_{ WANG BASIC-2
Q() DISK REFERENGE
MANUAMAL
O N N R
N N NN
N NS NN

WANG BASIC-2
DISK REFERENCE MANUAL

1st Edition — June, 1981
Copyright © Wang Laboratories, Inc., 1981
700-4081G

LABORATORIES, INC.

(WANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any

way the

standard terms and conditions of the Wang purchase, lease, or

license agreement by which this software package was acquired, nor
increases in any way Wang'’s liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

(WANG)

LABORATORIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS MANUAL

The Wang BASIC-2 Disk Reference Manual is designed to serve as a programmer’s guide to the
concepts and features of disk utilization, and a reference guide for the BASIC-2 instructions which
govern disk operations.

Chapter 1 introduces the concepts and features of information storage and retrieval on the disk
and the general procedures for addressing and accessing a disk drive under program control. These
procedures are common to all Wang disk models.

Wang System 2200 provides two modes of disk operation - Automatic File Cataloging Mode and
Absolute Sector Addressing Mode. Chapters 2, 3, and 4 constitute a programrner’s guide to the fea-
tures available in Automatic File Cataloging Mode. Chapter 2 may be of particular interest to the
beginning disk programmer, because it serves as a primer for disk operations, explaining fundamental
concepts of disk management such as file structure, record layout, file and record accessing, etc.

Chapter 5 is a reference chapter for the BASIC-2 statements which comprise the Automatic File
Cataloging Mode. The syntax and capabilities of each statement are presented in a brief, compact
format which makes it quickly accessible to the programmer who is already familiar with the general
principles of Automatic File Cataloging.

Chapter 6 serves as a programmer’s guide for the Absolute Sector Addressing Mode. Chapter 7 is
a companion reference chapter which describes the syntax and capabilities of the BASIC-2 instruc-
tions of Absolute Sector Addressing Mode.

Chapter 8 is a hybrid chapter incorporating both hardware and programming information on the
disk multiplexer (Model 2230MXA-1/B-1), which permits a single disk unit to be accessed by several
CPU’s. Multiplexer owners should consult this chapter before attempting to install or program the
multiplexer.

Explanations of the disk error codes, comparisons of BASIC and BASIC-2 disk instructions, a bibli-
ography of disk literature, a glossary of disk terminology, and other information of interest to the disk
user has been assembled in the Appendices.

CHAPTER

CHAPTER

1

- -
N —

- -3
W

1.5

21
22
23
24
25
26
2.7
28
29
210
211

212

218
219
220

2.21

TABLE OF CONTENTS

ACCESSING A DISK PLATTER

INEFOAUCHION - o v o ot e e et e e e e e 1-1
The Platter Parameterso 1-1
Model 2260 and 2270 Serieso oot vi i 1-1
Model 2280 Series Disk Drive 1-2
Accessing aDisk Platter i 1-3
The Disk Device Address Model 2260 and
2270 SIS . o o o o e e e e e e 1-4

Accessing the Third Drive (Model
2270-3/2270A-3) and Slave Drive (Model
2260B-2/2260C-2 and 2280 DualDrive).o 1-5

AUTOMATIC FILE CATALOGING PROCEDURES

IFOAUCHION © o s ot et e e e 2-1
What Is Automatic File Cataloging? oo 2-1
Summary: What the Catalog Procedures

Canand CannotDot 2-2
Initializing the Catalog 2-3
The 'DC Parametero v it e 2-5
Saving Cataloged Programs on Disk:

the “SAVE” Statementttt 2-6
Retrieving Programs Stored on Disk:

the “LOAD” INStructionot 2-8
Listing the Catalog Index: the “LIST DC”

StAtEMENT . o vt ot e e 2-11

An Optional Method of Loading Cataloged
Programs from Disk: the “LOAD RUN"

COMMAENG .t ettt e e e e e e 2-13
Saving DataFilesonDisk 2-14
Opening a Cataloged Data File on Disk:

the “DATASAVE DC OPEN” Statement: 2-15
Saving Data in a Cataloged Data File on Disk:

the “"DATASAVEDC” Statementconnn 2-17
The Structure of DataFiles i 2-19
Opening a Second Data Fileon Disko 2-22
Re-Opening a Data File on Disk:

the “DATALOAD DC OPEN" Statement-. 2-22
Retrieving Data from a Cataloged Data File

on Disk: the “DATALOAD DC” Statement-" 2-23

Skipping and Backspacing Over Logical
Records in a Cataloged Data File:

the “DSKIP” and “DBACKSPACE"” Statements 2-26
Testing forthe End-of-File 2-29
Scratching Unwanted Filescovvov 2-30
Making Backup Copies of Cataloged Files:

the “MOVE” Statemento orn e 2-31
Testing the Validity of Disk Sectors:

the “VERIFY” Statementcionmnr e 2-36

CHAPTER 3

CHAPTER

CHAPTER

3.1
3.2

3.3
34
3.5
3.6

3.7

3.8

3.9
4

4.1
4.2
4.3
4.4

4.5
4.6

4.7

4.8

5.1

5.3

DISK DEVICE SELECTION AND MULTIPLE DATA FILES

Introduction 3-1
Disk Device Selection 3-1
TheDevice Table 3-2

Use of File Numbers in Accessing the
#3 Drive Model 2270-3/2270A-3 and
Slave Drive Model 2260BC-2;2260C-2

orModel 2280 Dual Drive 3-5
Why Use the Device Table? 3-5
Maintaining Multiple Open Data Files
onDisk 3-5
The “Current Sector Address” Parameter 3-12
ClosingaDataFile 3-15
Skipping and Backspacing Over Individual
SectorsinaFile 3-16
The ‘T’ Parameter in Disk Operations 3-17
Device Type ‘D’ 3-20
Changing the Default Address 3-20
Multiple Disk Units 3-22
Models 2260BC, 2260C, 2270/2270A-1,
2270/70A-2 and Minidiskette 3-22
Models 2270-3 and 2270A-3 3-22
Models 2260BC-2/2260C-2 i, 3-23
Model 2280 Dual Drives 3-23
Accessing Multiple Disk Units 3-24
Summary of Device Tableltems 3-25

EFFICIENT USE OF THE DISK

Introduction 4-1
Program Files Revisited 4-1
Establishing Temporary Work FilesonDisk 4-2
Altering the Catalog Area 4-4
Renaming and Re-Using Scratched Files 4-5
Efficient Use of Disk Storage Space 4-7
System Control Information 4-8
Inter-Field Gaps 4-9
The “LIMITS” Statement 4-10
Form 1of LIMITS 4-11
Form 2of LIMITS 4-12
Conclusion 4-13

AUTOMATIC FILE CATALOGING STATEMENTS AND COMMANDS

Introduction 5-1

System 2200VP/MVP Disk Statements
andCommands 5-1

Basic Rules of Syntax and Terminology b-2
DATALOADNDC 5-5
DATALOADDC OPEN 5-6
DATASAVEDC 5-7
DATASAVEDC CLOSE s, 5-9
DATASAVEDC OPEN, 5-10

Vi

CHAPTER

CHAPTER

6

6.1
6.2
6.3

6.4

6.5
6.6
6.7

6.8

7.1

DBACKSPACE . . .ot
DSKIP .« o e e
LIMIT S e e
LIST DG ottt e
LOAD (COMMANA) .« . oo e ee e
LOAD (Statement) ovvet i
LOAD RUN . . ottt e
MOVE o e e
MOVEEND . .. ottt e e
SAVE .. e
SCRATCH .
SCRATCHDISK . .. e
VERIFY . ot e e
SFORMATDISK ..ottt

ABSOLUTE SECTOR ADDRESSING

INEFOAUCTION .+« o o e e ettt
Specifying Sector Addresseso i
Storing and Retrieving Programs on Disk in
Absolute Sector AddressingMode e
Saving Programs on Disk with SAVEDAcvevenns
Retrieving Programs Stored on Disk.
The LOADDA Commandt mi e
The LOADDA Statementot
Storing and Retrieving Data on Disk in
Absolute Sector AddressingMode e
Storing Data on the Disk with DATASAVEDA
Retrieving Data from Disk with
DATALOAD DA . ..ottt
The ‘BA’ STatemMeNtso cv v
Platter-to-Platter Copy with “COPY™o
Using Absolute Sector Addressing Statements
in Conjunction with Catalog Procedures
(BINAry SEArCh) c ot e et
CONCIUSION .« o v e et et et e e e

ABSOLUTE SECTOR ADDRESSING STATEMENTS AND COMMANDS

INEFOAUCHION & - o e e e e e e e

Statement/Command Distinction and
General Rules 0f Syntaxo
COPY . e
DATALOAD BA . oottt
DATALOAD DA . ..o
DATASAVE BA ...ttt
DATASAVE DA ... i
LOAD DA (COMMANA) . . oo vvveeiieeii e
LOAD DA (Statement)c.vrunoenna e
SAVE DA ottt

vil

CHAPTER 8 THE DISK MULTIPLEXER (MODEL 2230MXA-1/MXB-1)
8.1 Introduction 8-1
8.2 The Model 2230MX Multiplexer 8-2
8.3 Installing the Model 2230MX 8-3
Unpacking and Inspection, 8-3
Installation Procedure 8-4
Power-OnProcedure 8-5
8.4 Multiplexer Operation 8-6
85 HogMode 8-7
APPENDICES
APPENDIX A DISKERROR CODES A-1
APPENDIX B COMPARISON OF BASIC AND BASIC-2
DISK STATEMENT SYNTAX B-1
APPENDIX C A GLOSSARY OF DISK TERMINOLOGY C-1
APPENDIX D BIBLIOGRAPHY D-1
APPENDIX E DISKFILEBACKUP E-1
APPENDIX F MODEL 2280 DISK MULTIPLEXER F-1
INDEX . INDEX-1

viii

2-11

2-12

2-13

2-14

2-26
2-27

2-28
2-29

LIST OF EXAMPLES

Initializing the Catalog

(Model 2260, 2270 Series and Minidiskette) 2-4
Initializing a Catalog on a Model 2280 Disk

Platter . . ot e e 2-4
Initializing the Catalog ('LS’ Parameter Omitted) 2-4
Initializing a Catalog on the Model 2280

(‘LS’ Parameter Omitted)ottt 2-5
SavingaProgramonDisk 2-6
Saving a Program on a Fixed Disk of the Model 2280 2-6
Saving Part of a Program on Disk (One Line

Number Specified) 2-7
Saving Part of a Program on Disk (Two Line

Numbers Specified) 2-7
Saving a Program on Disk with SAVE Using

the <S> Parameterot 2-7
Loading a Cataloged Program File from Disk

withthe LOAD Command e 2-8
Loading a Cataloged Program File from a Model

2280 Disk Platter Usingthe LOAD Commandt 2-9
Attempting to LOAD a Non-Cataloged

Program from Disk 2-9
Chaining a Program from Disk with the

LOAD Statemento e 2-10
Chaining a Program from a Model 2280 Disk Platter

with the LOAD Statement e e 2-10
Loading a Program Overlay from Disk with the

LOAD Statementt e e e 2-11
Loading Several Cataloged Program Files from

Disk with the LOAD Statement i e, 2-11
Listing the Catalogindexo 2-12
Loading and Running a Cataloged Program with

the LOAD RUN Commandot e e 2-13
Using the LOAD RUN Command with the Model 2280 2-13

Loading and Running a Cataloged Program with
the LOAD RUN Command (Program “START"

ON DISK) . o o e 2-14
OpeningaDataFileonDisk. o i 2-15
Opening a Data File on a Model 2280 Disk Platter 2-15
Saving DatainaDataFile 2-17

Writing an End-of-File (Trailer) Record to a
Cataloged Data File on Disk with

DATASAVEDC END e 2-18
Writing a Data Trailer Record after a Series

of DATASAVEDC Statements i 2-18
Re-Opening a Cataloged Data File with

DATALOAD DC OPEN e e e e 2-22
Re-Opening a Cataloged Data File on the Model

2280 with DATALOADDC OPEN e 2-22
Attempting to Re-open a Non-Cataloged DataFile 2-23

Reading Data from a Cataloged Data File with

DATALOAD DC 2-23

2-30

2-31

2-32

2-33
2-34

2-35
2-36

2-37
2-38

2-39

2-40

2-41

2-42

2-43

2-44

2-45
2-46
2-47

2-48

2-49

2-50

Reading Less Than One Logical Data Record with

DATALOAD DC ... e 2-24
Reading More Than One Logical Data Record with

DATALOAD DC ... 2-24
Skipping Over Logical Records in a Data File

onaModel 2280 Platter. s 2-28
Backspacing over Logical RecordsinaDataFile 2-28
Backspacing to the Beginning of a

CatalogedDataFile. 2-29
Skipping to the End of a Cataloged DataFile 2-29
Testing for the End-Of-File Condition in a

CatalogedDataFile. 2-29
Scratching Unwanted Files i 2-31
Moving the Catalog from One Platter to Another,

and Deleting Scratched FileswithMOVE 2-33
Moving the Catalog and Deleting Scratched Files

with MOVE StatementontheModel 2280 2-33
Moving the Catalog from One Disk Unit to Another

WIth MOVE . 2-34
Moving a Named Cataloged File from One Platter

to Another with MOVE 2-35
Moving a Named Cataloged File from One Model

2280 Platter to Another withMOVE 2-35
Moving a Named Cataloged File from One Disk Unit to

Another with MOVE (Model 2260 and 2270 Series} 2-35

Copying a Single Named Cataloged File from One
Platter to Another with MOVE (Additional

Sectors Reserved) 2-36
Verifying a Specified Range of Sectors with

VERIFY (FOrm #1) . . .o e e e e 2-37
Verifying the Catalog with VERIFY (Form #1)

(Model 2260 and 2270 SEHES) oottt e 2-37
Verifying the Catalog with VERIFY (Form #1)

(Model 2280 Series) oot 2-37

Verifying a Specified Range of Sectors with
VERIFY (Form #2)

-Model 2260 and 2270 Seriesttt s 2-38
Verifying a Specified Range of Sectors with

VERIFY (Form #2) - Model 2280 Series., 2-38
Verifying the Catalog with VERIFY (Form #2)

(Model 2260 and 2270 Series)ot 2-38
Verifying the Catalog with VERIFY (Form #2)

(Model 2280 SErES) o ot ottt 2-38
Storing Disk Device Addresses in the Device

Table . . 3-3
Opening a New Data File witha File Number 3-9
Referencing an Open Fileby FileNumber 3-11
Referencing an Open File by FileNumber 3-12
Closing a Data File by Reassigning Its File Number 3-15
Closing a Specified File with a DATASAVE DC CLOSE

Statement 3-15
Closing All Currently Open Files with a

DATASAVEDC CLOSE Statement i . 3-16
Skipping Over a Number of SectorsinaFile 3-17

4-9

4-10

4-11

4-12

4-15

4-16

4-17

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

Backspacing Over a Number of SectorsinaFile 3-17
Accessing More Than One Disk Platter with the

T PAr@MELET . . o e e e 3-19
Using the ‘T’ Parameter to Access a User-Selectable

Disk Platter oo e 3-20
Using the ‘T’ Parameter with a New

Default AdAreSS ottt e e e 3-21
Reserving Additional SectorsinaProgramFile 4-1
Opening a Temporary Work FileonDisk 4-3
Opening More Than One Temporary Work Fileo0 4-3
Re-Opening a Temporary Work File i 4-4
Changing the Size of the Catalog Area 4-4
Saving a Program in Space Occupied by a

Scratched Filet e 4-5
Opening a Data File in Space Occupied by a

Scratched Fileo 4-5
Opening a Data File in Space Occupied by a

Scratched Program File i 4-5
Renaming Scratched Program File with

the Same NamMeE o o e 4-6
Updating a Program File with the

SamMeE NAME . . . oo e e 4-6
Renaming Scratched Data File

Which s Still Viable i e 4-6
Form 1 of the LIMITS Statement (‘File Name’

Specified) 4-11
Form 1 of the LIMITS Statement (‘File Name’

and a File Number Specified) 4-11
Form 1 of the LIMITS Statement (‘File Name’

notin CatalogIndex) i 4-12
Form 1 of the LIMITS Statement (‘File Name’

Scratched) o 4-12
Form 2 of the LIMITS Statement (‘File Name’

notSpecified) 4-12
Form 2 of the LIMITS Statement (‘File Name’

not Specified) 4-13
Saving a Program on Disk with SAVE DA

(No Line Numbers Specified)o 6-4
Saving a Program on the Model 2280 Disk

with SAVE DA (No Line Numbers Specified) 6-4
Saving a Program on Disk with SAVE DA

(Two Line Numbers Specified) i 6-4
Saving a Program on the Model 2280 Disk with

SAVE DA (Two Line Numbers Specified) 6-4
Saving a Program on Disk with SAVE DA

Usingthe <S> Parameter i 6-5
Loading a Program from Disk with LOAD DA

COMMANA . . .o o et e e e e 6-5
Loading a Program from the Model 2280 Disk

with LOAD DA Command e e e e 6-5
Loading Programs from Disk with a LOAD DA

Statement (No Line Number Specified) it 6-6
Loading Program Overlap from the Disk with

the LOAD DA Statement

(Two Line Numbers Specified) s 6-7

6-10

6-11

6-17

6-18
6-19

6-20
6-21

6-22
6-23
6-24

6-25

Loading a Program from the Disk with LOAD DA

Statement (BEG Line Number Specified) 6-7
Loading a Program from the Model 2280 Disk with

LOAD DA Statement {BEG Line Number

Specified 6-8
Storing Data on Disk with DATASAVE DA Statement 6-8
Storing Data on the Model 2280 Disk with a

DATASAVEDA Statement i 6-9
Saving a Number of Data Records in Sequential

Areasof the Disk i e 6-9
Writing an End-of-File Record in a Data File

with a DATASAVEDA END Statement 6-10
Retrieving Data from a Data File on Disk with

aDATALOADDA Statement e 6-10
Testing for the End-of-File Condition in a

Non-Cataloged DataFile i, 6-11
Writing an Unformatted Sector with DATASAVEBA 6-12
Writing an Unformatted Sector on the Model 2280

Disk with DATASAVEBA 6-12
Reading a Sector from Disk with DATALOADBA 6-12
Copying Disk Platters in the Same Disk Unit

with the COPY Statement i 6-13
Copying Disk Platters in the Model 2280 Disk Unit

with the COPY Statement i 6-13
Copying from One Disk Unit to Another

with COPY (Model 2260 and 2270 Series)c.iiiiiinnn.. 6-13
Verifying Data Transfer Following

AaCOPY Operationottt e 6-14
Verifying Data Transfer on the Model 2280

Followinga COPY Operation it 6-14
Performing a Binary Search on a

Cataloged DataFile. i 6-19
Entering and Leaving Hog Mode Using $GIOHog 8-8
Entering and Leaving Hog Mode Using AddressHog 8-9

xii

RGN
INY YN

|
S a2 O0ONO O

NNNIIQNN
N=O

(IA)OJ
N —

OJ(I;JOO
bW

LIST OF FIGURES

The Catalog Index Listingo 2-12
Catalog Index Entry for DATFIL-1 e 2-16
Catalog Index Entry for DATFIL-1 e 2-17
Updated Catalog Index Entry for DATFIL-1 2-18
Logical Record Consisting of One Sectorvvveeeeens 2-20
Two One-Sector Logical Records 2-21
Logical Record Consisting of Three Sectorsoo v 2-21
Logical Records in TEST-1 e 2-27
Skipping Over Logical RecordsinaDataFileoveenenn 2-27
Backspacing Over Logical RecordsinaDataFile.......................ove 2-28
The Catalog Index Showing Scratched Filesconvenn 2-31
Original Catalog and Copied Catalog Following a

MOVE, Showing Scratched FilesDeletedcoon 2-34
The Device Table inMemoOry i s 3-2
The Device Table with Disk Addresses

Stored Opposite File Numbers #3and #5 3-4
The Device Table with One File Open (DATFIL-1) oo 3-7
The Device Table with One File Open (DATFIL-2) oot 3-8

The Device Table with Disk Device Addresses Stored
Opposite File Numbers #3 and #5 and One Open File

(DATFIL-2) . o\ttt et e e 3-9
The Device Table with Two OpenFiles s 3-10
The Device Table in Memory with Three OpenFiles 3-11
Device Table Slot for DATFIL-2o e 3-13
Updated Device Table Slot for DATFIL-2 3-13
Updated Device Table Slot for DATFIL-2 ... e 3-14
Updated Device Table Slot for DATFIL-2 Following

Execution of a DBACKSPACE BEG Statementovonen 3-14
The Device Table Default Slot Following Execution of

aSELECT DISK/B10O Statementot iri e 3-21
The Program File PROG-1 with Ten Extra Sectors

RESEIVEA . . o o v e e e e e e 4-2

Layout of the Platter Surface Showing Catalog
Index, Catalog Area, and Non-Catalog Area

(Used for Storage of Temporary Files) 4-3
One Logical Record, Showing Sector Control Bytes and

Start-of-Value Control Bytes forEach Field 4-8
Inter-Field Gap in a Multi-SectorRecordo 4-9
A Multi-Sector Record with NO Gaps -ot 4-10
Typical Entry in Customer CreditFileooovvvee e 6-15
Typical Customer Credit File (Sorted in Ascending

0] 7o 1= o NPT I 6-16
Binary Search Techniquet 6-17
Model 2230MXA-1 Master Board and

2230MXB-1 Slave Boardst 8-2
T-connector with Multiplexed System i 8-2
Connecting Extension Cable with

Standard 12-f00t Cable e 8-3
Typical System Configuration: Model 2230MX

Multiplex, Disk Unit, and Four Attached CPU’soooveen 8-4
A Multiplexed 2280 Disk Driveo F-3

Xiii

W —
=N

W ww
APWN

LIST OF TABLES

Platter Parameters for the Model 2260

and 2270 Series 1-2
Platter Specifications forthe Model 2280 1-3
Disk Addresses for Models 2260C, 2260BC, 2270-1,

2270-2 and Minidiskette 3-22
Disk Addresses for Models 2270-3, and 2270A-3 3-22
Disk Addresses for Models 2260C-2/2260BC-2 3-23
Platter Address for Model 2280 DualDrives 3-23

Xiv

CHAPTER 1
ACCESSING A DISK PLATTER

1.1 INTRODUCTION

Information on a disk platter is stored on concentric circular tracks which are divided into a number
of discrete segments called sectors. Each sector has a fixed storage capacity of 256 bytes and has
its own sector address which allows it to be directly accessed by the system. The programmable in-
structions used to access the disk platters are essentially the same for all Wang disk models. The fol-
lowing sections discuss the procedures for accessing the disk platters when the system contains only
one disk unit or when accessing the primary disk drive from among multiple disk units. The considera-
tions for accessing the disk platters when the system contains more than one unit are discussed in
Chapter 3.

