2 210
13 X-OFF 19 53 s 83 93 Y 147 D3 0 211
14 20 54 T 34 94 148 D4 212
15 21 55 U 85 95 149 D5 R 213
16 22 56 v 86 96 W 150 D6 214
17 23 57 W 87 97 151 D7 D 215
18 24 55 X 88 98 0 152 D8 216
19 cl. tab 25 59 Y 89 99 153 DY 5 217
1A set tab 26 SA Z 90 9A R 154 DA 218
1B 27 5B { 91 9B 155 DB 219
1C 28 5C \ 2 9C D 156 e 220
1D 29 50] 93 9D 157 bD 221
1E ¢ 30 SE . 94 9E S 158 DE 222
1F °(degree) 31 S5¥¢ . 95 9F 159 DF 223
20 space 32 60 (prime) 96 A0 160 kO 224
21 ! 33 61 a 97 Al 161 EL 225
22 " 34 62 b 98 A2 162 E2 226
23 # 35 673 ¢ 99 A3 163 £3 227
24 $ 36 64 d 100 Ab 164 L4 228
25 % 37 65 e 101 A5 165 ES 229
26 & 18 66 f 102 A6 166 E6 230
27 ' (apos.) 39 67 g 103 A7 167 E7 231
28 (40 68 h 104 A8 168 L8 232
29 41 69 i 105 AY 169 E9 233
2A % 42 6A j 106 AA 170 EA 234
2B + 43 o k 107 AB 171 EB 235
2C , (comma) 44 6C i 108 AC 172 EC 236
2D - (minus) 45 6D n 109 AD 173 LD 237
2E . 46 (35 n 110 AE 174 EE 238
2F / 47 6F o 111 AF 175 EF 239
30 0 48 70 P 112 BO 176 FO 240
31 1 49 71 q 113 B1 177 . F1 241
32 2 50 72 r 114 B2 178 F2 242
33 3 51 73 s 115 B3 179 F3 243
34 4 52 A t 116 B4 180 Fé4 244
35 5 573 75 u 117 BS 181 F5 245
36 6 54 76 v 118 Bb 182 F6 246
37 7 55 77 w 119 57 183 F7 247
38 8 56 78 X 120 B8 184 F8 248
39 9 57 79 y 121 B9 185 F9 249
3A : 58 7A P 122 BA 186 FA 250
38 H 59 76 { 12 BB 187 FB 251
3¢ < 60 7 : 124 BC 188 FC 252
) 3D = 61 7 b 125 5D 189 FD 253
3 3E > 62 7L ~ 126 BE 190 FE 254
3F ? 63 7t 1 127 BEF 191 FF 255

45

:To help us to provide you with the best manuals possible, please make your comments and suggestions
I concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
: and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
1 name and address. Your cooperation is appreciated.

700-3559E

TITLE OF MANUAL: SORT STATEMENT REFERENCE MANUAL

COMMENTS:

Fold

Foid

- S D G S G» Gn S D G G GR D WD D D G TP AR AT G G RS OR D DN A G W S G G S G D N CF AP G ek an e Lkl ket

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Cut atong dotted line.

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Fold

Printed in U.S.A,
13-1019

®;

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M38 2S6
TELEPHONE (416) 4492175
Telex: 069-66546

WANG EUROPE S.A./N.V.
{European Headquarters)
250, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/640.37.80
Telex: 12430-12398

WANG NEDERLAND B.V.
Produktieweg 1

Ijsselstein, Netherlands
TELEPHONE (03408) 41.84
Telex: 47579

WANG PACIFIC LTD.

9th Floor, Lap Heng House
47-50, Gloucester Road
Hong Kong

TELEPHONE 5-274641
Telex: 74879 Wang HX

WANG EUROPE S.A./N.V.
(Belgian Sales)

350, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/648.91.00
Telex: 62691

WANG DO BRASIL
COMPUTADORES LTDA.

Praca Olavo Bilac No. 28
SL1801/1803

Rio de Janeiro, Centro, RJ, Brasil
TELEPHONE 232-7503, 232-7026

WANG COMPUTERS

(SO. AFRICA)} PTY. LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 486123
Telex: 960-83297

WANG INTERNATIONAL
TRADE, INC.

One Industrial Avenue
Lowell, Massachusetts 01851
TELEPHONE (617} 8514111
Teiex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S-171 36 Soina, Sweden
TELEPHONE 08/27 27 98
Telex: 11498

WANG COMPUTER LTD.
Shindaiso Building No. 5
2-10-7 Dogenzaka Shibuya-Ku
Tokyo, Japan
TELEPHONE (03) 464-0644
Telex: 2424909 WCL TKO J

WANG INDUSTRIAL CO., LTD.
7, Tun Hwa South Road

Sun Start Tun Hwa Bldg.

Taipei, Taiwan, China
TELEPHONE 7522068, 7814181-3
Telex: 21713

WANG GESELLSCHAFT MBH
Murlingengasse 7

A-1120 Vienna, Austria
TELEPHONE 85.85.33

Telex: 74640 Wang a

WANG GESELLSCHAFT MBH
Wiedner Hauptstrasse 68
A-1040 Vienna, Austria
TELEPHONE 57.94.20

Telex: 76424 Wang a

WANG S.A./A.G.
Markusstrasse 20

Postfach 423

CH 8042 Zurich 6, Switzertand
TELEPHONE 41-1-60 50 20
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065, Australia
TELEPHONE 439-3511

Telex: 24569

WANG ELECTRONICS LTD.
Argyle House, 3rd Floor

Joel Street

Northwood Hills

Middlesex, HAB INS, England
TELEPHONE (09274) 28211
Telex: 923498

WANG FRANCE S.AR.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958F

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main
Postfach 16826

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Belia Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG COMPUTER PTE., LTD.
Suite 1801-1808, 18th Fioor
Tunas Building, 114 Anson Road
Singapore 2, Republic of Singapore
TELEPHONE 2218044, 45, 46
Telex: RS 24160 WANGSIN

WANG COMPUTER SERVICES
One Industrial Avenue ’
Lowe!i, Massachusetts 01851
TELEPHONE (617) 851-4111
TWX 710-343-6769

Telex: 94-7421

DATA CENTER DIVISION

20 South Avenue

Burlington, Massachusetts 01803
TELEPHONE (617) 272-8550

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE. LOWELL. MASSACHUSETTS 01851, TEL. (617) 851-4111. TWX 710 343-6769. TELEX 94-7421 Printed in U.S.A.

./

700-3559E
7-77-2.5M

	Table of Contents
	Chapter 1: General Information
	Chapter 2: Sort Statements
	MAT CONVERT
	MAT COPY
	MAT MERGE
	MAT MOVE
	MAT SEARCH
	MAT SORT

	Appendix A: Error Codes
	Appendix B: MAT SORT/MAT MERGE Timing
	Appendix C: Some Useful Definitions
	Appendix D: Wang HEX, CRT Character Set and VAL Cross Reference Table