1.2 THE PLATTER PARAMETERS

Before it can perform a disk read or write operation, the system must know which platter is to be
accessed from a disk drive. Each disk platter is regarded by the system as an independent logical unit,
with its sectors independently numbered starting at zero. In order to locate a given sector, the system
must be told which drive unit and platter contain the desired sector. The drive is always specified by
its device address. The platter is generally specified by the platter parameter, although the device ad-
dress is sometimes used for platter specification.

Model 2260 and 2270 Series

The system uses the ‘F’ parameter and the ‘R’ parameter to uniquely identify the two platters in the
Model 2260 series disk drives. The ‘F' and ‘R’ parameters were designed originally for the fixed/re-
movable disks, and they are mnemonics for “fixed” (‘F’) and “removable” {‘'R’). Thus, the ‘F’ parameter
uniquely identifies the fixed platter, and the ‘R’ parameter identifies the removable platter (disk car-
tridge) in these disk units.

‘F’ and ‘R’ also may be used with diskette drives (Models 2270 and 2270A) and the minidiskette
drives. All diskettes are equally removable; no diskette has a privileged status. ‘F" and ‘R’ therefore
have no particular mnemonic significance in this case. ‘F’ identifies the leftmost diskette drive (#1),
while ‘R’ identifies the second drive (#2). In a Model 2270-1/2270A-1 or minidiskette configuration,
with only one drive, ‘F’ identifies the single drive, and ‘R’ is not used. In a Model 2270-3/2270A-3,
with three drives, ‘F’ serves a double duty, identifying both drive #1 and drive #3. When used to refer-
ence drive #3, however, the ‘F’ parameter must be accompanied by a special disk device address (see
Section 1.5).

1-1

Table 1-1. Platter Parameters for the
Model 2260 and 2270 Series

PARAMETER MODELS MODELS MODELS MODELS
2270-1 2270-2

2260C 2270A-1 2270A-2 2270-3

2260BC Minidiskette Dual 2270A-3
Minidiskette
F Fixed Platter Drive #1 Drive #1 Drive #1
or #3*
R Removable Platter Not Used Drive #2 Drive #2

*F’ parameter must be accompanied by special disk device address to access drive #3. See Section
1.5.

Model 2280 Series Disk Drive

The Model 2280 series disk drive contains a 13.4 megabyte removable platter and a fixed storage
section, the size of which depends on the mode! available (i.e., 2280-1, 2280-2, or 2280-3). The
fixed storage section of the disk is divided into a number of independent logical platters, each 13.4
megabytes in size. A particular platter (removable or fixed) is generally referenced by specifying the
platter number as the low digit of the device address (see Table 1-2). The platter parameter ‘T’ is nor-
mally used for the Model 2280 series since it causes the system to use the platter designated by the
device address. {(See Section 3.7 for a full discussion of the ‘T’ parameter in disk operations.)

1-2

Table 1-2. Platter Specifications for the Model 2280

MODEL PLATTER DEVICE ADDRESS
2280-1 Removable D10 (or B10)*
Fixed D11 (or310)
2280-2 Removable D10 (or B10)
First Fixed D11 (or 310)
Second Fixed D12
Third Fixed D13
2280-3 Removable D10 (orB10)
First Fixed D11 {or310)
Second Fixed D12
Third Fixed D13
Fourth Fixed D14
Fifth Fixed D15

*For compatibility with other disk units, the removable and the first fixed platter can be ad-
dressed in the same manner as the 2260 Series disk units. In this case the first character of the
device address must be 3 or B.

1.3 ACCESSING A DISK PLATTER

Access to a particular platter is obtained by including the appropriate platter specification in a disk
statement. For example, the Absolute Sector Addressing statement DATASAVE DA is used to store
data on disk beginning at a specified sector address. For example, to record data in sector #100 on
the fixed platter of a Model 2260 BC disk unit, or on the diskette mounted in drive #1 of a Model
2270-3 diskette unit, the following statement might be used:

10 DATASAVE DA F (100) A$

Similarly, the following statement could be used to record data in sector #100 on the removable plat-
ter, or on a diskette mounted in drive #2 of a diskette unit:

10 DATASAVE DA R (100) A$

Likewise, the following statements could be used to record data in the specified sectors on the
removable and fixed platters of the Model 2280-2.

10 DATASAVE DA T/D10 (100) A$
20 DATASAVE DA T/D11 (100) B$
30 DATASAVE DA T/D12 (100) C$
40 DATASAVE DA T/D13 (100) D$

The Automatic File Cataloging procedures, discussed in Chapters 2-4, permit the programmer to

read and write information on disk without specifying a sector location. In this case, the Catalog auto-
matically keeps track of where each file is stored, so that the programmer only needs to provide the

1-3

file name and the platter specification. For example, the SAVE statement is used to record named pro-
grams on disk with Catalog procedures. Thus, the following statement could be used to save the pro-
gram PROG-1 on the fixed platter of a 2260 series disk drive, or on diskette #1 of a diskette drive
unit;

10 SAVE F "PROG-1"

The same program could be saved on the removable platter, or on diskette #2 of a diskette unit, with
the following statement:

10 SAVER “PROG-1"

1.4 THE DISK DEVICE ADDRESS (MODEL 2260 and 2270 SERIES)

In addition to the platter parameters “F” and “R"” , which identify individual disk platters within a
disk unit, the disk unit as a whole is identified with a unique three-digit disk device address. The disk
device address enables the system to distinguish the disk from other peripheral devices (printers,
plotters, etc.) and from other disk units in the same system. The device address of the first or primary
disk unit in a system is 310. If the system supports two or more disk units, the disk device address is
incremented by HEX(10) for each additional disk unit. (For example, the address of a second disk unit
on the same system is 320; the address of a third, 330, etc.) The device addressing scheme for
multiple-disk systems is covered in greater detail in Chapter 3, Section 3.8. For example, the following
statement would save a file named “PROG-1" on the platter designated “F” on the defauit disk unit
(designated 310).

10 SAVEF /310, “PROG-1"
Notice that the device address is preceded by a slash (/") when specified directly in a disk state-

ment. The indirect specification of a disk address involves the use of file numbers, and discussion of
this technique is postponed until Chapter 3, where file numbers are introduced.

NOTE:

The disk device address may be omitted from a
disk statement if there is only one disk unit in the
system, or if the primary disk unit in a multiple-disk
system is to be accessed since the system as-
sumes a device address of 310 automatically
(unless the default address has been changed by
SELECT). Thus, the following pair of statements
are, in general, equivalent:

10 SAVEF /310, "PROG-1"
or
10 SAVEF “PROG-1"

In either case, the disk unit with address 310 is accessed.

1-4

1.5 ACCESSING THE THIRD DRIVE (MODEL 2270-3 and 2270A-3) AND SLAVE DRIVE
(MODELS 2260C-2, 2260BC-2 and 2280 DUAL DRIVE)

In general, the device address of drive #3 in a Model 2270-3 (or 2270A-3) is determined by ORing
HEX(40) to the primary address assigned to drives #1 and #2. For example, if the primary address of

the triple drive is 310, the address of drive #3 is 350; if the primary address is 320, the address of
drive #3 is 360, etc.

If drive #3 is accessed with the ‘F’ parameter, the special address must be referenced. For example,
statement 10 below would access drive #1 of a triple drive unit:

10 SAVE F “PROG-1"
Alternatively, statement 20 accesses drive #3:
20 SAVE F /350, “PROG-2"

These statements assume, of course, that the primary address of the triple drive is the default ad-
dress, 310.

The Slave drive in a Model 2260C-2, 2260BC-2 or 2280 dual drive system is treated much the
same as the third drive in the Model 2270-3. Although it is functionally an extension of the Master
drive, it is assigned a separate address which is always HEX(40) greater than the address of the
Master disk. If the Master drive’s default address is 310, the address of the Slave drive would be
350: if the address of the Master drive is 320, the address of the Slave drive is 360, etc. As an exam-
ple, for the 2260C-2 or 2260BC-2, statement 10 below accesses the fixed platter in the Slave drive
assuming that the primary address in the Master drive is the default address, 310.

10 SAVE F/350, “FILE4”

The statement 10 below accesses the first fixed platter of the Slave drive in a 2280 dual drive
system.

10 SAVE T/D51, “FILE6”

1-5

CHAPTER 2
AUTOMATIC FILE CATALOGING PROCEDURES

2.1 INTRODUCTION

Once a disk platter has been formatted by the procedures described in the appropriate Disk Users
Manual, it is ready to receive programs and data. The system provides two modes of disk operation
for recording information on disk: Automatic File Cataloging mode, and Absolute Sector Addressing
mode.

in Automatic File Cataloging mode, the system provides a set of procedures which automatically
keep track of the size and location of each cataloged file. The process of storing and retrieving infor-
mation on the disk is greatly simplified, because the system automatically performs many of the com-
plex “housekeeping” chores associated with the maintenance of disk files. A drawback of this mode
of operation, however, is that the Automatic File Cataloging statements do not permit the program-
mer to directly access individual sectors on disk.

By contrast, Absolute Sector Addressing mode enables the programmer to directly access any
sector on disk by specifying its sector address. In this mode, the locations of all files on disk must be
maintained by the programmer himself in his controlling software. Absolute Sector Addressing state-
ments can be used to design custom disk file maintenance systems, or to write special search and
sort routines which may be used in conjunction with cataloged files.

Chapters 2, 3, 4, and 5 describe and explain the Automatic File Cataloging procedures. This chapter
introduces the concept of cataloging, and discusses many of the most basic cataloging procedures,
including storage and retrieval of programs and data on disk, skipping to particular records within a
data file, listing the contents of the Catalog Index, and creating backup copies of cataloged files on a
second platter. Chapters 3 and 4 cover these and other subjects in greater detail. Chapter 5 lists the
general forms of all catalog statements, with each statement’s parameters shown in a clear and
readable form. The general forms are listed in alphabetic order for ease of reference. Absolute Sector
Addressing procedures are dealt with in Chapters 6 and 7.

2.2 WHAT IS AUTOMATIC FILE CATALOGING?

Automatic File Cataloging mode consists of 18 BASIC statements, which invoke a set of built-in
routines which perform specific file control functions. The catalog statements enable a programmer
to create and access program files and data files on the disk by name, without reference to specific
sector locations. Each newly created file is automatically placed in an available location by the
system, and the file’s name and location are recorded for future reference. In addition, a number of
auxiliary file maintenance operations (such as skipping records within a file, creating backup copies
of files, and providing essential file parameters) are supported.

Clearly, the most important function of the catalog procedures is to keep an accurate account of
where each file is located on a disk platter. Such a function may not be critical when the platter con-

tains only a single file, but if two or more files are stored on the same platter, it is imperative that
accurate records of the size and location of each file be kept.

2-1

The structure used to keep track of where each file is stored is called the “catalog”. The catalog
consists of two sections, a “Catalog Index” and a “Catalog Area”. All cataloged program files and
data files are physically stored in the Catalog Area, which typically occupies the major portion of a
platter’s storage area. The Catalog Index, which normally occupies a much smaller portion of the plat-
ter, contains the name and location of each file. Files are stored sequentially in the Catalog Area, and
their names and locations are recorded in the Catalog Index.

A file’s “location” is expressed in terms of a “sector address”. It was pointed out in an earlier chap-
ter that the storage area of each platter is segmented into a number of storage blocks called sectors.
Each sector has a total storage capacity of 256 bytes. The sectors on a platter are numbered sequen-
tially starting at zero; the number assigned to each sector is referred to as its “address”. Files typically
occupy a number of sequential sectors, and the files themselves are always stored sequentially in the
Catalog Area. For example, FILE#1 may occupy 50 sectors, starting at sector #100 and proceeding
sequentially to sector #149. A second file, FILE#2, would automatically be stored beginning at sector
#150. If FILE#2 also is 50 sectors in length, it occupies sectors #150 - #139. The location of a file is
simply the address of the first sector in the file. Thus, the system might make the following entries in
the Catalog Index for the two files, FILE#1 and FILE#2:

STARTING SECTOR END!NG SECTOR
NAME ADDRESS ADDRESS
FILE#1 100 149
FILE#2 150 199

When the programmer wishes to access one of the existing files, FILE#1 or FILE#2, he need only
provide the system with the desired file name. If he requests FILE#2, the system looks for the name
“FILE#2” in the Catalog Index, and quickly finds the location of FILE#2 in the Catalog Area. Because
the Catalog Index is updated by the system whenever a new file is stored, and consulted by the
system whenever an existing file is accessed, the programmer does not need to be concerned about
where a cataloged file is actually located on the platter.

2.3 SUMMARY: WHAT THE CATALOG PROCEDURES CAN AND CANNOT DO

Although the catalog procedures can perform a number of critical file maintenance functions, there
are a great many maintenance operations they do not perform, and they should not be regarded as
constituting a complete disk file maintenance system.

In summary, Automatic File Cataloging mode includes statements which perform the following ser-
vices for the programmer:

1. Provide the capability to establish a catalog, consisting of a Catalog Index and Catalog
Area, on a designated disk platter.

2. Provide the capability to save programs on disk by name, without reference to a sector lo-
cation, and load programs from disk into memory by name, without referencing a sector
location.

3. Provide the capability to open and re-open data files on disk by name, without reference to
a sector location.

2-2

4. Provide the capability to store data in an open data file without reference to a sector
location.

5. Automatically write multi-sector records on the disk when the argument list requires it.
6. Provide the capability to skip forward and backward over data records within a data file.
7. Provide a complete listing of the contents of the Catalog Index.

8. Provide the capability to scratch unwanted files on disk, and reuse the space occupied by
such files.

9. Provide the capability to copy the entire contents of the catalog (Catalog Index and Catalog
Area) onto a second disk platter.

Some of the more common file maintenance procedures not supported by Automatic File Catalog-
ing are listed below:

1. Direct access to individual sectors is not supported.

2. Random access to data records within a cataloged file is not supported (sequential access
only is supported).

3 Search and sort routines, which in general require a direct-access capability, are not
supported.

4. Automatic blocking of multiple data records within a single sector is not supported. (This
must be simulated with the user’s software.)

5. Overlapping a file from one platter to another is not supported. (Files are assumed to reside
entirely on a single platter)

Note, however, that all of the above procedures can be carried out by software routines written
with the Absolute Sector Addressing mode statements, which do permit direct access to sectors on
disk. Absolute Sector Addressing statements can be used to construct a wholly customized mainte-
nance system, and they can be used in conjunction with Automatic File Cataloging statements to aug-
ment the catalog procedures. The programmer should carefully analyze his own application to deter-
mine which mode, or combination of modes, is suitable for his needs. The novice programmer is
warned, however, against attempting to “mix” modes before acquiring a complete understanding of
the catalog procedures discussed in Chapters 2,3,4,and 5.

2.4 INITIALIZING THE CATALOG

Before any information can be recorded on the disk with Catalog procedures, the catalog itself
must be set up or “initialized” with the SCRATCH DISK statement. SCRATCH DISK enables the pro-
grammer to establish a Catalog Index and Catalog Area on a specified disk platter. If a Catalog Index
and Catalog Area have previously been set up, the SCRATCH DISK statement will destroy the existing
information. The following items of information are included in a SCRATCH DISK statement:

1. The disk platter on which the catalog is to be established. Separate and independent cata-

logs are established on each disk platter, and each must be initialized independently. One
of the platter parameters ‘F’ ‘R’ or ‘T" is used to specify the desired disk platter.

2-3

2. The number of sectors which are to be reserved for the Catalog Index (any number between
1 and 255 is allowed). The ‘LS’ parameter is used for this purpose. The Catalog Index auto-
matically begins at sector #0 on a platter. Therefore, if 40 sectors are reserved, the Index
occupies sectors O - 39.

3. The address of the last sector to be used for the Catalog Area. This is usually the highest
sector address on the platter. (Cataloged files cannot be stored on the disk beyond this
sector.) The ‘END’ parameter is used for this purpose. The Catalog Area automatically
begins with the first sector following the Catalog Index. For example, if 40 sectors (O - 39)
are reserved for the Index, the Catalog Area automatically begins at sector #40. The begin-
ning point is a system function, and cannot be altered by the programmer. The address ot
the last sector of the Catalog Area must, however, be specified. It must be less than or
equal to the highest (last) sector address on the platter.

Example 2-1: Initializing the Catalog {2260, 2270 Series and Minidiskette)
10 SCRATCH DISK F LS=20, END=1000

Statement 10 instructs the system to initialize a catalog on the disk platter designated by ‘F’ (‘F’
designates the fixed disk platter on a Model 2260 series disk unit, and Drive #1 on the Minidis-
kette and Model 2270/2270A). Twenty sectors are reserved for the Catalog Index on this platter
(LS = 20), and sector 1000 is specified as the last sector in the Catalog Area (END = 1000).
Note that each disk platter must be initialized separately (i.e., with a separate SCRATCH DISK
statement).

Example 2-2: Initializing a Catalog on a Model 2280 Disk Platter
10 SCRATCHDISK T/D12,LS = 40, END = 9000

Statement 10 instructs the system to initialize a catalog on the fixed platter designated by D12.
Forty sectors are reserved for the Catalog Index on the platter (LS = 40), and sector 9000 is
specified as the last sector in the Catalog Area (END = 9000).

In deciding how many sectors you should allocate for the Catalog Index, keep in mind that the first
sector of the Index (sector 0) can hold 15 file names, and each subsequent sector (up to sector 254)
can hold 16 file names. Thus, if you intend to store 15 or fewer files on a disk platter, one sector will
be adequate for the Index. If you intend to store 16 or more files, two or more sectors must be re-
served for the Index. It is important to note, however, that the size of the Catalog Index, once fixed,
cannot be altered without reorganizing the entire catalog. The Index should therefore generally be al-
lotted enough space to provide for any possible future additional files.

It is not strictly necessary to specify the number of sectors to be reserved for the Catalog Index. If
you do not specify the number of sectors to be reserved in your SCRATCH DISK statement (i.e., if the
‘LS’ parameter is omitted), the system automatically reserves the first 24 sectors on the disk platter
for a Catalog Index. Since the first sector of the Catalog Index (sector O) holds a maximum of 15 file
names (and associated file information) and each subsequent sector holds a maximum of 16 file
names, a Catalog Index of 24 sectors provides enough space to store a maximum of 383 file names.

Example 2-3: Initializing the Catalog ('LS’ Parameter Omitted)

20 SCRATCH DISK REND = 1000

2-4

Statement 20 instructs the system to establish a Catalog on the disk platter designated by ‘R’.
Sector 1000 is specified as the last sector to be used in the Catalog Area (END = 1000). Since
the ‘LS’ parameter is omitted, the system automatically reserves the first 24 sectors on the ‘R’
platter for the Catalog Index.

Example 2-4: Initializing a Catalog on the Model 2280 ('LS’ Parameter Omitted)

20 SCRATCH DISK T/D10, END = 10000

Statement 20 instructs the system to establish a Catalog on the removable disk platter (D10).
Sector 10000 is specified as the last sector to be used in the Catalog Area (END = 10000).
Since the ‘LS’ parameter is omitted, the system automatically reserves the first 24 sectors on
the removable platter for the Catalog Index.

2.5 THE ‘DC’ PARAMETER

Certain BASIC verbs (e.g., SAVE, LOAD, DATASAVE, DATALOAD) are used in both the Automatic
File Cataloging mode and the Absolute Sector Addressing mode. A special parameter is included in
the BASIC statement to inform the system which mode of disk operation is meant. For catalog opera-
tions, the ‘DC’ parameter (mnemonic for “Disk Catalog”) is used. Thus, for example, the statement
SAVE DC is always interpreted by the system as a catalog statement (the remaining parameters in the
statement must, of course, be correct). Absolute Sector Addressing mode is signalled by the ‘DA’
parameter (“Direct Addressing”). Thus, the SAVE DA statement always refers to Absolute Sector Ad-
dressing mode. A third parameter, ‘BA’ is used in two special statements which constitute a subclass
of the ‘DA’ statements. The ‘BA’ statements are discussed, along with the ‘DA’ statements, in Chap-
ter 6, “Absolute Sector Addressing”.

Earlier Wang 2200 systems supported both disk and tape cassette operations, and tape was con-
sidered the default storage device. Thus, statements such as SAVE, LOAD, DATASAVE, and
DATALOAD were regarded as specifying tape operations unless one of the disk parameters ‘DC’ ‘DA’
or ‘BA’ were included in the statement. The System 2200VP/MVP, however, does not support tape
cassette operations. The disk itself is the default storage device, and catalog mode is the default
mode of disk operation. In general, therefore, the ‘DC’ parameter is required in a disk statement.
There are two disk statements that allow the optional use of the ‘DC’ parameter - the SAVE statement
and the LOAD statement. Thus, the statement

SAVE F “PROG#1”
is equivalent to the statement
SAVEDC F “PROG#1"

Both statements cause PROG# 1 to be saved on the ‘F’ platter under catalog procedures.
Likewise, for Model 2280 addressing, the statement
SAVE T/D15, “PROB4"
is equivalent to the statement

SAVEDC T/D15, “PROB4".

Both statements cause PROB4 to be saved on the fixed platter designated by D15.

2-5

Retention of the ‘DC’ parameter specifying disk operations permits compatibility with existing
2200 software, since ‘DC’ is required in Wang BASIC disk catalog statements. The following disk
statements require the ‘DC’ parameter:

DATA LOAD DC

DATA LOAD DC OPEN
DATA SAVE DC

DATA SAVE DC OPEN
DATA SAVE DC CLOSE
LIST DC

2.6 SAVING CATALOGED PROGRAMS ON DISK: THE “SAVE” STATEMENT

Once the catalog is initialized, you can begin storing cataloged information on the disk. In catalog
mode, all information must be stored in a named file on the disk. Cataloged disk files may be of two
types: program files and data files. A data file may contain a large collection of data. A program file,
however, always contains only one BASIC program or program segment.

Program files are stored on the disk with the SAVE statement. Each time a SAVE statement is ex-
ecuted, it creates a single named program file on disk. A program file consists of the BASIC program
or program segment being saved, as well as certain file control information automatically included in
the file by the system when the program is stored on disk.

In order to record a cataloged program on disk, the following information must be specified in the
SAVE statement:

1. The disk platter on which the program is to be stored. The specified disk platter must have
been initialized with a SCRATCH DISK statement.

2. The name of the program. You must name the program so that the system has some way
of identifying it when it is stored on the disk. The name can be from one to eight characters
in length. It may be specified as a literal string, or as the value of an alphanumeric variable.
Each program must be given a unique name.

Example 2-5: Saving a Program on Disk

SAVER “PROG#1”

This statement instructs the system to transfer all program lines currently in memory to the
default drive disk platter designated by ‘R' and name this program file “PROG#1". The file's
name (“PROG#1"”) and location are automatically listed in the Catalog Index.

Example 2-6: Saving a Program on a Fixed Disk of the Model 2280

SAVE T/D12, “PROB#7"”

This statement instructs the system to transfer all program lines currently in memory to the fixed
platter designated by D12 and names this program file “PROB #7".

2-6

It is also possible to save just a portion of a program currently in memory. This is accomplished by
including the appropriate line numbers in the SAVE statement (Examples 2-7 and 2-8).

Example 2-7: Saving Part of a Program on Disk (One Line Number Specified)
SAVE R “PROG#2"” 200

This statement instructs the system to transfer all statement lines in memory beginning with line
200 through the highest numbered line onto the disk platter designated by ‘R’. The program is
named “PROG#2” and its name and location are automatically entered in the Catalog Index.

Example 2-8: Saving Part of a Program on Disk (Two Line Numbers Specified)

30 A% = “PROG#3"
40 SAVE R A$ 200, 500

This statement transfers program lines 200 through 500 from memory to the ‘R’ disk platter.
The program is named “PROG#3" since that is the value of A$, and the program’s name
(“PROG#3") and location are entered in the Catalog Index.

A useful feature of the SAVE statement is the ability to delete unnecessary spaces and remarks
(REM statements) in a program before it is stored on the disk. If the parameter <S> is specified in
the SAVE statement, all unnecessary spaces (excluding spaces in character strings enclosed in
quotes orin % statements) will be deleted from the program as it is saved. By specifying the parameter
< SR> in the SAVE statement, both unnecessary spaces and remarks are removed from the program
when it is saved on disk.

Example 2-9: Saving a Program on Disk with SAVE Using the <S> Parameter

10 REM ENTER VARIABLES IN PROGRAM
20A= 5.64:B=4.8
30 C$ ="SALES TAX"

100 PRINTUSING 160

160% ACCT.NO. AMOUNT
SAVE <S> F (400) “ACCOUNTS"

In example 2-9, SAVE transfers the program “ACCOUNTS” from memory to the ‘F’ disk platter.
The parameter <S> deletes the unnecessary spaces in line 20 of the program when it is saved. The
spaces enclosed in quotes in line 30 and the spaces following the % statement in line 160 are not
deleted. If the parameter <SR>> is used in SAVE instead of <S>, then line 10 is also deleted when
the program is saved on disk.)

2-7

2.7 RETRIEVING PROGRAMS STORED ON DISK: THE “LOAD” INSTRUCTION

Cataloged programs are retrieved from the disk with the LOAD instruction. LOAD is referred to as
an “instruction” rather than a “statement” or a “command” because it is a hybrid, functioning dif-
ferently depending upon its mode of execution. When executed in Immediate Mode, LOAD is referred
to as the LOAD command, and stimulates a specific sequence of operations. When executed in pro-
gram mode (i.e., on a numbered program line), it is referred to as the LOAD statement; in this case, an
altogether different sequence of operations are initiated. Because of the operational distinctions be-
tween the two forms of LOAD, the LOAD statement and the LOAD command are discussed in separ-
ate sub-sections.

The LOAD Command

The LOAD command is never executable in program mode; it is executed in immediate mode only.
If the LOAD instruction appears in a program (i.e., on a numbered program line), it is interpreted as a
LOAD statement, and the operations associated with the LOAD statement are carried out by the
system. The LOAD command instructs the system to locate a named program on a specified disk
platter, and load that program into memory. The system first checks the Catalog Index for the speci-
fied program name, and then, upon locating the name, determines the program’s location in the Cata-
log Area, and moves to that location to load the program.

Following execution of the LOAD command, the newly loaded program is appended to existing pro-
gram text in memory. New program lines which have the same numbers as program lines already
stored in memory replace the currently stored lines in memory. Currently stored program lines which
do not have the same line numbers as new program lines are not cleared, however; they remain as
lines in the new program. (For example, if the old program has lines numbered 5, 15, 25, etc., and the
newly-loaded program lines are numbered 10, 20, 30, etc., the new program in memory has lines
numbered 5, 10, 15, 20, etc.) For this reason, it is generally wise to clear memory prior to loading the
new program. All of memory can be cleared by executing a CLEAR command prior to executing the
LOAD command. Alternatively, a CLEAR P command causes only program text to be cleared from
memory. After the new program is loaded, it is necessary to key RUN and (EXEC) in order to execute
the newly loaded program.

The LOAD command must include the following two items of information:
1. The disk platter parameter (‘F' ‘R’ or ‘T’} on which the desired program is stored.

2. The name of the program which is to be retrieved {the name may be specified as a literal
string, or as the value of an alphanumeric variable).

Example 2-10: Loading a Cataloged Program File from Disk with the LOAD Command

CLEAR
LOAD R “PROG#1"

This command instructs the system to load PROG#1 into memory from the disk platter
designated by ‘R’. When the command is executed, the system accesses the ‘R’ platter and
searches for the program name “PROG# 1" in the Catalog Index. Upon locating the name in the
Catalog Index, the system checks the starting sector address of the program, and moves to that
address in the Catalog Area to begin loading PROG#1 into memory. Note that if CLEAR is not ex-
ecuted the new program is appended to existing program text in memory (new program lines
which have the same number as program lines already in memory replace the resident lines in
memory). After the program is loaded, it is necessary to key RUN and (EXEC) in order to begin
execution of the new program.

2-8

Example 2-11: Loading a Cataloged Program File from a Model 2280 Disk Platter using the
LOAD Command

CLEAR
LOAD T/D10 “PROB#7"

This LOAD command instructs the system to load PROB#7 into memory from the removable

disk platter designated by D10. Before the program is loaded, all memory is cleared with the
CLEAR command.

If the program name specified in a LOAD command is not located in the Catalog Index on the speci-

fied disk platter, an error is indicated. Note also that the program name supplied in a LOAD command

must correspond exactly to the program name listed in the Catalog Index. Any misspelling results in
an error.

Example 2-12: Attempting to Load a Non-Cataloged Program from Disk

CLEAR
LOAD R “PRAG#1"

This command is meant to retrieve PROG 1 from the ‘R’ disk platter. Because the program’s
name is misspelled, however (“PRAG#1" instead of “PROG#1"), the system cannot find a pro-
gram under this name in the Catalog Index. It therefore signals an error:

LOAD R “PRAG#1"
1ERR D82

Where Error D82 = “File Not in Catalog”.

The LOAD Statement

Cataloged programs can also be loaded into memory from disk under program control. The LOAD
statement is used for this purpose. The LOAD statement is executable only in a program (i.e., on a
numbered program line). When the LOAD instruction is executed in immediate mode, it is always in-
terpreted as a LOAD command, and the sequence of operations associated with the LOAD command
(see above) is followed by the system.

The following sequence of operations is associated with the LOAD statement:

1. Stop current program execution.

2. Clear all currently stored program text (or a specified portion of currently stored program
text) from memory.

3. Clear all noncommon variables from memory.

4. Locate the named program on the specified platter. (If the specified name cannot be found
in the Catalog Index, an error is signalled.)

5. Load the program into memory.

6. Run the newly loaded program.

2-9

In a LOAD statement, the system must be provided with the following information, in the order
indicated:

1. The disk platter on which the desired program is stored.

2. The name of the program which is to be loaded {the name may be specified as a literal
string in quotes, or as the value of an alphanumeric variable).

Optionally, a third item may be included:

3. One or two program line numbers which specify the first and last program lines to be
cleared from memory prior to loading the new program.

In addition, several programs may be loaded at once from the disk:

4. An expression enclosed within < > specifying the number of files to be loaded, and an
alpha-variable to list the names of the programs to be loaded.

If no line number is specified in the LOAD statement, the system clears all program text from
memory prior to loading the new program from disk. As soon as the program is loaded, execution
begins automatically at the first (lowest} program line in the newly loaded program. The LOAD state-
ment is commonly used to “chain” programs from the disk. Common variables (so specified in a
COM statement) are retained in memory for use by each succeeding program in the chain. Noncom-
mon variables are cleared by the LOAD statement.

Example 2-13: Chaining a Program from Disk with the LOAD Statement
100 LOAD F “PARTA#2"

When executed, statement 100 stops program execution, clears all program text and noncom-
mon variables from memory, and loads in the program PARTA#2 from the ‘F’ disk platter. Exe-
cution of PARTA#2 begins automatically at the first (lowest) line in the program.

Example 2-14: Chaining a Program from a Model 2280 Disk Platter with the LOAD State-
ment

200 LOAD T/D14,"PARTA#4"

When executed, statement 200 stops program execution, clears all program text and noncom-
mon variables from memory, and loads in the program PARTA#4 from the fixed platter
designated D14. Execution of PARTA#4 begins automatically at the first (lowest) line in the
program.

If program segments are to be overlayed from disk, it may be desirable to clear out only a specific
portion of program text prior to loading the new program segment. In this case, one or two program
line numbers can be included in the LOAD statement. Inclusion of a single line number in the statement
causes all program text beginning at that line to be cleared from memory prior to loading the new pro-
gram. Two line numbers instruct the system to clear all program text between and including the speci-
fied lines prior to loading the new program. In either case, all non-common variables are cleared. Exe-
cution of the newly loaded program begins at the first line number specified in the LOAD statement. If
this line number does not appear in the newly loaded program, an ERROR P36 (Undefined Line
Number) is signalled.

2-10

Example 2-15: Loading a Program Overlay from Disk with the LOAD Statement
200 LOAD F “PARTA#3” 300, 900

Statement 200 halts program execution and clears program lines 300 through 900 from
memory, along with all non-common variables, prior to loading program overlay PARTA#3 from
the ‘F’ platter. After PARTA#3 is loaded, program execution continues automatically at line 300.
If PARTA#3 contains no line number 300, an ERROR P36 (Undefined Line Number) is signalled.

Several programs can be overlayed from the disk with a single LOAD statement. In this case, the
LOAD statement must include the total number of programs to be loaded from the disk. The names
of the programs are specified sequentially in an alpha-variable. (The alpha-variable must be a
common variable.)

Example 2-16: Loading Several Cataloged Program Files from Disk with the LOAD Statement

10 COMBS$(4)8

20 B$(1)="PARTA#1":B$(2)="PARTA#2"
:‘B$(3)="PARTA#8": B$(4)="DOLLARS2"

30 LOADR<4> B$()

In statement 10, B$(4) is designated a common variable consisting of four elements. Each ele-
ment consists of a literal string with a maximum length of 8 bytes. Statement 20 defines the pro-
gram names that are stored sequentially in B$(4). When executed, statement 30 stops program
execution, clears all program text and noncommon variables from memory, and loads into
memory from the ‘R’ disk platter the programs PARTA#1, PARTA#2, PARTA#8, and DOL-
LARS2 in that order. Execution begins at the lowest numbered line.

2.8 LISTING THE CATALOG INDEX: THE “LIST DC” STATEMENT

It is frequently helpful to know the names of all files stored on a particular platter. The names of all
cataloged files on a platter are recorded in the Catalog Index, along with the location of each file, file
type, status and total sectors reserved for the file. A list of the entries in a Catalog Index can be ob-
tained with the LIST DC statement. Note that the ‘DC’ parameter is required in the LIST DC statement;
if it is omitted, the system lists the resident program in memory rather than the Catalog Index. The
platter parameter of the platter containing the index to be listed must also be included. When the
LIST DC statement is executed, the following information is returned:

1. Information on the status of the catalog itself:
a) The number of sectors reserved for the Catalog Index on the specified disk platter.
b) The address of the last sector reserved for the Catalog Area.

c) The current end of the Catalog Area (i.e., the last sector of the Catalog Area currently
occupied by a catalog file).

2-11

2. Information on the status of each cataloged file:
d) The name of each cataloged file.
e) Thefile type (program or data) of each file, and its status (“S” if scratched).
f) The starting and ending sector addresses of each file.
g} The number of sectors used in each file.
h) The number of free sectors available (not used) in each file.
Example 2-17: Listing the Catalog Index
5OLISTDCR
Statement 50 causes the system to list the contents of the Catalog Index from the ‘R’ disk plat-

ter. The ‘R’ platter was initialized in Example 2-3, and program files were written into the Catalog
in Examples 2-5, 2-7, and 2-8. The listing therefore looks like this:

INDEX SECTORS = 00024
END CAT. AREA = 01000
CURRENT END = 00132

NAME TYPE START END USED FREE

PROG#2 P 00051 00112 00062 00000
PROG#3 P 00113 00132 00020 00000
PROG#1 P 00024 00050 00027 00000

Figure 2-1. The Catalog Index Listing

There are several things which should be noticed about the information in this listing. Notice, first,
that all files are stored sequentially, in the order in which they were saved in the Catalog Area. The
Catalog Index occupies the first 24 sectors (sectors 0-23). The first file, PROG#1, is stored in the
first sector of the Catalog Area, the first available sector following the Index (sector 24). PROG#2
begins at the first available sector following PROG#1 (sector 51), and PROG#3 starts with the first
sector after PROG#2 (sector 113). Notice also, however, that the Catalog Index entries themselves
are not listed in sequential order. That is because entries in the Catalog Index are stored in a “hashed”
order, that minimizes the system’s search time for locating entries in the Index. (A disk utility program
is available that produces a listing in alphabetical order.)

You should observe, finally, that the USED column opposite each program name indicates the
number of sectors used by that program. In the cases so far discussed, the system automatically
used exactly enough sectors on the disk to store each program. Thus, notice that there are no unused
sectors listed under the FREE column for any of the programs. It is possible, however, to reserve a
number of sectors on the disk in addition to the number needed to store a program; the extra sectors
can be used subsequently for additions to the program. The technique for reserving extra sectors for
a program file is discussed in Chapter 4.

Displaying the Catalog Index in Steps with LIST S DC

If the Catalog Index contains a large number of entries, only the last entries can be conveniently
read when the Index is displayed on the CRT (the preceding entries will flash by on the screen too
quickly to be read). In this case, the Catalog Index listing can be displayed in sections by including the
‘S’ parameter in a LIST DC statement. The ‘S’ parameter is a somewhat unique parameter in that it
precedes ‘DC’ in the LIST DC statement (e.g., LIST § DC). The statement

LISTSDCR

causes the ‘R’ platter Index listing to stop when the CRT screen is full. Likewise, the statement
LISTSDC T/D11

causes the Index Listing on the D11 platter (Model 2280) to stop when the CRT screen is full.

In order to display the next section of the listing, the operator must key RETURN(EXEC). Note that
the LIST S DC statement is functionally similar to the LIST S statement, which displays the resident
program in sections.

2.9 AN OPTIONAL METHOD OF LOADING CATALOGED PROGRAMS
FROM DISK: THE “LOAD RUN” COMMAND

The LOAD RUN command provides a third method of loading cataloged programs from disk, in ad-
dition to the LOAD statement and LOAD command. Normally, RUN must be used to initiate execution
of a program entered from the keyboard, or loaded from disk with the LOAD command. The LOAD
RUN command, however, loads and immediately executes a program stored on disk. LOAD RUN pro-
vides a convenient means for the user to load and execute a menu program which can direct him to
the desired program.

The LOAD RUN command in effect produces an automatic combination of the following
operations:

1. CLEAR from memory all program text {including both common and non-common variables).
2. LOAD the named program from the designated platter.
3. RUN the program.

Example 2-18: Loading and Running a Cataloged Program with the LOAD RUN Command
LOAD RUN R “PROG#2"

This command causes the cataloged program PROG #2 to be loaded from the ‘R’ platter, and
automatically run. Prior to loading, memory is cleared.

In example 2-18 if neither the platter nor the disk address are specified in the LOAD RUN com-
mand, the ‘T’ platter parameter and the 310 disk address are assumed. (‘T indicates that the platter
is to be determined from the device address.) In addition, if no program name is specified, the system
recognizes the default file name “START” (since many initialization programs utilize the name
“START").

Example 2-19: Using the LOAD RUN Command with the Model 2280
LOAD RUN T/D13,"PROB#7"

This command causes the cataloged program PROB#7 to be loaded from the fixed platter
designated by the address D13, and automatically run.

Example 2-20: Loading and Running a Cataloged Program with the LOAD RUN Command
(Program “START” on Disk)

LOAD RUN

This command causes the cataloged program START to be loaded from the ‘T’ platter, and au-
tomatically run. If program START is not in the Catalog Index, error D82 (File Not In Catalog) is
signalled.

2.10 SAVING DATA FILES ON DISK
The Hierarchy of Data

Unlike a program file, which always contains only a single program or program segment, a data file
normally contains many different items of data. Obviously, it would be unwise to simply dump data
on the disk in a random or disorganized fashion since there would then be no efficient way to retrieve
specific items when they were needed. In order to facilitate fast, efficient retrieval of data from the
disk, data stored on disk is organized into a well-defined structure or hierarchy.

The hierarchy of data is organized in the following way: items of data relating to a single subject
(such as a particular customer, or a particular item in the inventory) are organized into a data record
(also known as a logical record); a number of related data records are then stored in a data file (in this
case, an inventory file or customer file). An inventory file, for example, would contain a number of in-
ventory records, each of which contains information about an individual item in the inventory {such
as model number, name, price, number in stock, etc.). Whenever a particular piece of information
about one of the items in the inventory is needed, the procedure is first to locate the inventory file,
and then to read the desired record from the file.

A number of different files can be established on disk or, less commonly, a single large file which
occupies the entire Catalog Area. Within each file, the individual records can be as long as necessary
(but each record must have a minimum length of at least one sector, unless special techniques are
used to block records in a sector). In catalog mode, the system automatically keeps track of where
each file is located on the disk. Usually, it is up to the programmer, however, to keep track of the loca-
tions of records within the file by using appropriate DSKIP and DBACKSPACE instructions (see Sec-
tion 2.16).

Because the system itself has no way of knowing how many records will be stored in a file, or how
long those records will be, it is up to the programmer to estimate how many sectors each file will re-
quire. The system must then be instructed to reserve adequate space for the file on a disk platter.
Thus, two steps are required to save data on the disk:

1. First, the data filke must be cataloged, or “opened” with a special statement, DATASAVE
DC OPEN. In this statement, the new data file is named, and the number of sectors to be re-
served for the file are specified. No data is actually stored in the file at this point.

2. Once the file is opened, data records can be stored in the file with the DATASAVE DC
statement.

2.11 OPENING A CATALOGED DATA FILE ON DISK:
THE “DATASAVE DC OPEN” STATEMENT

A data file is opened on the disk with a DATASAVE DC OPEN statement. In the statement, the fol-
lowing information must be provided:

1. The disk platter on which the data file is to be opened. This disk platter must have been ini-
tialized with a SCRATCH DISK statement (see Section 2.4).

2. The maximum number of sectors to be reserved for the data file. Take care that the file
does not extend beyond the limits of the Catalog Area.

3 The name of the data file. The file must be given a unique name of one to eight characters
in length, so that the system has some way of identifying it (embedded spaces in the name
count as characters). The name may be specified either as a literal string or as the value of
an alphanumeric variable.

When the DATASAVE DC OPEN statement is executed, the specified number of sectors are re-
served for the newly-opened file in the Catalog Area on the designated platter. The last sector of the
file is used by the system for a special control record which marks the absolute end of the file. No
data can be written in the file beyond that point. The file’'s name and location are also automatically
entered in the Catalog Index.

Example 2-21: Opening a Data File on Disk

150 DATASAVE DC OPEN F (100) “DATFIL-1"

Statement 150 instructs the system to reserve 100 sectors on the disk platter designated by ‘F’
and name this file “DATFIL-1". The file’s name (“DATFIL-1") and location are entered automati-
cally in the Catalog Index on the ‘F’ platter.

Example 2-22: Opening a Data File on a Model 2280 Disk Platter

100 SELECT #4/D11

200 DATASAVE DC OPEN T #4, (100) “FILE-2"

Statement 150 assigns the fixed platter address D11 to the #4 slot in the Device Table (See
Section 3.2). This procedure allows the data file “FILE-2" to be opened on the D11 platter via
statement 200. Statement 200 instructs the system to reserve 100 sectors on the D11 platter,

and name this file “FILE-2". The file’s name (“FILE-2") and location are entered automatically in
the Catalog Index of the D11 platter.

NOTE:

The system automatically allocates the last sector
in each data file exclusively for the system control
record. The system control record contains control
information and pointers used by the system in
maintaining the data file, and no data should be
stored in this sector. It is also generally desirable
to write an end-of-file trailer record in a data file
after all data has been 'stored; the trailer record
likewise occupies one sector which cannot be
used for data. Thus, it is always good program-
ming practice to reserve at least two more sectors
than are actually required for a data file in order to
account for the two sectors used for control infor-
mation and end-of file. For example, if you wish to
store 24 sectors of data in a file, you should
reserve at least 26 sectors (24 + 2) in the
DATASAVE DC OPEN statement.

If you executed a LIST DC statement following statement 150 in Example 2-21, the listing should
look like this:

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199

NAME TYPE START END USED FREE
DATFIL-1 D 00100 00199 00001 00099

Figure 2-2. Catalog Index Entry for DATFIL-1

One hundred sectors are reserved for DATFIL-1 (00100-00199), but despite the fact that no data
has yet been saved in the file, the USED column for DATFIL 1 indicates that one sector is already
occupied, and the FREE column indicates that only 99 sectors are available for use. The last sector in
the file, automatically set aside for system control information in DATFIL-1, cannot be used for data
storage. Thus, although 100 sectors were reserved for DATFIL-1, only 99 of those sectors can actu-
ally be used for data storage. If 100 sectors are needed for data, at least 101 must be reserved for
the data file.

NOTE:

Wang 2200 systems do not distinguish between
input files and output files in disk operations.
Thus, data can be either written in or read from a
file which has been opened with a DATASAVE DC

OPEN statement.

2.12 SAVING DATA IN A CATALOGED DATA FILE ON DISK:
THE “DATASAVE DC” STATEMENT

Once a data file has been opened on a disk platter, it is an easy matter to store data in that file with
a DATASAVE DC statement. In the DATASAVE DC statement, you must indicate only the data, or the
alpha or numeric variables or arrays containing the data, which is to be saved. Individual items must
be separated by commas. This information is known as the DATASAVE DC argument list. The
system automatically groups information from the argument list sequentially in a logical data record,
and stores this record sequentially in the currently open file on the disk.

Suppose, for example, that a group of 60 test results have been generated and must be stored in
DATFIL-1. Since DATFIL-1 was recently opened (Example 2-21), it is the currently open data file on
disk. Assuming that the 60 values are stored in an array A() which is dimensioned to contain 60 ele-
ments (i.e., DIM A (60)), the 60 values are written into DATFIL-1 simply by including the array name
followed by closed parentheses (e.g., A()) in the argument list of a DATASAVE DC statement, as in
Example 2-23:

Example 2-23: Saving Data in a Data File

160 DATASAVE DC A()

Statement 160 instructs the system to transfer all values from numeric array A() into the cur-
rently open data file on disk. Since, in this example, A() contains 60 numbers, and DATFIL-1 is
the currently open file, 60 numeric values are transferred from A() into DATFIL-1. Elements
from the array are transferred row by row and stored sequentially on the disk. Collectively, the
60 numeric values constitute one logical record on the disk.

If, after some data has been stored in DATFIL-1, a LIST DC F statement is executed, the Index looks
like this:

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199

NAME TYPE START END USED FREE

DATFIL-1 D 00100 00199 00001 00099

Figure 2-3. Catalog Index Entry for DATFIL-1

Notice that the USED and FREE columns have not yet been updated to reflect the newly stored data
in DATFIL-1. Since 28 full-precision numbers can be stored in one 256-byte sector, 60 such numbers
occupy only two entire sectors and a portion of a third. Thus, the USED column for DATFIL-1 should
read 00004, indicating that three sectors in DATFIL-1 have been used for data, in addition to the
single sector reserved for system information. Similarly, the FREE column should read 00096. Why is
this not the case?

The answer: The USED and FREE columns are updated only when an end-of-file record has been
written to the file. The end-of-file (or trailer) record tells the system, in effect, “No data is stored in
this file beyond this point.” With this information, the system can determine how many sectors in the
file are filled with data, and can update the USED and FREE parameters appropriately. A trailer record

2-17

is not written to the file automatically, however. It must be created by the programmer with a
DATASAVE DC END statement. The parameters for DATFIL-1 could be updated by following state-
ment 160 in Example 2-23 with a DATASAVE END statement, as shown in Example 2-24:

Example 2-24: Writing an End-Of-File (Trailer) Record to a Cataloged Data File on Disk with
DATASAVE DC END

170 DATASAVE DC END
Statement 170 instructs the system to write a trailer record into DATFIL-1.
If you now perform a listing of the Catalog Index, the Index looks like this:
INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENTEND = 00199

NAME TYPE START END USED FREE
DATFIL-1 D 00100 00199 00005 00095

Updated USED now shows one sector used
for file control, one sector for end-of-file
record, and three sectors for data record.

Figure 2-4. Updated Catalog Index Entry for DATFIL-1

As you can see, the USED and FREE columns are now updated. It is good programming procedure
to write a trailer record following every addition of new records to the file, so that it will always be
possible to tell how much of the file is filled, and how much space remains. However, it is not neces-
sary to write a trailer record after every DATASAVE DC statement; instead, a single DATASAVE DC
END statement can be used at the conclusion of file update routine.

Example 2-25: Writing a Data Trailer Record after a Series of DATASAVE DC
Statements

180 DATASAVE DC A()

190 DATASAVE DC B(), N,M(3)
200 DATASAVE DC A$,T$()
300 DATASAVE DC END

Statements 180-200.instruct the system to transfer data from the numeric and alphanumeric
variables, arrays, and array elements specified in the respective argument lists, and store this
data in the currently open data file (DATFIL-1) on disk. Statement 300 instructs the system to
write an end-of-file trailer record following the last data record in DATFIL-1, and update the
USED and FREE parameters for DATFIL-1 in the Catalog Index to indicate how many sectors
have been used and how many are still available.

2-18

In addition to updating the USED and FREE parameters for a file, there are three major advantages
to writing an end-of-file trailer record in a data file:

1. The trailer record makes it possible to skip to the end of stored data in a file in order to
write new records into the file. (See Section 2.17.)

2 The trailer record makes it possible to test for the end of stored data (last record) in a file
when reading through the file sequentially under program control. The IF END THEN state-
ment is used for this purpose. (See Section 2.18.)

3. The trailer record insures against accidentally reading beyond the last valid data record in a
file.

WARNING:

Never use the RESET button to terminate program
execution during a disk write routine. RESET
causes the disk to immediately terminate any oper-
ation and return the read/write head to the home
position, even if it is in the middle of writing a
sector. Thus, it is possible that a half-written
sector may be left in the file following a RESET op-
eration. Any subsequent attempt to read the half-
sector results in an error. To avoid this problem,
always use the HALT/STEP key if you wish to halt
program execution during a disk write routine.
HALT/STEP permits the disk to complete the
write operation for the current statement before
terminating the data transfer.

2.13 THE STRUCTURE OF DATA FILES

The discussion up to now has focused primarily on the mechanics of saving data on the disk; little
attention has been paid to the actual manner in which data is organized and stored by the system. It
will be helpful to consider this question briefly now (a more detailed discussion is reserved for the fol-
lowing chapter), prior to discussing the retrieval of data from a cataloged data file on disk.

The major concept to be understood in connection with data files is that of a logical data record. A
single logical record (or data record) is created in a file on the disk with each DATASAVE DC state-
ment. The logical record contains all of the data included in the DATASAVE DC argument list. For
example, the following statements might be used to open a cataloged data file and store one logical
data record in it:

10 DATASAVE DC OPEN F (200) “DATFIL-1"
20 DATASAVE DC “PETER RABBIT” 01121,B$,N,A()

Statement 10, as you know, opens DATFIL-1 on the F platter. Statement 20 creates one logical
record in DATFIL-1 containing all the data from the DATASAVE DC argument list. Notice that

2-19

there are several different types of data in the argument list. The first item is a literal string
“PETER RABBIT”. (Whenever a literal string is specified in a DATASAVE DC argument list, it
must be enclosed in quotes.) The second item, 01121, is a numeric value which need not be set
in quotes. The third item, B$, is an alphanumeric variable. The fourth, N, is a numeric variable,
and the fifth, A(), is a numeric array. Empty parentheses are used to indicate that the entire array
is to be saved. Each individual item in the DATASAVE argument list (including each array ele-
ment) is considered to be a single argument. Thus, if the array A() is dimensioned to contain
four elements, the DATASAVE DC argument list in statement 20 consists of a total of eight data
values.

When the DATASAVE DC statement is executed, the arguments are taken in sequence from the
argument list and stored in a logical record on the disk (if a two-dimensional array is included in the
argument list, the array elements are transferred row by row). Thus, if the following assignments are
assumed, the logical record created by statement 20 resembles the figure below.

B$ = “10O0AKDRIVE”
N = 2222
A(1) = 123
A(2) = 456
A8} = 789
Al4) = 100
B$ N A1) A(2) A(3) A(4)

9 J |
PETERRABBIT | 01121| 10 OAKDRIVE 2222| 123 | 466 | 789 100////

Figure 2-5. Logical Record Consisting of One Sector

The arguments saved in a logical record on disk are commonly referred to as fields within the
record. In the previous record, for example, “PETER RABBIT” is the first field in the record, while
‘100’ is the last field. It is important to note that when a logical record is read back into memory from
disk, each field must be read into a single variable or array element; it is never possible to read two or
more fields into a single variable or array element, even if the receiving variable or element is large
enough to contain more than one field. (The PACK and $PACK statements can be used to store sever-
al values in a single alpha variable which can be saved in a single field within a record. UNPACK and
$UNPACK convert a packed value into several values for a list of variables.} Note, too, that alpha-
numeric fields must be read back into alphanumeric variables or array elements, while numeric fields
must be read back into numeric variables or array elements.

In the present example, the logical record occupies somewhat less than one sector. Notice in Figure
2-5 that the remainder of the sector is unused. The remainder of the sector contains meaningless
data, which is ignored by the system (the system provides automatic safeguards against accidentally
reading this meaningless data when the catalog procedures are used). If another logical record is
created (with a second DATASAVE DC statement), the new record begins at the beginning of the
next sector. The remaining unused portion of the first sector is not used for the second record. A logi-
cal record always begins at the beginning of a sector. This is the case even if the logical record occu-
pies only a very small portion of a sector. For example, consider the statements:

2-20

10A =342
20B =100
30 DATASAVEDC A
40 DATASAVEDC B

Each of these statements creates a single logical record containing a single numeric value, and each
occupies an entire sector on the disk:

34.2 UNUSED 100 UNUSED
* 7 A\ ™ * /- -\ ™\

- AN A\

Figure 2-6. Two One-Sector Logical Records

Obviously, this is not a very efficient way to store data. It would surely be more efficient to store both
values in a single record, using a single DATASAVE DC statement:

20 DATASAVEDCA, B

On the opposite end of the spectrum, a single logical record can occupy several sectors - as many
sectors, in fact, as are required to store all the data in the DATASAVE DC argument list. The program-
mer need not be concerned about multiple sector records, since the system automatically appropri-
ates as many sectors as it needs to store a logical record.

Payroll files and inventory files are two examples of files which commonly contain multiple-sector
records. In such files, each record may be several hundred bytes in overall length, and may occupy
three or more sequential sectors. For example, a comprehensive inventory record might be made up
of three large arrays, A$(), B$(), and C$(), each 200 bytes in length:

10 DIM A$(4)50, B$(2,2)50, C$(2)100

200 DATASAVE DC A$(), B$(), C$()

The logical record created on disk by the DATASAVE DC statement at line 200 consists of three
consecutive sectors, and looks like this:

AS(1) A$(2) AS(3) AS(4)] |BS(1,1) B$(1,2) B$(2,1) B$(2,2)] [C$(1) C$(2)

Figure 2-7. Logical Record Consisting of Three Sectors.

Notice particularly that in sector #2 of this record, the two-dimensional array B$() is stored row by
row.

In addition to the user’'s data stored in each sector of a record, the system itself records several
bytes of control information. These control bytes are completely transparent to the user, but they
occupy storage bytes in the sector, and must be included when figuring the total number of sectors
required for a record of determinate length. The space allocation of data in sectors of a logical record
and the control bytes are explained in Chapter 4.

2-21

2.14 OPENING A SECOND DATA FILE ON DISK

Most applications require the maintenance of two or more data files on disk. An update operation
may require three files (old master, new master, and transaction file). The process of opening a
second, and subsequent, data file on disk is identical to that of opening the first. The DATASAVE DC
OPEN statement is used. For example, the following statement could be used to open a second data
file, named “DATFIL-2" on the ‘F’ platter:

250 DATASAVE DC OPEN F (500) “DATFIL-2"

However, it is important to note that in opening DATFIL-2, the system automatically closes
DATFIL-1, and DATFIL-2 now becomes the currently open file on disk. Any DATASAVE DC or
DATALOAD DC statement therefore automatically accesses DATFIL-2 instead of DATFIL-1. Chapter
3 introduces a technique for keeping more than one file open on disk at the same time. For the pre-
sent, however, it is assumed that only one file can be the currently open file at any given moment.

2.15 RE-OPENING A DATA FILE ON DISK: THE “DATALOAD DC OPEN” STATEMENT

After a data file has been created on disk with DATASAVE DC OPEN and subsequently “closed” by
opening a second file, the data in the original file can be accessed by re-opening the file with a
DATALOAD DC OPEN statement. DATALOAD DC OPEN is used to re-open an existing file irrespective
of whether existing data is to be read from the file, or additional data is to be stored in it. The
DATASAVE DC OPEN statement used to open a new file initially, cannot be used to re-open an exist-
ing file; any attempt to use this statement to re-open a file will result in an error.

In the DATALOAD DC OPEN statement, the system must be provided with the following
information:

1. The disk platter on which the file is cataloged.

2. The name of the file. The name may be specified as a literal string (“DATFIL-1") or as the
value of an alpha variable (A$ = “DATFIL-1").

When a DATALOAD DC OPEN statement is executed, the system searches the Catalog Index on
the designated disk platter for the specified file name. The file's location is then recorded in memory
for future reference to the file.

Example 2-26: Re-Opening a Cataloged Data File with DATALOAD DC OPEN
300 DATALOAD DC OPEN F “DATFIL-1"

Statement 300 causes the system to search the Catalog Index on the ‘F’ platter for the file name
“DATFIL-1". The file's location is then stored in memory for future reference.

Example 2-27: Re-Opening a Cataloged Data File on the Model 2280 with DATALOAD DC
OPEN

100 SELECT #4/D11
200 DATALOAD DC OPEN T #4, “PROB-2"

2-22

Statement 100 assigns the fixed platter address D11 to the #4 slot in the Device Table (see Sec-
tion 3.2). Statement 200 causes the system to search the Catalog Index on the D11 platter for
the file name “PROB-2". The file’s location is then stored in memory for future reference.

Of course, the file name specified in the DATALOAD DC OPEN statement must be the name of a
data file currently cataloged on the specified disk platter. If the system cannot locate the file name in
the Catalog Index, an error is signalled.

Example 2-28: Attempting to Re-Open a Non-Cataloged Data File
300 DATALOAD DC OPEN F “DOTFIL-1"
TERR D82

Statement 300 attempts to re-open a data file whose name is not listed in the Catalog Index of
the platter. Since “DOTFIL-1" is not identical to “DATFIL-1" Error D82 (File Not In Catalog) is
signalled.

Once a file has been re-opened with a DATALOAD DC OPEN statement, it is possible both to store
new data in the file (with a DATASAVE DC statement), and to read existing data from the file (with a
DATALOAD DC statement); see Section 2.16.

2.16 RETRIEVING DATA FROM A CATALOGED DATA FILE
ON DISK: THE “DATALOAD DC” STATEMENT

Data stored on a disk has little value if it cannot be located and read back into memory for analysis
and processing. In Catalog mode, data is read from a currently open file on disk with a DATALOAD
DC statement. When loading data from the disk into memory, you must tell the system which varia-
ble(s) and/or array(s) in memory are to receive the data. The list of receiving variables and arrays is
specified in a DATALOAD DC statement, and is known as the argument list for that statement. The
system reads one or more logical records from the currently open file on disk (if no file is currently
open, an error is signalled), and sequentially stores the data in the variable(s) and array(s) specified in
the argument list. The system continues to read data from the file until all variables in the argument
list have been filled, or until there is no more data remaining in the file. If the argument list contains
more receiving variables than there are fields in a record, the first fields of the next sequential record
are automatically read to satisfy all unfilled variables. The remainder of the second record is then read
and ignored. If only the first few fields in a record are read (i.e., if the argument list contains fewer re-
ceiving arguments than there are fields in the record), the remainder of the record is read but ignored.

Example 2-29: Reading Data from a Cataloged Data File with DATALOAD DC

310 DIM B(60)
320 DATALOAD DC B()

At line 310 a numeric array B() is dimensioned to hold 60 elements. At line 320, the system is in-
structed to load 60 numeric values from the currently open file on disk into array B().

It is important to recognize that the guantity of data read by a DATALOAD DC statement is deter-
mined solely by the number of receiving arguments in the DATALOAD DC argument list, and not by
the length of a logical record in the file. DATALOAD DC reads exactly enough data to satisfy its argu-
ment list, whether that means reading only a portion of one record, more than one record, or exactly
one record.

2-23

If the DATALOAD DC argument list requires less than an entire logical record, the remaining
unused data in the record is read but ignored, and the system ends up positioned at the beginning of
the next logical record. This is true even for multi-sector records: if only the first sector of a multi-
sector record is read, the remaining sectors are skipped, and cannot be retrieved unless the entire
record is reread. The next DATALOAD DC statement automatically begins reading with the next
sequential logical record.)

Example 2-30: Reading Less Than One Logical Data Record with DATALOAD DC
10 DIM A$(4)50, B$(2,2)50, C$(100)

;10 DATASAVE DC OPEN F (100) “DATFIL-1"
50 DATASAVEDC AS$(),BS$(), C$()

éOO DATALOAD DC OPEN F “DATFIL-1"
210 DATALOAD DC AS()

In this example, a record consisting of three sectors (600 bytes) is written at line 50. At line 210,
a DATALOAD DC statement reads only 200 bytes of data (the first sectors) from this record.
The remaining two sectors of the record are ignored, and the system is positioned at the begin-
ning of the next logical record in DATFIL-1.

If, on the other hand, the DATALOAD DC argument list requests more than an entire logical record,
data is appropriated from the next sequential logical record to satisfy the argument list. In this case as
in the preceding case, if only a portion of the second record is read, the remaining unread portion is ig-
nored, and the system is positioned at the beginning of the third logical record.

Example 2-31: Reading More Than One Logical Data Record with DATALOAD DC
10 DIM A$(5), B$(5)

40 DATASAVE DC OPENF (100) “DATFIL-1"
50 DATASAVEDC AS$()
60 DATASAVEDC B$()

200 DATALOAD DC OPEN F “DATFIL-1"
210 DATALOADDC AS$(), B$()

A pair of logical records, the first containing A$() and the second B$(), are written into
DATFIL-1 at lines 40 and 50. At line 210, both logical records are read back into memory by the
same DATALOAD DC statement.

While the versatility of the DATALOAD DC statement may be important for specialized access rou-
tines, it is generally good programming procedure to read back exactly one logical record with each
DATALOAD DC statement. To accomplish this, the DATALOAD DC argument list used to read a
record must correspond to the DATASAVE DC argument list used in writing the record. It is not re-
quired that the two argument lists be identical, however: the only requirement is that the same
number of fields be read as were written in the record initially. For example, the record created with
the statement

2-24

50 DATASAVE DC A$, B$, C$, D$
might be read with the statements

200 DIM F$(4)
210 DATALOAD DC F$()

In this case, the original content of A$ is returned to F$(1), of B$ to F$(2), of C$ to F$(3), and of D$
to F$(4).

Similarly, the record created by the statements

10 DIM A$(4)

50 DATASAVE DC A$()
could be read with the statement
200 DATALOAD DC B$, C$, D$, ES

There are however, several rules which govern the lengths and types of receiving arguments in the
DATALOAD DC argument list:

1. Only one field (value) in a record can be returned to each receiving argument in the
DATALOAD DC argument list. This rule holds true even if the receiving argument is dimen-
sioned large enough to hold two or more fields. For example, assume a record containing
two fields is stored on disk:

10 DIM A$3, B$3
20 A$ = “ABC” :B$ = “EFG”
30 DATASAVE DC A$, B$

Subsequently, an attempt might be made to read this record with the statements

200 DIM C$6
210 DATALOAD DC C$

The result of this operation, however, is that C$ = “ABC “. The second field, EFG, is not read
into C$, despite the fact that C$ is large enough (6 bytes) to store both ABC and EFG.

2. If, as in the preceding case, a character string is shorter than the length of the receiving al-
phanumeric argument in which it is stored, the remaining unfilled bytes of the argument are
initialized to contain blanks. For example, a single field consists of the three characters
ABC, and the following statements are executed to read it:

200 DIM C$6
210 DATALOAD DC C$

The result is that the first three bytes of C$ contain the letters ABC, and the last three bytes con-
tain blanks.

2-25

3. If, on the other hand, a character string is longer than the length of the alpha argument in
which it is stored, the value is truncated, and the excess characters are lost. For example, a
single field consists of the six characters ABCDEF, and the following statements are execut-
ed to read it:

200 DIM C$3
210 DATALOAD DC C$

The result is that C$ contains the characters ABC. The remaining three characters in the string
are lost. (They remain, of course, in the record on disk.)

4. Numeric values must be returned to numeric receiving arguments. Alphanumeric values
must be returned to alpha arguments; attempts to store an alpha value in a numeric argu-
ment generate an Error X74 (Wrong Variable Type) and terminate program execution. For
example, a record might be created consisting of one numeric and one alphanumeric field:

10 A$ = “ABC”
20N =1234
30 DATASAVE DC A$, N

This record could be retrieved with a statement of the form

200 DATALOAD DC A3, X

However, a statement of the form
200 DATALOAD DC M,N

will generate an Error X74, since the alphanumeric value ABC cannot be returned to a numeric -
variable (M).

2.17 SKIPPING AND BACKSPACING OVER LOGICAL RECORDS IN A CATALOGED
DATA FILE: THE “DSKIP” AND "DBACKSPACE” STATEMENTS

An existing data file on the disk is generally re-opened (with a DATALOAD DC OPEN statement) for
one of three reasons:

1. Toread data from the file.
2. To store additional data in the file.
3. To change or update existing data in the file.

In any of these three cases, it is usually necessary to access one or more specific logical records

within the file. Two catalog statements, DSKIP and DBACKSPACE, enable you to move through a file
and access particular records within the file.

2-26

The use of DSKIP and DBACKSPACE can be illustrated by considering a file which consists of
several logical records:

400 DATASAVE DC OPEN F (50) “TEST-1"
410 DATASAVEDC A()

420 DATASAVE DC B()

430 DATASAVEDC C()

440 DATASAVE DC D()

450 DATASAVEDC E()

460 DATASAVE DC END

This file, named “TEST-1" occupies 50 sectors on the ‘F’ platter. Five logical records (statements
410-450) have been stored in TEST-1, and a trailer record has been written following the last logical
record. Assuming that each logical record consists of two sectors, the five records occupy ten sectors
(see Figure 2-8).

One Sector
Yt
N / N _/ - _/ . — ~ _____/
g " N ' "
Record #1 Record #2 Record #3 Record #4 Record #5

Figure 2-8. Logical Records in TEST-1

Suppose, now, that TEST-1 is closed and subsequently re-opened with a DATALOAD DC OPEN
statement. When the file is re-opened, the system automatically positions itself at the beginning of
the file. In order to access any record other than record #1, you must instruct the system to skip
ahead through the file to the desired record. You can skip over logical records in a data file with a
DSKIP statement. In the DSKIP statement, you must tell the system how many records to skip. Sup-
pose, for example, you wish to read record #3 in the file. Since the system is currently positioned at
record #1, it is necessary to skip two records. (See Figure 2-9)

File

Begins One

Here Sector

V— —

A — RN /. — -’

v ' 7 Y A

Record #1 Record #2 Record #3 Record #4 Record #5

This is where .. .But this

the system is is where you

now. . . » want it to be.

Figure 2-9. Skipping over Logical Records in a Data File

2-27

Example 2-32: Skipping over Logical Records in a Data File on a Model 2280 Platter

460 SELECT #2/D12
470 DATALOADDC OPEN T #2, “TEST-1"
480 DSKIP 2

Statement 470 re-opens TEST-1 on the D12 platter. The system is positioned at the beginning
of the file. Statement 480 instructs the system to skip two logical records (records #1 and #2),
and reposition itself at the beginning of record #3. A DATALOAD DC statement such as

490 DATALOAD DC C{)

now loads record #3 from the file into memory.

Notice that the number supplied in the DSKIP statement specifies how many logical records are to
be skipped (remember that each logical record was created by a single DATASAVE DC statement). it
does not matter how many sectors are contained in each logical record (record #1 might contain five
sectors, for example, while record #2 contains ten, etc.). Be sure, however, that the argument list of
the DATALOAD DC statement which is used to load a record is identical to the argument list of the
DATASAVE DC statement which originally created the record.

After a logical record has been loaded, the system is positioned at the beginning of the next logical
record. Suppose that you now want to load and check logical record #1 from TEST 1. Since the
system is currently positioned at the beginning of record #4 (having just loaded record #3), you must
backspace three logical records (see Figure 2-10). You can do so with a DBACKSPACE statement.

File One
begins Sector
hfre A
N - v . - J A\ ~ _J/ N - _/ (. —_ /
Record #1 Record #2 Record #3 Record #4 Record #5
... But this is This is where the
where you want system is
it positioned. positioned now. . .

Figure 2-10. Backspacing over Logical Records in a Data File

Example 2-33: Backspacing over Logical Records in a Data File

500 DBACKSPACE 3

Statement 500 causes the system to backspace over three logical records in the currently open
file (TEST-1) on disk. Since the system is currently positioned at the beginning of record #4, itis
repositioned to the beginning of record #1 following statement execution. Record #1 can now
be loaded with a DATALOAD DC statement such as

510 DATALOAD DC A()

2-28

It is possible to backspace to the beginning of a file from any point in the file with a DBACKSPACE
BEG statement. In Example 2-33, for example, it would have been just as easy to access record #1 by
backspacing to the beginning of the file and executing statement 510.

Example 2-34: Backspacing to the Beginning of a Cataloged Data File
500 DBACKSPACE BEG

Statement 500 instructs the system to backspace from its current position in the file to the
beginning of the file (i.e., the beginning of the first record of the file).

in order to store additional data in a file which has just been re-opened, it is necessary to skip to the
current end of the file (that is, the end of all currently-stored data in the file) and begin saving the new
data at that point. This can be done with a DSKIP END statement, if the current end of file is marked
by an end-of-file trailer record (written with DATASAVE DC END). If no end-of-file trailer record has
been written in the file, however, an ERROR D87 (No End of File) is returned following execution of
the DSKIP END statement. The DSKIP END statement locates the end-of-file trailer record, and reposi-
tions the system at the beginning of the trailer record in the file. A new data record can then be saved
over the trailer record, and a new trailer record written to mark the new end of the file.

Example 2-35: Skipping to the End of a Cataloged Data File
520 DSKIP END

Statement 520 instructs the system to skip to the current end of the currently open data file on
the disk (TEST 1). A trailer record must have been written in the file with a DATASAVE DC END
statement (statement 460) following the most recent DATASAVE statement (statement 450);
otherwise, an ERROR D87 is returned. After the DSKIP END statement is executed, the system is
positioned at the beginning of the trailer record in the file. A new data record can be saved over
the trailer record, and a new trailer record written in the file, with the following statements:

530 DATASAVE DC F()
540 DATASAVE DC END

2.18 TESTING FOR THE END-OF-FILE

The presence of an end-of-file (EOF) trailer record in a file makes it possible to test for an end-
of-file condition when reading the file. The end-of-file test is made with the IF END THEN statement,
which initiates a program branch to a specified line number when the EOF record is read. This tech-
nique enables the programmer to construct a loop which will read and process data from a file
sequentially, independent of the number of records in the file. When the EOF record is read, the read-
and-process routine is terminated, and program execution resumes at another point in the program.

Example 2-36: Testing for the End-Of-File Condition in a Cataloged Data File
600 DATALOAD DC OPENF “TEST-1"

610 DATALOAD DC A$(), B$(), C$()
620 IF END THEN 700

(process data from A$(), B$(), C$())

660 GOTO 610
700 STOP

2-29

Statement 600 opens the file TEST-1, and statement 610 loads a logical record from that file
into the arrays A$(), B$(), and C$(). Statement 620 then tests for the data trailer record signify-
ing that the last data record in the file has been read. If this is the case, the program jumps to
statement 700 and stops. If it is not the case, the data loaded into the three arrays is processed
until, at statement 660, the system is instructed to loop back and load in another record.

Three important points must be noted regarding the EOF testing procedure:

1.

The file being read must have an EOF record as the trailer record. (Produced by the
DATASAVE DC END statement.)

The EOF record is not transferred into the DATALOAD DC argument list when it is read
with a DATALOAD DC statement. Detection of the EOF record invokes a special routine
which stores the EOF data in a special section of memory reserved for system use. The con-
tents of the DATALOAD DC argument list are therefore unchanged following retrieval of
the EOF, and still contain the values read from the last data record. The EOF record itself is
inaccessible to the programmer in catalog mode.

Following a read of the EOF record, the system automatically moves itself back one sector,
and ends up positioned at the beginning of the EOF record rather than at the beginning of
the next sequential sector. This feature enables the programmer to immediately begin
saving additional records in the file by writing over the EOF record. A new EOF record
should, of course, be written following the last new data record.

2.19 SCRATCHING UNWANTED FILES

A data file or program file which has outlived its usefulness presents certain problems to the pro-
grammer. In the first place, such files hold the potential for disaster if the operator should inadvertent-
ly read and process data from an obsolete data file, or load and run an obsolete program. In the
second place, obsolete files occupy valuable disk space which the programmer will surely want to
reuse. The SCRATCH statement provides solutions to both of these problems.

The SCRATCH statement sets the status of the named file to a scratched condition. A scratched
file is not physically removed from the disk. The file’'s name and location remain listed in the Catalog
Index, but the file is flagged as a scratched file. A scratched file has two significant characteristics:

1.

A scratched data file cannot be re-opened with DATALOAD DC OPEN, and a scratched pro-
gram file cannot be loaded into memory with LOAD or LOAD RUN. The danger of acciden-
tally accessing a scratched file is therefore removed.

A scratched file can, however, be renamed and re-opened with a DATASAVE DC OPEN or
SAVE statement. In this case, a new file is created in the space previously occupied by the
scratched file. The procedure for renaming a scratched file is covered in Chapter 4.

When a disk platter is backed up by copying it to another platter with a MOVE command,

all scratched files are automatically removed. This provides the overall capability of freeing
all scratched disk space in a contiguous manner.

2-30

Example 2-37: Scratching Unwanted Files
750 SCRATCHF “PROG1” “TEST1”

Statement 750 sets the status of the program file PROG1 and the data file TEST1 to a
scratched condition. PROG1 cannot be loaded into memory with a LOAD statement, and TEST1
cannot be opened to load or save data with a DATALOAD DC OPEN statement. New files can be
stored in the space occupied by PROG1 and TEST1, however. (Refer to Chapter 4 for a discus-
sion of how to re-use the space occupied by scratched files.)

If a LIST DC F statement is executed following statement 750 in Example 2-37 above, the Catalog
Index listing looks like this:

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00269

NAME TYPE START END USED FREE
These files DATFIL1 D 00100 00199 00002 00098
are TEST1 SD 00200 00249 00001 00049
scratched PROG1 SP 00250 00269 00020 00000

Figure 2-11. The Catalog Index Showing Scratched Files

Notice that under “TYPE” PROG1 reads “SP” and TEST1 reads “SD”. The “S” signifies that each file
has been scratched.

The disk space occupied by scratched files can be reused in two ways. Firstly, the MOVE statement
can be used to copy the entire catalog onto a second platter, automatically deleting all scratched files
in the process. MOVE is discussed in the following section. Secondly, individual scratched files can
be renamed and their locations reused by new files with a DATASAVE DC OPEN or SAVE statement.
The process of renaming and reusing scratched file space is covered in Chapter 4.

2.20 MAKING BACKUP COPIES OF CATALOGED FILES: THE “MOVE"” STATEMENT

MOVE and COPY operations allow the transfer of information (platter-to-platter) between separate
platters of a single disk unit or between separate disk units. In general, the discussion of disk state-
ments and commands which follows applies across the board to all disk models (except 2270A
when using IBM type diskettes), since all 2200 series disks share the same BASIC instruction set.

Backing Up Disk Files

It is important that backup copies of all valuable disk files be regularly maintained. Disk platters, like
other storage media, are subject to wear given excessive use, and there is always the possibility of
accidental damage or destruction. The effects of a data loss due to accident or wear can be disastrous
unless backup platters have been maintained; the cost of buying, storing, and regularly updating
backup platters is therefore more than offset by their potential value in the event of such a
catastrophe.

2-31

The frequency with which backup copies of an individual file must be created differs from case to
case and is determined by the degree of activity of the file and the method of updating it. In a typical
commercial application, transactions are accumulated over a definite period in a separate transaction
file, and posted as a batch to the master file at the end of the period. A completely new master file is
created (usually on a separate platter) as a result of the batch posting operation. In this case, it is a
good rule of thumb to retain the most recent “generation” of the master file (the original master file)
as a backup for the new master file. The transaction file may or may not be retained, depending upon
the degree of difficulty involved in reproducing it.

When the update process involves recreation of the master file on a separate platter, the old
master file serves as an automatic backup. In many cases, however, a file's degree of activity does
not warrant a batch processing approach. Relatively inactive files (inventory files are a common exam-
ple) often require so few updates during the course of a monthly or quarterly period that it is simply
inefficient to reproduce the entire file in the process of posting a handful of changes. Updates to such
files are frequently done “in place” in the original file, with the result that a separate copy of the
master file is not produced. A copy operation is required in this situation to backup the master file on
a second disk platter. The MOVE statement can be used for this purpose.

The MOVE statement has the capability to copy an individual cataloged file onto a separate platter
(if the file name is specified), or to copy the entire contents of the catalog onto a second platter (if no
individual file name is specified). In the latter case, MOVE performs the additional function of deleting
all scratched files from the catalog when it is copied to the new platter.

MOVE effectively has two separate forms:

Form #1 - if the MOVE statement includes no reference to a specific file name, the entire
catalog (including the Catalog Index and Catalog Area) is copied from the origin
platter to the destination platter, and scratched files are deleted.

Form #2 - if a specific file name is referenced in the MOVE statement, that file is copied
from the catalog on the origin platter to the catalog on the destination platter.

Moving the Entire Catalog (Form #1 of MOVE)

In Form #1 of the MOVE statement, no file name is specified. The absence of an individual file
name indicates that the entire catalog is to be moved. This form of MOVE performs the following
functions:

1. Creates a backup copy of the entire catalog on a second platter

2. Eliminates all scratched files from the backup catalog, and rearranges still-active files to fill
the available space, thus making more efficient use of the Catalog Area and Catalog Index
on the second (destination) platter.

The MOVE statement copies the entire catalog from the origin platter to the destination platter,
removing all scratched files from the Catalog Area and deleting scratched file names from the Catalog
Index in the process. After all scratched files are removed, all remaining active files are moved up to
fill the vacated sectors in the Catalog Area, and the Catalog Index is revised to reflect the files’ new
positions in the Catalog Area.

The only requirement of the second (destination) platter is that it be formatted. The destination

platter may be in the same disk unit as the origin platter, or in a separate disk unit on the same
system. The user is not required to set up a catalog on the destination platter with SCRATCH DISK,

2-32

since the MOVE statement automatically establishes a Catalog Index and Catalog Area on the destina-
tion platter identical in size to the originals, before it begins copying files. The sizes of the Catalog
Index and Catalog Area are therefore not altered by MOVE.

Note that Form #1 of the MOVE statement is non-destructive for the origin platter, but destructive
for the destination platter. The original catalog is not altered by the MOVE operation; all of its files
(including all scratched files) remain exactly as they were prior to the MOVE. Information already
recorded on the destination platter is destroyed when the catalog is copied on that platter, however,
unless it is outside the range of the Catalog Area. For example, if the END sector of the Catalog Area
is 1000, sectors 0-1000 on the destination platter are overwritten and destroyed when the catalog is
moved. Sectors from 1001 onward on the destination platter are unaffected by the MOVE, however.

Example 2-38: Moving the Catalog from One Platter to Another, and Deleting Scratched
Files with MOVE

450 MOVEF TOR

Line 450 copies the contents of the catalog from the ‘F’ platter to the ‘R’ platter, automatically
squeezing out all scratched files (see Figure 2-12).

Example 2-39: Moving the Catalog and Deleting Scratched Files with MOVE Statement on
the Model 2280

350 MOVE T/D12, TO T/D10,

Line 350 copies the contents of the catalog from the fixed platter designated D12 to the
removable platter (D10), automatically squeezing out all scratched files.

Original Catalog on F Platter
INDEX SECTORS = 00024

END CAT. AREA = 01023
CURRENTEND = 00089

NAME TYPE START END USED FREE

DATA-L1 P 00067 00070 00004 00000
2231W P 00077 00079 00003 00000
XPRINT P 00080 00082 00003 00000
JUNK D 00030 00039 00009 00001
FLIPS SP 00027 00029 00003 00000
PASCAL P 00024 00026 00003 00000
INVTORY D 00046 00055 00005 00005
CREATE P 00056 00059 00004 00000
INVTY-P P 00071 00073 00003 00000
FLIPS-1 P 00083 00086 00004 00000
CREATE-1 P 00060 00063 00004 00000
DATA-S1 P 00064 00066 00003 00000
DATA-S SP 00040 00042 00003 00000
2221W-B P 00074 00076 00003 00000
DATA-L SP 00043 00045 00003 00000
ABCDEF P 00087 00089 00003 00000

2-33

New Catalog on R Platter

INDEX SECTORS = 00024
END CAT. AREA = 01023
CURRENT END = 00089

NAME TYPE START END USED FREE

DATA-L1 P 00024 00027 00004 00000
2231W P 00028 00030 00003 00000
XPRINT P 00031 00033 00003 00000
JUNK D 00034 00043 00009 00001
PASCAL P 00044 00046 00003 00000
INVTORY D 00047 00056 00005 00005
CREATE P 00057 00060 00004 00000
INVTY-P P 00061 00063 00003 00000
FLIPS-1 P 00064 00067 00004 00000
CREATE-1 P 00068 00071 00004 00000
DATA-S1 P 00072 00074 00003 00000
2221W-B P 00075 00077 00003 00000
ABCDEF P 00078 00080 00003 00000

Notes: 1) 1000 sectors were originally reserved in the catalog area with SCRATCH DISK F END =
1023.

2) Programs ‘FLIPS’ ‘DATA-S’ and ‘DATA-L’ were scratched with SCRATCH F “FLIPS”
"DATA-S"” “DATA-L".

Figure 2-12. Original Catalog and Copied Catalog Following a MOVE,
Showing Scratched Files Deleted

NOTE TO MODEL 2270-3
AND 2270A-3 USERS

Moving a catalog to or from the third drive of a
triple removable diskette drive calls for use of the
'F’ parameter and the disk device address 350.
The following statement moves a catalog from
the first platter to the third in a triple drive unit:

500 MOVE F/310, TO F/350,

For Model 2260 and 2270 Series operations, if the origin and destination platters are located in
separate disk units, the appropriate disk device addresses must also be specified.

Example 2-40: Moving the Catalog from One Disk Unit to Another with MOVE
560 MOVER /310, TOR /320,

Line 550 causes the catalog to be moved from the ‘R’ platter in the disk unit with address 310
to the ‘R’ platter in the disk unit on the same system with address 320. Scratched files are, of

course, deleted.

2-34

Because address 310, the default address, is assumed if no address is specified, it need not be
referenced explicitly. For example, line 550 could be rewritten as follows:

550 MOVE R TO R /320,

In this case, the address syntax /310 preceding “TO"” is assumed, and the statement functions exactly
as described in Example 2-40.

Moving Individual Cataloged Files (Form #2 of MOVE)

If an individual file name is specified in a MOVE statement, the named file is copied from the origin
platter to the destination platter. In this case, MOVE does not initialize a catalog on the destination
platter; the catalog must be initialized by the user (with SCRATCH DISK) prior to attempting the
MOVE. MOVE simply copies the named file from the Catalog Area on the original catalog to the Cata-
log Area on the destination platter, and enters the file name in the Catalog Index on the destination
platter. If the destination platter does not have a catalog or if the catalog is not large enough to ac-
commodate the file to be moved, an error is signalled, and the MOVE is aborted.

Example 2-41: Moving a Named Cataloged File from One Platter to Another with MOVE
250 MOVE F “PROG#1” TOR

Line 250 copies the cataloged file PROG#1 from the catalog on the ‘F’ platter to the catalog on
the ‘R’ platter. The file is recorded in the next sequential available location in the Catalog Area on
the ‘R’ platter, and its name (“PROG#1 ") is inserted in the ‘R’ platter’'s Catalog Index.

Example 2-42: Moving a Named Cataloged File from One Model 2280 Platter to Another
with MOVE

200 MOVE T/D15, “PROB#8"” TO T/D13,

Line 200 copies the cataloged file “PROB#8" from the catalog of the D15 platter to the catalog
of the D13 platter. The file is recorded in the next sequential available location in the Catalog
Area on the D13 platter, and its name (“PROB#8") is inserted in the D13 platter's Catalog Index.

As with Form #1 of MOVE, Form #2 can be used to copy a file from platter to platter within the
same disk unit, or from one disk unit to another on the same system.

Example 2-43: Moving a Named Catalog File from One Disk Unit to Another with MOVE
(Model 2260 and 2270 Series)

270 MOVE R /320, “PROG#2” TO F /310,

Line 270 copies the cataloged file PROG#2 from the ‘R’ platter of the disk unit with address
320 to the ‘F’ platter of the disk unit with address 310.

If Form #2 of MOVE is used to copy a single file, the user also has the option to expand the size of
the file when it is copied to the destination platter. A numeric expression, enclosed in parentheses
and immediately following the destination platter parameter in a MOVE statement, informs the
system that additional sectors are to be reserved for the file when it is copied in the Catalog Area on
the destination platter. The truncated value of the expression indicates the number of additional sec-
tors to be reserved.

2-35

Example 2-44: Copying a Single Named Cataloged File from One Platter to Another with
MOVE (Additional Sectors Reserved)

390 MOVER “DATFIL1” TOF (10)
Line 390 causes the file DATFIL1 to be copied from the catalog on the ‘R’ platter to the catalog

on the ‘F’ platter. The numeric value ‘10’ in parentheses following the destination platter ‘F’ indi-
cates that 10 additional sectors are reserved for DATFIL1 when it is copied on the “F” platter.

NOTE:

A file may never be compressed when it is moved
to the destination platter. Negative values of the
numeric expression are illegal.

2.21 TESTING THE VALIDITY OF DISK SECTORS: THE “VERIFY” STATEMENT

Its reliability as an external storage device is an important feature of the disk drive, and this reliabili-
ty is augmented by the automatic redundancy checks performed by the system, as well as by the op-
tional read-after-write check specifiable by the programmer. Despite these safeguards, however,
there are cases where it is desirable to be able to test particular sectors directly, with a special state-
ment. The VERIFY statement provides such a capability.

VERIFY performs a Cyclic Redundancy Check (CRC) and Longitudinal Redundancy Check (LRC) on
each specified sector. A CRC checks the recording of data in each sector while the LRC checks the
transfer of data between the CPU and the disk processing unit. The checks performed by VERIFY are
particularly useful immediately following a MOVE, when they can be employed to verify the accuracy
of the data copied to the destination platter. VERIFY also is a useful diagnostic tool for testing a plat-
ter which has been causing read/write problems, or for checking the data already recorded on a plat-
ter prior to accessing it. Many programmers verify important platters regularly at the beginning of
daily operation. The CRC and LRC checks performed by VERIFY provide a means of detecting record-
ing errors immediately after recording rather than at some later time.

VERIFY, like MOVE, is a single statement with two alternative forms:

Form #1 - No receiving variable specified in the VERIFY statement. In this case, VERIFY
checks the entire range of specified sectors, displaying error messages for all
sectors which do not verify.

Form #2 - Receiving variable included in VERIFY statement. In this case VERIFY checks the
specified range of sectors until it encounters an invalid sector. At that point, the
VERIFY operation terminates, and the receiving variable is set to the address of
the next sequential sector following the invalid sector. No error message is dis-
played. If all sectors verify correctly, the receiving variable is set to zero.

Form #1 of VERIFY (No Receiving Variable Specified)
If the VERIFY statement does not include a receiving numeric variable, Form #1 is assumed.
Form #1 causes the system to verify a specified range of sectors on a designated platter, automati-

cally displaying error messages for any sectors which do not verity.

2-36

Error messages are of the form:
ERROR IN SECTOR 995

The programmer may specify the range of sectors to be verified by including the starting and
ending sector addresses in the VERIFY statement. All sectors between and including the specified
sectors are verified.

Example 2-45: Verifying a Specified Range of Sectors with VERIFY (Form #1)
300 VERIFY R (0, 1000)

Line 300 instructs the system to verify sectors #0 through #1000 on the ‘R’ platter. The entire
1001 sectors are verified, and an error message is displayed or printed for each sector which
does not verify.

VERIFY is typically used to check the catalog on the destination platter following a MOVE or COPY
(see Section 6.6). In this case, the starting and ending sector addresses are omitted; the system auto-
matically verifies up to the current catalog end, beginning with section #1 (first sector of the catalog
index), and ending with the current catalog end. Note that if the sector address parameters are omit-
ted and VERIFY is instructed to check a platter which does not contain a catalog, the system either
displays an error message and aborts the VERIFY operation, or it may verify arbitrary sectors.

Example 2-46: Verifying the Catalog with VERIFY (Form #1) (Model 2260 and 2270 Series)

250 MOVEFTOR
260 VERIFY R

Line 250 copies the catalog from the ‘F’ platter to the ‘R’ platter. Line 260 verifies the new cata-
log on the ‘R’ platter. Because no sector addresses are included in the VERIFY statement, all sec-
tors up to and including the current catalog end are automatically verified. Each invalid sector
produces an error message on the Console Output device.

Example 2-47: Verifying the Catalog with VERIFY (Form #1) (Model 2280 Series)

160 MOVE T/D14, TO T/D10,
200 VERIFY T/D10,

Line 150 copies the catalog from the D14 fixed platter to the D10 removable platter. Line 200
verifies the new catalog on the D10 platter.

Form #2 of VERIFY (Receiving Variable Specified)

If a receiving numeric variable is included in a VERIFY statement, form #2 is assumed. In form #2,
VERIFY continues checking sectors either until all sectors verify correctly, or until the first invalid
sector is encountered. If all sectors verify successfully, the receiving variable is set equal to zero. As
soon as an invalid sector is found, however, the VERIFY operation terminates at that point, and sets
the receiving variable equal to the sector address of the next sequential sector (i.e., the first sector fol-
lowing the invalid sector). For example, if an error is discovered in sector #100, VERIFY action is
halted, and the receiving variable is set equal to 101. No error message is displayed.

Because form #2 of VERIFY terminates at the first erroneous sector, the VERIFY operation must be

resumed under program control at the next sequential sector (whose address is stored in the receiving
variable) if the remaining sectors are to be verified. This form of VERIFY is particularly useful for diag-

2-37

nostic routines, because it permits the programmer to test for and react to the detection of an invalid
sector under program control, without necessarily disturbing the current display on the CRT screen.

Example 2-48: Verifying a Specified Range of Sectors with VERIFY (Form #2) - Model 2260
and 2270 Series

500 VERIFY R (O, 1000} N

In line 500, ‘N’ is the specified receiving variable. VERIFY checks sectors #0 through #1000; if
all 1001 sectors verify successfully, N = O at the conclusion of statement execution. If, however,
a bad sector is discovered, ‘N’ is set equal to the address of the next sequential sector following
the invalid sector, and the VERIFY operation is terminated at that point.

Example 2-49: Verifying a Specified Range of Sectors with VERIFY (Form #2) - Model 2280
Series

400 VERIFY T/D13, (0, 2500) E

In line 400, 'E’ is the specified receiving variable. VERIFY checks sectors #0 through #2500 on
the D13 fixed platter; if all 2501 sectors verify successfully, E = O at the conclusion of state-
ment execution. If, however, a bad sector is discovered, ‘E’ is set equal to the address of the next
sequential sector following the invalid sector, and the VERIFY operation is terminated at that
point.

Like form #1, form #2 of VERIFY is frequently employed to verify the new catalog on the destina-
tion platter following a MOVE or COPY. As with form #1, form #2 automatically verifies the entire
catalog if the starting and ending sector addresses are omitted from the VERIFY statement.

Example 2-50: Verifying the Catalog with VERIFY (Form #2) (Model 2260 and 2270 Series)

550 MOVEFTOR
560 VERIFY RN

Line 550 copies the catalog from the ‘F’ platter to the ‘R’ platter. Line 560 verifies the new cata-
log on the ‘R’ platter. Since no sector address parameters are specified, the entire catalog (start-
ing at sector #0 and ending at the current end of the Catalog Area) is verified. ‘N’ is the receiving
variable.

Example 2-51: Verifying the Catalog with VERIFY (Form #2) (Model 2280 Series)

440 MOVE T/D13, TO T/D10,
450 VERIFY T/D10, N

Line 440 copies the catalog from the D13 fixed platter to the D10 removable platter. Since no
sector address parameters are specified, the entire catalog (starting at sector #0 and ending at
the current end of the Catalog Area) is verified.

Note that the omission of starting and ending sector addresses from the VERIFY statement always

implies that a catalog is to be verified; if the designated platter does not contain a catalog, either an
error is signalled or arbitrary sectors may be verified.

2-38

CHAPTER 3
DISK DEVICE SELECTION AND MULTIPLE DATA FILES

3.1 INTRODUCTION

in Chapter 2 you were introduced to the most basic catalog procedures, including saving and load-
ing programs and data files, skipping over records within a data file, scratching unwanted files, and
moving the contents of the catalog from one platter to another. In the interests of simplicity and clari-
ty of exposition, however, a number of important but complex disk operations were omitted from
Chapter 2. Chapters 3 and 4 are therefore designed to expand and elaborate upon the discussion of
catalog procedures begun in Chapter 2. Probably the most significant omission in that discussion
was an explanation of how it is possible to keep more than one data file open on a disk at the same
time. This subject is especially important because so many data processing problems involve the
transfer of data from one file to another, or the storing of data in or reading of data from several dif-
ferent files in the course of processing transactions. Such operations would be time consuming in the
extreme if each file had to be re-opened every time a record was to be written into it or read from it.
Chapter 3 discusses the procedures for maintaining multiple open files on disk simultaneously. The
related questions of how the disk is addressed, and how multiple disk units can be operated by a
single system, also are examined in this chapter.

3.2 DISK DEVICE SELECTION

Chapter 2 presented you with what was, essentially, a “recipe” for using the disk. You were told
that by executing a particular statement which included particular parameters, you could elicit a par-
ticular response from the system. The system itself remained a black box, however, whose internal
workings were only vaguely hinted at. Although such an approach was appropriate for the purposes
of Chapter 2, it cannot safely be followed in the present chapter. Some understanding of the internal
operations of the system, particularly those which relate to management of the disk, is a necessary
prelude to any discussion of how the system maintains open data files. The first topic to be consid-
ered is the mechanism by which the system is able to identify the disk unit and the individual platters
within it.

Whenever a disk statement or command is executed, the system has immediate need for at least
two items of information: the disk platter parameter ‘F’ ‘R or ‘T" and a three-hexdigit device address.
Together these items identify the disk unit and platter of the unit to be accessed. For certain disk
statements and commands, the disk device address can, like the disk platter parameter ('F' ‘R’ or ‘T'),
be specified directly in the statement or command itself. For example, the statement

10 LOAD F /350, “PROG 1”

causes the system to access the disk unit with device address 350. On the Model 2270-3 and Model
2270A-3, this statement accesses platter #3. Likewise, on a Model 2280 the statement

10 LOAD T /D10, “PROG 1"

causes the system to access the removable platter designated by address D10.

In general, however, it is only necessary to specify the device address in a statement or command,
when access to an address other than 310 is desired, since if no address is specified, the system au-
tomatically uses the default disk address, 310. The default address is stored by the system in a spe-
cial section of system memory called the Device Table. Whenever a disk statement or command is ex-
ecuted, the system’s first reaction is to check the Device Table for a disk device address (unless, of
course, the address has been specified in the statement or command).

The Device Table

The Device Table in CPU memory is made up of 16 rows, or “slots” each of which is identified by a
unique file number from #0 to #15 (see Figure 3-1 below). The Disk Device Address location of the
default device address (310} is stored in the slot opposite #0. For this reason, #0 is referred to as the
default file number.

DISK
UNIT STARTING CURRENT ENDING
FILE FILE DEVICE | DEVICE SECTOR SECTOR SECTOR
NUMBER STATUS TYPE ADDRESS | ADDRESS ADDRESS | ADDRESS
#0 0 3 10 00000 00000 00000
#1 0 0 00 00000 00000 00000
#2 0 0 00 00000 00000 00000
#3 0 0 00 00000 00000 00000
#4 0 0 00 00000 00000 00000
#5 0 0 00 00000 00000 00000
#15 0 0 00 00000 00000 00000
Figure 3-1. The Device Table in Memory

Also in Figure 3-1, each of the 16 slots (#0-#15) has a location for the file status. The file status is
used to indicate the status of the device table slot as follows:

0 = Data file not opened.

1 = Data file is open on a fixed platter (or diskette drive #1 or #3 in the Model 2270/70A
Series) with a DATASAVE DC OPEN or DATALOAD DC OPEN statement.

2 = Data file is open on the removable platter (or diskette drive #2 in the Model 2270/70A
Series) with a DATASAVE DC OPEN or DATALOAD DC OPEN statement.

3 = Data file is open on the platter specified by the low hexdigit of the disk unit device address
(Model 2280 Series).

3-2

Adjacent to the file status is the device type (hexdigit) and the disk unit device address {two hexdig-
its). Each slot also has locations for three other items of information, a Starting Sector Address, a
Current Sector Address, and an Ending Sector Address. The Device Table address parameters, used
by the system to maintain open data files on disk, are discussed in the following section.

The default device address (310) which is a combination of the device type 3 and the unit address
10 are always stored next to the default file number (#0) by the system itself. Even after the system
is Master Initialized (that is, the main power switch is turned OFF and then ON), thus clearing out all of
memory, the system automatically returns 310 to its location opposite #0 in the Device Table (Figure
3-1).

For this reason, it is always possible to execute a disk statement or command without specifying a
device address of 310. When, for example, a statement such as

10 LOAD F “PROG1”

is executed, the system automatically goes to the Device Table and checks for the default address
opposite #0. Likewise, with a Model 2280, when a statement such as

10 LOAD T “PROG1”

is executed, the system automatically goes to the Device Table and checks for the default address
opposite #0.

It is also possible, however, to store a device address in the Disk Device Address location opposite
any one of the other file numbers (#1 - #15) in the Device Table. In this case, the device address
must be stored in the table with a SELECT statement.

Example 3-1: Storing Disk Device Addresses In The Device Table
50 SELECT #3/310, #5/310
Statement 50 instructs the system to store disk device address 310 opposite file numbers #3

and #5 in the Device Table. Following the execution of statement 50, the Device Table looks like
the table shown in Figure 3-2.

3-3

DISK
UNIT
FILE FILE | DEVICE | DEVICE
NUMBER | STATUS | TYPE | ADDRESS | START | CURRENT | END
#0 0 3 10 00000 00000 00000
#1 0 0 00 00000 00000 00000
#2 0 0 00 00000 00000 00000
#3 0 3 10 00000 00000 00000
#a 0 0 00 00000 00000 00000
#5 0 3 10 00000 00000 00000
#15 0 0 00 00000 00000 00000

Figure 3-2. The Device Table with Disk Device Addresses Stored Opposite File
Numbers #3 and #5

Notice that device address 310 is now stored in the Disk Device Address location opposite file
numbers #3 and #5, as well as in the default slot (opposite #0). The file numbers #3 and #5 can now
be used in a disk statement or command to reference device address 310 indirectly. For example, if a
statement such as

60 LOAD F #3, “PROG2"

is now executed, the system immediately checks the Device Table for a device address opposite #3.
Upon finding address 310, it proceeds to the disk unit and accesses the ‘F’ platter. If no address were
stored opposite #3, or if the address of a device other than the disk {(say, an interface board) were
stored there, the system will signal an error when the disk statement is executed.

In summary, then, it is possible to specify a disk device address in two ways: directly (by including
the address itself, or indirectly (by referencing a file number associated with the appropriate address).
Therefore, a statement of the form

10 LOADF /310, "PROG2"
is equivalent to the pair of statements

10 SELECT #3/310
20 LOAD F #3, “PROG2"

Note, however, that the data file manipulation statements (DATASAVE DC OPEN, DATASAVE DC,
DATALOAD DC, etc.) do not permit the direct specification of a device address within the statement.
In these statements, therefore, the device address must be referenced indirectly via a file number.
This restriction is important because file numbers play a most critical role in the manipulation of cata-
loged data files.

3-4

Use Of File Numbers in Accessing the #3 Drive Model 2270-3/2270A-3 and Slave Drive Model
2260BC-2, 2260C-2, or Model 2280 Dual Drive

The #3 drive in the Model 2270-3 and the slave drive in the Model 2260BC-2, 2260C-2 or 2280
dual drive have a special device address, 350. This address can be stored in a slot opposite one of the
file numbers #0 - #15 in the Device Table; subsequent reference to the associated file number then
causes the system to access drive #3. For example, the statement

50 SELECT #2/350

causes device address 350 to be stored opposite #2 in the Device Table. A statement which refer-
ences file #2, such as

60 LOAD F #2, “PROG1"

will now indirectly reference address 350, and access drive #3 to load in PROG 1 from the diskette
mounted in that drive, or the F platter in the slave drive (whichever is at address 350- either a Model
2270-3/2270A-3 ora Model 2260BC-2/2260C-2). See Section 3.8.

Why Use the Device Table?

It may appear somewhat inefficient to use a section of memory and a special statement to store
device addresses when the address can be supplied in the statement or command itself, or when, as
in the normal case, no address need be supplied at all. If the Device Table were used exclusively to
store device addresses, there would hardly be justification for belaboring the reader with an explana-
tion of its purpose and operation. In fact, however, the Device Table serves a second and far more im-
portant function in connection with disk operations. The slots in the Device Table are utilized by the
system to store critical information on currently open data files. Without the Device Table, therefore,
it would not be possible to maintain multiple open files on the disk.

NOTE:

The Device Table slots #1 - #15 are used to store
other device information as well as disk file infor-
mation. A statement of the form SELECT #1/04C,
for example, stores the interface board address
04C (with the O under the device type column and
the 4C under the unit device address column)
opposite file number #1 in the Device Table. If you
are using disk and other devices in conjunction,
therefore, be sure to use different file numbers for
your disk and non-disk files.

3.3 MAINTAINING MULTIPLE OPEN DATA FILES ON DISK

The concept of an “open” data file was introduced in Chapter 2 with little exposition. It was pointed
out simply that DATASAVE DC OPEN and DATALOAD DC OPEN are used to “open” and “re-open” a
data file on disk; the actual procedures followed by the system in opening or re-opening a file were
left undefined as internal operations.

3-5

This section details the specific and clearly defined procedure in opening a data file. In order to un-
derstand this procedure, however, you should first consider the kinds of information which the
system requires in order to be able to access a file. Such information includes:

1. The disk platter and disk unit on which the data file is (or is to be) stored.
2. The starting sector address of the file.

3. The current sector address of the file (i.e., where the system is currently positioned in the
file).

4. The ending sector address of the file.

Although some of this information (specifically, items 2 and 4) can be found in the Catalog Index, it
is efficient for the system to have all of it at hand in one place. As you may already have suspected,
that “one place” is the Device Table. The Device Table provides a convenient location in memory for
the temporary storage of all information required by the system to access and maintain a cataloged
data file. Such information is automatically copied from the Catalog Index into the Device Table
whenever a data file is opened initially (with DATASAVE DC OPEN) or re-opened {with DATALOAD
DC OPEN). In either case, the system first checks the default slot (or one of the other slots, #1 - #15,
if a file number has been specified in the statement) for a valid disk address. If the slot contains no ad-
dress, or an invalid address (for example, a tape address), an error is signalled and execution halts. If a
valid address is found, the system proceeds to access the appropriate platter in the specified disk
unit.

For an existing file which is re-opened with a DATALOAD DC OPEN statement, the system merely
copies the file’s starting and ending sector addresses from the Catalog Index into the default slot {or
one of the other slots, if a file number has been used) in the Device Table. The current sector address
is set equal to the starting sector address. For a file newly opened on disk with DATASAVE DC OPEN,
the system first reserves space on the designated platter, and enters the file's name and sector
parameters in the Catalog Index. Once this is done, the parameters are copied to a specified slot in
the Device Table. Suppose, for example, that file DATFIL-1 is to be opened on the ‘F’ platter. State-
ment 10 below might be used:

10 DATASAVE DC OPENF {100) “DATFIL-1"

One hundred sectors are reserved for DATFIL-1 on the ‘F’ platter. Assuming DATFIL-1 is the first
file to be opened on this platter, and assuming that the Catalog Index occupies sectors 0-23, the
Index entry for DATFIL-1 looks like this:

NAME TYPE START END USED FREE
DATFIL-1 D 00024 00123 00001 00099
Once the Catalog index has been appropriately updated, the sector address parameters for DATFIL-1

are immediately written to the default slot in the Device Table, which therefore looks like the table
shown in Figure 3-3.

3-6

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS | TYPE | ADDRESS|START |CURRENT | END
#0 1 3 10 00024 | 00024 |00123
#1 0 0 00 00000 | 00000 |00000
#2 0 0 00 00000 | 00000 |00000
43 0 0 00 00000 | 00000 |00000
#4 0 0 00 00000 | 00000 |00000
#5 0 0 00 00000 | 00000 |00000
#15 0 0 00 00000 | 00000 |00000

Figure 3-3. The Device Table with One File Open (DATFIL-1)

The parameters stored opposite #0 are those of DATFIL-1. The value ‘1’ under ‘file status’ now in-
dicates that a data file has been opened on a fixed platter. {Note that the current address has been set
equal to the starting address at this point) DATFIL-1 is now officially “open” and any DATASAVE or
DATALOAD statement automatically accesses it.

Suppose, however, that a second file is now opened:
20 DATASAVE DC OPENR (250) “DATFIL-2"
Execution of statement 20 causes the system to run through the same procedure followed in open-
ing DATFIL-1, with the result that DATFIL-1's parameters opposite #0 in the Device Table are re-

placed with those of DATFIL-2. The Device Table appears as shown in Figure 3-4, following execution
of statement 20:

3-7

DISK
UNIT
FILE FILE DEVICE | DEVICE

NUMBER | STATUS | TYPE | ADDRESS|START |CURRENT | END
#0 2 3 10 00124 | 00124 |00323
#1 0 0 00 00000 | 00000 | 00000
#2 0 0 00 00000 | 00000 | 00000
43 0 0 00 00000 | 00000 | 00000
#4 0 0 00 00000 | 00000 | 00000
45 0 0 00 00000 | 00000 | 00000
#15 0 0 00 00000 | 00000 | 00000

Figure 3-4. The Device Table with One File Open (DATFIL-2)

DATFIL-2 now becomes the only currently open file on disk. The ‘file status’ now shows a ‘2’ to in-
dicate that a data file has been opened on the ‘R’ platter. Any DATASAVE DC or DATALOAD DC
statement now accesses DATFIL-2 instead of DATFIL-1. The question then arises: if every new file
erases information on the previous file from the default slot, how is it possible to have more than one
file open at once? The answer to this question is somewhat obvious: different slots in the Device
Table can be used to open different data files. Since there are 16 slots in the Device Table, a total of
16 files can be open at the same time.

NOTE TO MVP USERS:

In a 2200 MVP system, each partition maintains
its own Device Table; and subsequently each par-
tition can open up to 16 files simultaneously.

You have already seen that the first thing the system does when a disk statement is executed is to
check the Device Table for a disk device address. In the two examples just cited, only the default slot
(opposite #0) was used for file information. As you know, the system itself automatically keeps the
default address in that slot. Before you can use any of the other slots to open new files, however, you
must store the disk device address in them with a SELECT statement such as the one illustrated in
Example 3-1:

50 SELECT #3/310, #5/310

As you have already seen, this statement instructs the system to store disk device address 310 in
the Device Table opposite File Numbers #3 and #5. The new Device Table is shown in Figure 3-5.

3-8

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS | TYPE | ADDRESS | START | CURRENT | END
40 2 3 10 00124 00124 | 00373
#1 0 0 00 00000 00000 | 00000
42 0 0 00 00000 00000 | 00000
43 0 0 00 00000 00000 | 00000
#4 0 0 00 00000 00000 | 00000
45 0 0 00 00000 00000 | 00000
#15 0 0 00 00000 00000 | 00000

Figure 3-5. The Device Tabl

e with Disk Device Addresses Stored Opposite

File Numbers #3 and #5, and One Open File (DATFIL-2)

The slots opposite #3 and #5 can now be used, in addition to the default slot, to store the sector
address parameters of open files. To use one of these slots, it is necessary only to specify its file
number in a DATASAVE DC OPEN or DATALOAD DC OPEN statement. Example 3-2 uses file #3 to
open a second data file on the disk.

Example 3-2: Opening a New Data File with a File Number

150 DATASAVE DC OPEN F #3, (560) “DATFIL-3"

Statement 150 causes the system to check the slot opposite #3 for a device address. Upon
finding address 310, the system goes to the disk unit and accesses the ‘F’ platter. Fifty sectors
are reserved for DATFIL-3, and the file’s name and location are entered in the Catalog Index. The
file's sector address parameters (starting, ending, and current) are then written in the slot oppo-
site #3 in the Device Table:

3-9

DISK
UNIT
FILE FILE DEVICE | DEVICE

NUMBER | STATUS | TYPE | ADDRESS | START | CURRENT | END
#0 2 3 10 00124 00124 |00373
#1 0 0 00 00000 00000 | 00000
#2 0 0 00 00000 00000 | 00000
#3 1 3 10 00374 00374 | 00423
#4 0 0 00 00000 00000 | 00000
45 0 3 10 00000 00000 | 00000
#15 0 0 00 00000 00000 | 00000

Figure 3-6. The Device Table with Two Open Files

Obviously, the system must have some way of distinguishing DATFIL-2 from DATFIL-3 when data
is to be stored in or retrieved from each file. Since the file names are not entered in the Device Table,
the system can identify each file only by its associated file number. The file number associated with a
file must therefore be used in any subsequent disk statement or command which accesses that file.
The default file is, of course, automatically accessed if no file number is specified. Thus, the
statement

160 DATASAVE DC A$()

causes array A$() to be stored in DATFIL-2 (since DATFIL-2's parameters are stored opposite #0 in
the defauit slot), while the statement

170 DATASAVE DC #3,A%()

causes A$() to be saved in DATFIL-3 (since DATFIL-3's parameters are stored opposite #3).

Example 3-3: Referencing an Open File by File Number

10 SELECT #5/310

20 DATASAVE DC OPENF #5, (50) “FIRST”
30 DATASAVE DC #5, Al)

40 DATASAVE DC #5, END

Statement 10 writes the disk address (310) in the slot opposite #5 in the Device Table. State-
ment 20 opens FIRST and assigns its parameters to slot #5 in the Device Table. Statement 30
writes data from array A() into FIRST, and statement 40 writes an end-of-file trailer record to
FIRST. Notice that both statements reference FIRST by specifying the file number (#5) to which
it is assigned in the Device Table. When statements 30 and 40 are executed, the system immedi-
ately checks the slot opposite #5 in the Device Table for a disk address. It then accesses the
specified disk and begins storing data at the sector specified in the Current Sector Address

parameter of slot #5. Following execution of statement 40, the Device Table looks like Figure
3-7.

DISK
UNIT
FILE FILE | DEVICE | DEVICE
NUMBER | STATUS | TYPE | ADDRESS |START |CURRENT | END
%0 2 3 10 00124 | 00124 | 00373
#1 0 0 00 00000 | 00000 | 00000
42 0 0 00 00000 | 00000 | 00000
#3 1 3 10 00374 | 00374 |00423
#4 0 0 00 00000 | 00000 | 00000
45 1 3 10 00424 | 00428 |00473
#15 0 0 00 00000 | 00000 | 00000

Figure 3-7. The Device Table in Memory with Three Open Files

3-11

Existing files re-opened with DATALOAD DC OPEN also can be assigned file numbers. It is not re-
quired that a file be reassigned its original file number every time it is re-opened; the parameters of a
file are copied anew into the Device Table each time it is re-opened, and it may be assigned any
available file number. The file FIRST, opened initially in Example 3-3 above, might subsequently be re-
opened and assigned a different file number, as illustrated in Example 3-4 below.

Exampie 3-4: Referencing an Open File by File Number

10 SELECT #4/310

20 DATALOAD DC OPENF #4, “FIRST”
30 DSKIP #4, END

40 DATASAVE DC #4, B()

50 DATASAVE DC #4, END

Statement 10 writes disk address 310 in the slot opposite #4 in the Device Table. Statement 20
opens an existing file, FIRST, and assigns its parameters to slot #4 in the Device Table. State-
ment 30 skips to the current end-of-file trailer record in the file, statement 40 saves a new
record in the file from array B() over the trailer record, and statement 50 writes a new trailer
record in the file. Notice that all reference to FIRST in statements 30, 40, and 50 is in terms of
the file number (#4) to which it is assigned in the Device Table. Notice also that #4 is not the file
number originally assigned to FIRST when it was initially opened in Example 3-3.

Note that it is possible to re-open the same file repeatedly, using a different file number each time.
In this manner, every slot in the Device Table can be filled with the parameters of a single file. The
practical advantage of such an arrangement would, however, be open to some doubt.

Using a Variable to Store the File Number

If it is convenient, a numeric variable can be used to store a file number. Subsequently, the variable
can be included in a disk statement or command to reference the file number. For example, the
statements

5 SELECT #3/310
10A=3
20 DATALOAD DC OPEN F #A, “DATFIL-1"

cause the system to re-open DATFIL-1 on the ‘F’ platter, and store its parameters opposite #3 in the
Device Table (since A=3). (Note that the use of numeric variables to reference file numbers is not
legal in the SELECT statement itself. Thus, a statement of the form SELECT #A/310 is not permitted.)

3.4 THE “CURRENT SECTOR ADDRESS”” PARAMETER

In the discussion of skipping over logical records within data files in Chapter 2, as well as in the
recent discussion of storing data in a data file, you have seen why it is important, in fact necessary,
for the system to know where it is positioned within a file at all times. If the system does not know,
for example, that it has just stored a record ending at sector 86 in a currently open file, then it cannot
know that the next record in that file must be saved starting at sector 87. In such a case, the system
would obviously be incapable of maintaining data files on disk at all.

3-12

The system knows where it is positioned in a file by referring to the Current Sector Address of the
file. The Current Sector Address is updated every time a record is saved in or loaded from a file, and
every time records are skipped or backspaced over in a file. The Current Sector Address always indi-
cates the next available sector following the most recent access of a file. For example, suppose that

the file DATFIL 2 is to be saved on a fixed disk platter:
300 DATASAVE DC OPENF #1, (500) “DATFIL-2"

The Device Table slot for DATFIL-2 now looks like this:

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS | TYPE ADDRESS | START | CURRENT | END

#1 1 3 10 00060 00060 00559

Figure 3-8. Device Table Slot for DATFIL-2

Notice that the Current Sector Address for DATFIL-2 is identical to the Starting Sector Address.
This is the case whenever a file is opened or re-opened.

Suppose, now, that you store data from an array, A(), into DATFIL-2:

DATASAVEDC #1, A()

Assuming that the data from A() occupies one sector on disk, the Device Table slot for DATFIL-2
now reads as follows:

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS | TYPE ADDRESS | START | CURRENT | END

#1 1 3 10 00060 00061 00559

Current Address now updated to show
that sector 61 is the next available sector.

Figure 3-9. Updated Device Table Slot for DATFIL-2

3-13

Notice that the Current Address is now updated to show that sector 61 is the next available sector
in the file, since sector 60 (the first sector in the file) has been filled with data.

You might now save three more arrays of data:

310 DATASAVEDC #1, B()
320 DATASAVEDC #1, C()
330 DATASAVE DC #1, D()
340 DATASAVE DC #1, END

Following execution of these statements (and assuming each array requires one sector on disk), the
Device Table looks like this:

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS | TYPE ADDRESS | START | CURRENT | END
#1 1 3 10 00060 00064 00559

Figure 3-10. Updated Device Table Slot for DATFIL-2

Suppose, however, that you now want to skip back and load record #1. You use the DBACKSPACE
statement:

350 DBACKSPACE #1, BEG

This statement instructs the system to set the value of the Current Sector Address equal to the value
of the Starting Sector Address. Following execution of Statement 350, the Device Table looks like
this:

DISK
UNIT
FILE FILE DEVICE | DEVICE
NUMBER | STATUS TYPE ADDRESS | START CURRENT | END
#1 1 3 10 00060 00060 00559
Current Address now set back to address
of first sector in file.
Figure 3-11. Updated Device Table Slot for DATFIL-2 Following Execution of a

DBACKSPACE BEG Statement

At this point, you can load the first record from DATFIL-2.

3-14

3.6 CLOSING A DATAFILE

You should understand more clearly now the precise meanings of the concepts of “opening” and

“closing

" a data file. A data file is opened (by a DATASAVE DC OPEN or DATALOAD DC OPEN state-

ment) when its parameters are entered in a slot in the Device Table. A data file is closed when its
parameters are removed from the Device Table, either by writing over the parameters with another
set of parameters, or by zeroing out the parameters. There are four methods of closing a currently
open data file:

Wb~

Assigning the file number currently associated with the file to another file.
Executing a CLEAR command with no parameters.

Master Initializing the system.

Executing a DATASAVE DC CLOSE statement.

Each of these four methods is explained in the following paragraphs.

1.

Assigning the file number currently associated with the file to another file. This operation
causes the parameters of the new file to be written over the parameters of the original file,
thus closing the original file.

Example 3-5: Closing a Data File by Re-Assigning lts File Number

110 SELECT #1/310
120 DATASAVE DC OPENF #1, (110} “DATFIL-1"
150 DATASAVE DC OPENR #1, (600} “DATFIL-2"

Statement 110 selects file number #1 to the disk unit address 310. Statement 120 opens
DATFIL-1, reserves 110 sectors for it on the ‘F’ disk platter, and causes its parameters to be en-
tered in the Device Table in the slot opposite #1. Statement 150 opens a new data file,
DATFIL-2, and stores its parameters in slot #1. These parameters overwrite those of DATFIL-1,
effectively closing DATFIL-1.

2.

Executing a CLEAR command with no parameters. A CLEAR command with no parameters
causes all of memory to be cleared, including the Device Table. All the information in the
Device Table is zeroed out, thereby closing all files (the #0 disk address is maintained).

Master Initializing the system (i.e., throwing the CPU power switch OFF and then ON). This,
too, has the effect of clearing out memory, thus closing all files.

Executing a DATASAVE DC CLOSE statement. DATASAVE DC CLOSE should not be con-
fused with DATASAVE DC END. DATASAVE DC END causes an end-of-file trailer record to
be written in the specified file. DATASAVE DC CLOSE, however, causes all sector address
parameters for the specified file or files in the Device Table to be zeroed out, thereby clos-
ing the file(s). The disk device address stored in a slot is not zeroed out by DATASAVE DC
CLOSE, however.

Example 3-6: Closing a Specified File with a DATASAVE DC CLOSE Statement

200 DATASAVE DC CLOSE
210 DATASAVE DC CLOSE #1

3-15

Statement 200 causes the sector address parameters associated with the default file #0 (since
no file number is specified) to be zeroed out, thus closing the file associated with #0. Statement
210 causes the sector address parameters stored in slot #1 to be zeroed out, thus closing the
file associated with #1.

Example 3-7: Closing All Currently-Open Files with a DATASAVE DC CLOSE Statement
300 DATASAVE DC CLOSE ALL

Statement 300 causes all sector address parameters in the Device Table to be zeroed out, thus
closing all currently open files.

It is generally good practice to close a data file once processing is complete. In this way, you can
prevent someone else from accidentally saving data into the file over currently stored data, and thus
destroying your data. You should also always be sure to write a data trailer record in the file prior to
closing it, since you will then be able to re-open the file, skip to the end, and continue storing data in it
at a later date.

When a file is closed, by whatever method, its three sector address parameters are removed from
the Device Table. When the file is subsequently re-opened with a DATALOAD DC OPEN statement,
the Current Sector Address is automatically set equal to the Starting Sector Address.

3.6 SKIPPING AND BACKSPACING OVER INDIVIDUAL SECTORS IN A FILE

In Chapter 2, the discussion of DSKIP and DBACKSPACE was confined to the skipping of logical
records within a file. It is also possible, however, to skip individual sectors in a file. This method is a
much faster way of moving through a file than skipping records, but its value cannot be fully under-
stood until the process of skipping logical records is examined in greater detail.

Remember that a logical record may consist of any number of sectors. The first logical record in a
file might, for example, contain three sectors, while the second contains thirteen. The system has no
way of knowing in advance how many sectors are in each record; when the system is instructed to
skip or backspace over a prescribed number of records, therefore, it must actually read those records
from the specified file and update the Current Sector Address after the specified number of records
have been read. Suppose, for example, that the system is currently positioned at the beginning of
DATFIL-1, and that DATFIL-1 is associated with file #1 in the Device Table. If you want to skip three
records in DATFIL-1, you would execute a DSKIP #1,3 statement. Such a statement causes the
system to run through the following set of operations:

1. Check the Current Sector Address in slot #1 in the Device Table to see where it is currently
positioned in the file.

2. Access the disk and read three logical records, beginning at the location specified in the
Current Sector Address parameter.

3. After reading the third logical record, check the sector address of the last sector in that
record.

4. Set the Current Sector Address in slot #1 equal to one greater than the address of the last
sector in logical record #3. This is the address of the next available sector in the file follow-
ing record #3.

At the end of this procedure, the Current Sector Address in slot #1 is equal to the address of the
first sector of record #4 (or the first available sector following record #3, if record #4 has not yet
been saved).

Suppose, now, that you know there are three sectors in each logical record in DATFIL-1. In this
case, if you want to skip three logical records, you can simply instruct the system to skip nine sectors.
Since the system knows exactly how many sectors are to be skipped, it need not access the disk and
read the records themselves. It simply increments the Current Sector Address by nine, and records
this value in slot #1 as the new Current Address. The process of skipping or backspacing through a
file is greatly accelerated, since no disk accesses are required.

The ‘S’ parameter is used in a DSKIP or DBACKSPACE statement to inform the system that it is to
skip a specified number of sectors rather than logical records.

Example 3-8: Skipping over a Number of Sectors in a File
400 DSKIP #1, 20S

Statement 400 instructs the system to increment the Current Address for the file associated
with slot #1 in the Device Table by 20. If the old Current Address was equal to X, the new Cur-
rent Address is equal to X+20. If each logical record consists of four sectors, this statement has
the effect of skipping over five logical records.

Example 3-9: Backspacing over a Number of Sectors in a File
410 DBACKSPACE #3, 255

Statement 410 instructs the system to decrement the Current Address for the file associated
with #3 in the Device Table by 25. If the original Current Address was equal to Y, the new Cur-
rent Address is equal to Y-25. If each logical record consists of five sectors, this statement has
the effect of backspacing over five logical records.

It is important, however, that every logical record in the file consist of the same number of sectors;
otherwise, skipping or backspacing over a number of sectors can lead to serious problems. If you do
not know exactly how many sectors to skip, you may end up somewhere in the middle of a logical
record. Since you normally want to read an entire logical record rather than some arbitrary portion of
one, that could prove disastous.

3.7 THE “T” PLATTER PARAMETER IN DISK OPERATIONS

Until now, only two parameters have been discussed in connection with accessing a disk platter on
the Model 2260 and 2270 series disk systems - the ‘F' parameter and the ‘R’ parameter.” These
parameters are “absolute” in the sense that each identifies a single disk platter. The reference of each
parameter is fixed and cannot be changed (that is, the ‘F’ parameter can never be used to access the
‘R’ platter, and vice versa).

Such an arrangement lacks some flexibility. It is desirable in certain programming cases to be able
to access either the ‘F’ or ‘R’ platter with the same disk statement or command. The ‘T parameter
provides such a capability. When the ‘T’ parameter is specified in a disk statement or command in-
stead of ‘F’ or ‘R’ it causes the system to use the disk device address to determine which platter is to
be accessed, and access the designated platter.

* The ‘F* and ‘R’ parameters have a limited application with the Model 2280 disk systems. An F/310, R/310 and a T/B10 can be used to
access the first two platters of the Model 2280.

For such a technique to be possible, however, each disk platter must have its own device address.
This is true only in a very limited sense. The disk device address (e.g., “310") is really a conjunction of
a device type and a unit device address. The first hexdigit of the disk address is the device type; the
remaining two hexdigits form the unit device address. It is the device type which can be used to
designate a particular disk platter.

3 10
1 1
Device Unit
Type Device
Address

In all of the examples to this point, a single device type, “3" (e.g., 310, 320, etc.), has been used
consistently. However, a second device type, “B” (e.g., B10, B20, etc.), is also permissible in a disk
device address. When used in conjunction with the ‘T’ parameter, a device type of “3” designates the
‘F’ disk platter, while a device type of “B” designates the ‘R’ platter:

3 10 B 10

I I I I
Designates Designates Designates Designates
the ‘F’ the primary the ‘R’ the primary
platter disk drive. platter disk drive.
when ‘T’ when ‘T’
parameter parameter
is used. is used.

For example the statement
10 LOAD T/310, “PROG1"
causes the system to access the ‘F’ platter, while the statement
20LOAD T/B10, “PROG2"
causes the system to access the ‘R’ platter. It should be emphasized that a disk device address is

never used by itself to access a disk platter; it is always necessary to specify one of the parameters
‘F" ‘R" or ‘T in statements where such a parameter is required.

No mention was made of the “B” device type in previous examples because the device type “B”
itself is significant only when the ‘T’ parameter is specified. The ‘F’ or ‘R’ parameter, when specified,
always overrides the device type. Thus, for example, the command

LOAD F/310, “PROG1”
access the ‘F’ platter; and so too does the command

LOAD F/B10, “PROG1".

In this case, the device type (“B”) has no meaning to the system other than to indicate a disk device.

3-18

SPECIAL NOTE TO MODEL 2270-1/2270A-1
AND SINGLE MINIDISKETTE OWNERS:

An address of B10 is illegal when used in conjunc-
tion with the ‘T’ parameter, when the disk unit
contains only a single disk drive, which must be
referenced as an °‘F’ platter (i.e, with address
310). Otherwise, an error results.

SPECIAL NOTE TO MODEL 2270-3/2270A-3
OWNERS:

When the ‘T’ parameter is used with the Model
2270-3, platter selection is determined by both
the device type and the device address. If the
device address is the primary address (i.e., X10,
X20, X30, etc.), then a device type of “3” desig-
nates Platter #1 (i.e., 310, 320, 330, etc.), while a
device type of “B” designates Platter #2 (i.e., B10,
B20, B30, etc.). If, on the other hand, the device
address is not the primary address (e.g., 350, 360,
370, etc.), then Platter #3 is accessed. Note that
the addresses B50, B60, and B70 are not legal in
this case, since the diskette in drive #3 must be
designated as an ‘F’ platter.

The ‘T’ parameter provides maximum flexibility when used in a statement which references a file
number specified as the value of a variable. In such a case, the system determines the specified file
number from the value of the variable, and then checks the Device Table and inspects the device type
of the device address stored opposite the specified file number. This arrangement makes it possible
to use the same disk statement to access all platters in the system simply by changing the value of
the file number variables.

Example 3-10: Accessing More Than One Disk Platter with the ‘T’ Parameter

10 SELECT #3/310, #4/B10
.100 A = 3: B$ = “DATFIL”: GOSUB 200

200 DATALOAD DC OPEN T #A, B$
210 RETURN

Statement 10 stores disk device addresses 310 and B10 in slots #3 and #4 of the Device
Table, respectively. Subsequently, statement 100 sets A equal to 3, and B$ equal to
“DATFIL” and branches to a subroutine located at line 200. The subroutine re-opens
DATFIL on the ‘F’ platter (since A = 3, #A = #3 and disk address 310 is stored opposite
#3).

3-19

The same subroutine could be used to access the ‘R’ platter if called from another point in
the program:

150 A =4:B$ = “TEST-2": GOSUB 200

200 DATALOAD DC OPEN T #A, B$
210RETURN

In this case, data file TEST-2, located on the ‘R’ platter, is re-opened by the subroutine.

The ‘T’ parameter provides the general capability to write disk statements which can access any
disk platter. This feature may prove particularly useful for file update operations, where the same file
may reside alternately on different platters. Users of the Model 2260 series should find the ‘T’
parameter helpful in debugging file maintenance programs written for the fixed platter by testing
them with dummy files stored on the removable platter (thus avoiding the danger of erasing legiti-
mate data on the fixed platter). Finally, owners of Models 2270-3, 2270A-3, 2260C-2, and
2260BC-2 will find the ‘T’ parameter helpful because it provides them with a single parameter which
can be used to access all the disk platters. For example, a program can be designed which makes a
specific platter (and disk unit) selectable by the operator when the program is run:

Example 3-11: Using the ‘T’ parameter to Access a User-Selectable Disk Platter

10 INPUT “ENTER PLATTER-NUMBER (1,2, OR 3)" A

20 INPUT “ENTER PROGRAM NAME"” N$

30 ON A SELECT #1/310; #1/B10; #1/350: ELSE GOTO 10
40 LOAD T #1,N$

Device Type ‘D’
A third device type ‘D’ which is always used with the ‘T’ platter parameter, can be used for disk

devices. Device type ‘D’ indicates that the platter to be accessed is specified by the third hexdigit of
the device address. For example, the device address D12 is interpreted as:

D 1 2
! ! 1
device type unit device platter
address number
(10)

Note that when type ‘D’ is used, the low hexdigit of the device address is implied to be O. Platter
numbers greater than 1 are used only on Model 2280 disk drives. For other disk drives, T/D10 is
equivalent to R/310 or T/B10, and T/D11 is equivalent to F/310 or T/310.

Changing The Default Address

It is possible to change the default disk address (normally 310) and reference the new default ad-
dress via the ‘T’ parameter.

3-20

The disk default address (310) is changed with a SELECT DISK statement. For example, the
statement

50 SELECT DISK/B10

causes disk address B10 to be recorded in slot #0 in the Device Table:

DISK

UNIT
FILE FILE DEVICE | DEVICE

NUMBER | STATUS | TYPE ADDRESS | START CURRENT END

#0 0 B 10 00000 00000 00000

Figure 3-12. The Device Table Following Executionof a
SELECT DISK/B10 Statement

Once statement 50 is executed, any disk statement or command containing the ‘T’ parameter with
no file number specified causes the system to inspect the device type in the new default address
(B10) and access the ‘R’ disk platter. Note that the default address can also be changed with a state-
ment of the form SELECT #0/B10.

Example 3-12: Using the ‘T’ Parameter with a New Default Address

10 SELECT DISK/B10
20 DATASAVE DC OPEN T (100) “DATFIL-1"

Statement 10 changes the default address (stored in slot #0) from 310 to B10. Statement 20
causes the system to check the default address in the default slot (since no file number is speci-
fied) and, since the ‘T’ parameter is used, to inspect the device type in the address. In this case,
the device type is B (B10); the ‘R’ platter is therefore used to open DATFIL-1.

After it has been changed, the default address can be reset to 31 O by:
1. Entering a SELECT DISK/310 statement, or

2. Master Initializing the system.

3-21

3.8 MULTIPLE DISK UNITS

If you have only one disk unit attached to your system, the problem of multiple disk addresses does
not concern you, since you will deal exclusively with the primary disk drive addresses 310 and B10
(and 350, on the Models 2270-3 and 2270A-3). Many installations, however, drive two or more
disks with a single system. (A typical configuration includes one large fixed/removable disk drive for
the data base, and a smaller diskette drive for software.) In multiple-disk configurations, the system
distinguishes different disk units by means of the last two digits in their unit device addresses.

3/B 10
I
Device Unit Device Address
Type (Identifies disk drive
number one)

Models 2260BC, 2260C, 2270/2270A-1, 2270/70A-2 and Minidiskette

For disk Models 2260B, 2260C, 2260BC, 2270-1, 2270-2, 2270A-1, 2270A-2, and Minidiskette,
the unit device address of each successive disk unit on the same system is usually computed by
adding HEX(10) to the disk device address of the primary disk. The addresses of successive disks are
listed in Table 3-1.

Table 3-1. Disk Addresses for Models 2260C, 2260BC,
2270-1, 2270-2 and Minidiskette

Disk Unit no. 1 3100rB10
Disk Unit no. 2 320 0orB20
Disk Unit no. 3 330 0rB30

Models 2270-3 and 2270A-3

For the Models 2270-3 and 2270A-3, the addressing scheme is somewhat different. The unit
device address of drives #1 and #2 in a second and third disk unit on the same system is computed
by adding HEX(10) to the primary disk address (310). The address of the drive #3 is computed by
adding HEX(40) to the primary disk address.

Table 3-2. Disk Addresses for Models 2270-3, and 2270A-3

Drives #1 and #2 Drive #3
Disk Unit no. 1 3100rB10 350
Disk Unit no. 2 320 orB20 360
Disk Unit no. 3 330 or B30 370

3-22

Models 2260BC-2/2260C-2

For the Models 2260BC-2 and 2260C-2, the individual disks are addressed as shown in Table 3-3.
The master drive in combination number 2 and combination number 3 of the same system is comput-
ed by adding HEX(10) to the primary disk address (310). Similarly, the address of the slave drive in
the first three combinations is computed by adding HEX(10) to the previous address (350).

Table 3-3. Disk Addresses for Models 2260C-2/2260BC-2

Master Slave
Combination no. 1 (Primary) 3100rB10 350 0orB50
Combination no. 2 320 0rB20 360 or B60
Combination no. 3 330 0rB30 370 0rB70

Model 2280 Dual Drives

For the Model 2280 Dual Drives, the individual platters are addressed as shown in Table 3-4. The
platter addresses in the master and slave drives of dual drives no. 2 and no. 3 of the same system are
computed by adding HEX(10) to the corresponding platter address of dual drive no. 1. In the same
dual drive, the slave platter address is computed by adding HEX{40) to the corresponding master plat-
ter address.

Table 3-4. Platter Addresses for Model 2280 Dual Drives

Master Slave

Dual Drive no. 1

Removable D10 (orB10) D50 (or B50)
First Fixed D11 (or310) D51 (or 350)
Second Fixed D12 D52

Third Fixed D13 D53

Fourth Fixed D14 D54

Fifth Fixed D15 D55

Dual Drive no. 2

Removable D20 (or B20) D60 (or B60)
First Fixed D21 (or 320) D61 (or 360)
Second Fixed D22 D62

Third Fixed D23 D63

Fourth Fixed D24 D64

Fifth Fixed D25 D65

Dual Drive no. 3

Removable D30 (or B30) D70 (or B70)
First Fixed D31 (or 330) D71 (or 370)
Second Fixed D32 D72

Third Fixed D33 D73

Fourth Fixed D34 D74

Fifth Fixed D35 D75

3-23

NOTE ON ALL DISK UNITS:

The device addresses for disk units are set at the
factory, or by your Wang Service Representative.
The address of each disk unit should be marked
on the disk controller board for that unit. If you
have questions about addressing multiple disks in
a system, contact your Wang Service
Representative.

Accessing Multiple Disk Units

The techniques for accessing a disk platter with catalog procedures are the same for additional
disk units on a system as for the primary unit. A platter can be accessed in four ways:

1.

Specifying the disk device address in a disk statement or command, e.g.:
100 LOAD R /330, “PROG-1"

Statement 100 loads PROG-1 from the ‘R’ platter in disk unit number three. Note that there
are a number of catalog statements in which the device address cannot be directly
specified.

By selecting a disk address as the default disk address, and referencing the default address,
e.g..

100 SELECT DISK/032
120 DATASAVE DC OPEN T (100) “DATFIL-1"

Statement 100 changes the default address from 310 to D32, and statement 120 opens
DATFIL-1 on the second fixed platter of a Model 2280 disk unit.

By assigning the disk address to a file number in the Device Table, and referencing the ad-
dress indirectly, via the file number, e.g.:

100 SELECT #3/320
110 DATASAVE DC OPENF #3, (100) “"DATFIL-1"

Statement 100 stores disk address 320 in the #3 slot in the Device Table, and statement
110 opens DATFIL-1 on the ‘F’ platter of disk unit number two. In this case, the disk unit is
determined from the disk address, while the disk platter is specified in the DATASAVE DC
OPEN statement (‘F’). Alternatively, both the disk unit and the disk platter can be deter-
mined from the device address:

100 SELECT #3/320
110 DATASAVE OPEN T #3, (100) “DATFIL-1"

3-24

in this case, both the disk unit (number two) and the disk platter (‘F’ platter) are determined
by inspection of the device address.

4. By assigning the device address to a file number in the Device Table, and referencing the
file number indirectly (via a variable), e.g.:

100 SELECT #3/B20

105 A = 3: B$ = “DATFIL-1"
110 DATASAVE DC OPEN T #A, (100) B$

Since A = 3, and address B20 is stored in slot #3 in the Device Table, the file DATFIL-1 is
opened on the ‘R’ platter of disk unit number two.

3.9 SUMMARY OF DEVICE TABLE ITEMS

File Status

Established only by:

Cleared by:

Device Type and Address
Default (#0) set by:

#1 - #15setby:

Cleared by:

File Start, Current, End

Established by:

Modified by:

DATASAVE DC OPEN

or

DATALOAD DC OPEN

File status = 1 when data file is open on a fixed platter.

File status = 2 when data file is open on a removable platter.

File status = 3 when data file is open using device type ‘D’; platter
is specified by the low hexdigit of the disk unit address.

DATASAVE DC CLOSE

CLEAR

LOAD RUN

Master Initialization

File status = 0, signifying the data file is not open.

SELECT #0
SELECT DISK
Master Initialization

SELECT #n

CLEAR
LOAD RUN
Master Initialization

DATALOAD DC OPEN
DATASAVE DC OPEN

DATALOAD DC
DATASAVE DC
DSKIP
DBACKSPACE

3-25

Cleared by:

CLEAR

LOAD RUN
DATASAVE DC CLOSE
Master Initialization

NOTE:

The contents of the Device Table can be displayed
in hexadecimal notation with a LIST DT command.

(See the Wang BASIC-2 Language Reference
Manual.)

3-26

CHAPTER 4
EFFICIENT USE OF THE DISK

4.1 INTRODUCTION

This chapter discusses several techniques designed to help you make more efficient use of your
disk, both in terms of optimizing the use of disk storage space and speeding up processing time for
disk files. The following topics are covered in the chapter:

1. Reserving additional space in program files for program expansion.
2. Establishing temporary work files on the disk.

3. Renaming and reusing scratched files.

4. Efficient use of disk storage space within records.

5. The LIMITS Statement.

4.2 PROGRAM FILES REVISED

The discussion of saving program files in Chapter 2 restricted itself to cases in which the system
used exactly enough disk space to hold the recorded program lines. In many cases, however, it is ad-
vantageous to reserve additional sectors within a program file for future expansion of the program. if
such additional space is reserved at the outset, the program can subsequently be expanded and writ-
ten back into its original location in the catalog (the reuse of scratched program file locations is de-
scribed in Section 4.5). If extra space is not reserved when the file is initially created, the expanded
program may not fit into its original space, and must be saved at a new location in the Catalog Area.
In this case, the space occupied by the old program is wasted, unless a new file can be found to
occupy it. The SAVE command provides a means of reserving extra sectors in a program file when
the program is initially stored on disk.

In order to reserve extra sectors in a program file, the number of additional sectors to be reserved
must be enclosed in parentheses and listed in the SAVE DC command immediately before the pro-
gram name. The system then automatically adds the specified number of additional sectors at the
end of the program file when the program is recorded on disk.

Example 4-1: Reserving Additional Sectors in a Program File

SAVE F {10) “PROG-1"

This command instructs the system to record all program lines currently in memory on the
‘F’ disk platter, and name the file “PROG-1". In addition to the sectors needed to hold the
program itself, 10 sectors are reserved for future additions to the program (see Figure 4-1).

——————————————————————— Currently Saved Program -~ - - ————————————===——————— -
HEADER 18T 2ND 3RD Nth TRAILER END-OF-FILE
RECORD PROG PROG PROG PROG RECORD CONTROL
“PROG 1" RECORD RECORD RECORD RECORD RECORD

Free space available for
subsequent expansion of
program within this file
(10 sectors).

Figure 4-1. The Program File PROG-1 with Ten Extra Sectors Reserved

4.3 ESTABLISHING TEMPORARY WORK FILES ON DISK

Temporary work files can be useful in a variety of data processing operations. A “temporary” work
file is opened with a DATASAVE DC OPEN statement, but unlike a regular cataloged file, it is not
listed in the Catalog Index, and not stored in the Catalog Area on disk. Its parameters are, however,
entered in the Device Table in memory. Temporary files may be used as transaction files, to contain
transactions saved over a period of time and processed as a batch, or as scratch files, in which the re-
sults of intermediate calculations are stored prior to final processing. They may, in short, be used as a
storage area for any type of transient data which is not sufficiently final to warrant storage in a perma-
nent file.

Because they are not cataloged, temporary files must be stored outside the Catalog Area on disk.
The end of the Catalog Area (that is, the address of the last sector reserved for the Catalog Area) is
specified in the SCRATCH DISK statement when the catalog is established. If temporary files are to
be used, the catalog may not occupy the entire platter; a number of sectors must be left outside the
Catalog Area for the temporary files. For example, the Model 2260-B1/4 and 2260-C1/4 each have
4800 sectors on each platter. Since sector numbering starts at zero rather than one, the highest
sector address is 4799. If a number of sectors {say, 100) are to be left available for temporary files,
the address of the last sector in the Catalog Area must be 4799 minus 100, or 4699:

100 SCRATCH DISK F END=4699

Sectors 4700 through 4799 are left outside the Catalog Area, and may be used for temporary files.

Non-
Catalog Catalog Catalog
Area Area Index

Track #0

Figure 4-2. Layout of the Platter Surface Showing Catalog Index, Catalog Area, and
Non-Catalog Area (Used for Storage of Temporary Files)

Temporary files are opened and accessed with the same BASIC statements used to open and
access cataloged files. However, temporary files cannot be named, nor can they be accessed by
name. Instead, the special TEMP parameter, along with the beginning and ending sector addresses of
the temporary file, must be specified in the DATASAVE DC OPEN statement when the file is opened
initially, and again in the DATALOAD DC OPEN statement when the file is re-opened.

Example 4-2: Opening a Temporary Work File on Disk
300 DATASAVE DC OPEN R TEMP 4700, 4799

Statement 300 opens a temporary work file on the ‘R’ disk platter. Sectors 4700 through 4799
are reserved for this temporary file {these sectors must be outside the Catalog Area). No infor-
mation on the file is entered in the Catalog Index; however, the temporary file's parameters are
entered in the default slot {#0) in the Device Table. Following the execution of statement 300,
any DATASAVE DC or DATALOAD DC statement which does not specify a file number {i.e.,
which references the default slot) will read or write data in the temporary file.

Like cataloged files, temporary files can be assigned file numbers. In this way, more than one
temporary file can be open at the same time.

Example 4-3: Opening More Than One Temporary Work File
300 SELECT #1/310, #3/310

320 DATASAVE DC OPENF #1, TEMP 4700, 4749
330 DATASAVE DC OPEN F #3, TEMP 4750, 4799

4-3

Statement 300 stores disk address 310 opposite file numbers #1 and #3 in the Device Table.
Statement 320 opens a temporary file on the ‘F’ platter, reserves sectors 4700 through 4749
for that file, and enters the file parameters in slot #1 of the Device Table. Statement 330 opens
a second temporary file on the ‘F’ platter, occupying sectors 4750-4799, and assigns its
parameters to slot #3 in the Device Table. Any reference to #1 or #3 in a DATASAVE DC or
DATALOAD DC statement accesses these temporary files.

Data is stored in a temporary file just as it is stored in a cataloged file. As with a cataloged file, a
data trailer record should always be written in the file at the completion of a data storage operation.
As with cataloged data files, the last sector of a temporary data file is used by the system for control
information, and therefore, at least one additional sector should be reserved for this purpose.

A temporary file is closed in the same way a cataloged file is closed; it is re-opened with a
DATALOAD DC OPEN statement. The TEMP parameter and the beginning and ending sector ad-
dresses of the file must be specified.

Example 4-4: Re-opening a Temporary Work File
500 DATALOAD DC OPEN F TEMP 4750, 4799

Statement 500 re-opens an existing temporary file beginning at sector 4750 on the ‘F’ disk
platter.

WARNING:

Temporary files must be used carefully since the
system does not guard against opening a tempo-
rary file in the same location as an existing tempo-
rary file. It is the programmer’s responsibility to
assure that this does not occur. In a multi-user
system (MVP or multiplexed 2200’s) controlling
temporary files may be difficult and is generally
not recommended.

4.4 ALTERING THE CATALOG AREA

The upper limit of the Catalog Area is originally set with the END parameter in a SCRATCH DISK
statement when the catalog is created. If more room is needed for temporary files, or if more sectors
must be devoted to cataloged files, the size of the Catalog Area can be changed with a MOVE END
statement. In this statement, it is necessary to specify only the sector address which is to become the
new ending sector address of the Catalog Area. Note that MOVE END alters the size of the Catalog
Area only; it does not change the size of the Catalog Index.

Example 4-5: Changing the Size of the Catalog Area

100 SCRATCH DISK F LS=30, END=4699

500 MOVE END F = 4599

4-4

Statement 100 sets the limit of the Catalog Area at sector 4699. Statement 500 moves the
limit back 100 sectors, to sector 4599, thereby allowing 100 additional sectors to be used for
temporary files (outside the Catalog Area). The Catalog Area may be expanded as well as con-
stricted, but its upper limit must never exceed the highest sector address available on a disk plat-
ter. The size of the Catalog Index cannot be changed with MOVE END.

4.5 RENAMING AND REUSING SCRATCHED FILES

Temporary files offer one good way to make the most efficient use of disk storage space. Another
way to get maximum use out of available disk storage area is to reuse the space occupied by
scratched files. As you saw in Chapter 2, one way to eliminate scratched files is to execute a MOVE
operation, since MOVE automatically deletes scratched files when it copies the catalog to a new plat-
ter. In many cases, however, it is easier and more efficient to store a new program or new data file
directly into space occupied by a scratched file, without moving the whole catalog to a second platter.
This is true particularly in the case of revised programs. New files are recorded in the space occupied
by scratched files with the SAVE DC command and DATASAVE DC OPEN statement. The file type of
the scratched file (program or data) is irrelevant when opening a new file in its space: a program file
may be saved in the space occupied by a scratched data file, and a data file may be saved in the
space occupied by a scratched program file. The scratched file name must precede the new file name
in the SAVE DC command or DATASAVE DC OPEN statement.

Example 4-6: Saving a Program in Space Occupied by a Scratched File

SCRATCHR “PROG1”
SAVE R (“PROG1") "PROG2" 200, 500

The SCRATCH statement causes program file PROG 1 to be set to a scratched status. SAVE
then stores the new program in lines 200 through 500 in the sectors previously reserved for
PROG1, and names it “PROG2”. The new file name {“PROG2") and location are entered in the
Catalog Index. The scratched entry for PROG1 remains in the Catalog Index, although it no
longer appears in a listing of the Index.

Notice that the scratched file name must be enclosed in parentheses when it is referenced in a
SAVE command.

Example 4-7: Opening a Data File in Space Occupied by a Scratched File

10 SCRATCH F “DATFIL1"
20 DATASAVE DC OPEN F (“"DATFIL1") “DATFIL2”

Statement 10 scratches DATFIL1. Statement 20 assigns the sectors previously reserved for
DATFIL1 to DATFIL2, and updates the Catalog Index accordingly. DATFIL2’s parameters (pre-
viously those of DATFIL1) are entered in the default slot (#0) in the Device Table. The scratched

entry for DATFIL1 remains in the Catalog Index, although it is disabled and no longer appears in
a listing of the Index.

A program file which has been scratched can be reused as a data file, and vice versa.
Example 4-8: Opening a Data File in Space Occupied by a Scratched Program File

10 SCRATCH F “PROG-1"
20 DATASAVE DC OPENF #1, (“PROG-1") "DATFIL-3"

4-5

Statement 10 scratches PROG-1. Statement 20 assigns the sectors on disk previously reserved
for PROG-1 to DATFIL-3, and updates the Catalog Index accordingly. DATFIL-3's parameters
(previously those of PROG-1) are entered in slot #1 in the Device Table (the disk device address
must previously have been stored opposite #1). The scratched entry for PROG-1 is not removed
from the Catalog Index, however, although it no longer appears in the Index listing.

It is entirely possible to rename a scratched file with the same name. This feature is useful for revis-
ing program files, since the program can be updated and then resaved into the original location with
the same name (assuming, of course, that additional space has been reserved in the original file for
expansion of the program).

Example 4-9: Renaming a Scratched Program File with the Same Name

SCRATCHR “PROG-1"
SAVE R()"PROG-1"

The SCRATCH statement scratches PROG-1. The SAVE command subsequently resaves an
updated version of the program, assigning it the same name (“PROG-1"), and storing it in the
same location as the original PROG 1. If there is not enough space in the file for the new pro-
gram, an error is signalled.

If a program is to be updated but the new program file is larger than the existing file, the following
technique can be used. Assume “PROG” is the program file to be updated. “PROG" must be eliminat-
ed from the catalog index (by renaming the file) so that a new file can be created with the name
“"PROG".

Example 4-10: Updating a Program File with the Same Name

10 SCRATCHF “PROG"”
20 SAVE F ("PROG”) “JUNK" 0O, O
30 SCRATCH F “JUNK"
40 SAVE F (10) “PROG”

Statement 10 scratches PROG. Statement 20 retains the sectors previously reserved for PROG
and names the new program JUNK. Since JUNK is created only to allow name “PROG” to be
reused, statement 30 scratches JUNK. In statement 40 PROG is saved with extra space reserved
so that future updating can be performed without renaming the file.

Finally, it is also possible to scratch and rename a data file without disturbing the data in the file, if
you simply want to give the file a new name.

Example 4-11: Renaming a Scratched Data File Which Is Still Viable

10 SCRATCH “DATFIL-1"
20 DATASAVE DC OPEN F (“DATFIL-1") “TEST2"

Statement 10 scratches DATFIL-1. Statement 20 renames DATFIL-1 with the name “TEST2".
The data in the file is not disturbed. However, the end-of-file trailer record in the file is lost and
the USED column for TEST2 in the Catalog Index is reset to 1. Thus, you should note the sector
address of the trailer record in DATFIL 1 prior to scratching it. After opening TEST2, you can
skip to that location and rewrite the end-of-file record. Throughout this operation, the data is
unaltered.

4-6

NOTE:

Although the name of a scratched file no longer
appears in the catalog listing once the file has
been renamed, the entry for the scratched file
name remains in the Catalog Index. Thus, if a
single file is scratched and renamed 16 times, only
the final name appears in the catalog listing, des-
pite the fact that all 16 names remain in the Cata-
log Index itself. Those 16 names would occupy
one entire sector of the Catalog Index. Scratched
file names can be removed from the Index only by
executing a MOVE. The single exception to this
rule is the case in which a scratched file is
renamed with the same name. In that case, the
same slot on the Catalog Index is used, and no
duplication occurs. If it is necessary to scratch and
rename files frequently, therefore, provision must
be made for the scratched file names when estab-
lishing the size of the Catalog Index initially with
SCRATCH DISK. Remember that the size of the
Index cannot be altered once the catalog has been
created.

4.6 EFFICIENT USE OF DISK STORAGE SPACE

The large storage capability of the disk unit may occasionally tempt the programmer to become
inefficient in his use of disk storage space. Specifically, he may be tempted to design his records
without due care for packing a maximum amount of data in a minimum number of sectors. Even when
the available storage clearly exceeds present needs, however, this temptation should be overcome.
Files have a way of outgrowing preliminary estimates at a faster-than-expected rate. Also, a file
which is compact can be searched more quickly than one which is loosely layed out and contains
large amounts of wasted space. In order to organize data within a record efficiently, it is necessary to
understand more precisely how the system stores data in a sector. There are two main points to be
considered:

1. Control information: The system automatically records control information along with the
data in each sector. The control information occupies space in the data field of a sector,
and must be taken into account when calculating how much space is required for a given
amount of data.

2. "Gaps” in multisector records: Under certain conditions, gaps may occur between fields in
a multisector record. In order to optimize the use of disk storage space, such gaps must be
kept to a minimum.

System Control Information

The System automatically writes control information in each record created with a DATASAVE DC
statement (or DATASAVE DA statement). This information is of two types:

1. Sector control bytes.
2. Start-of-value (SOV) control bytes.

Three sector control bytes are automatically written in each sector of a logical data record. The
first two sector control bytes occupy the first two locations in the sector. The third control byte fol-
lows the last byte in the last field in the sector, and marks the end of valid data within that sector. In-
formation in the sector following the last sector control byte (also called the “end-of-block” byte) is
regarded as garbage, and is ignored by the system when the sector is read. After taking into account
the three sector control bytes, only 253 of the 256 bytes in a sector are initially available for data
storage.

In addition to the sector control bytes, a start-of-value (SOV) control byte is prefixed to every field
stored in the sector. The SOV byte separates data fields within a sector, marking the beginning of
each individual value in the sector.

Consider, for example, the following statements:

10 DIM A$(2) 30
20 DATASAVE DC AS(), B$, “ABCD", 123,N

The argument list in statement 20 contains six separate arguments, each of which is prefixed with
an SOV control byte when saved on disk. (Remember that each element of an array constitutes a
single argument. Since A$() has two elements, it must be counted as two arguments.) The logical
record created by statement 20, therefore looks like this:

30 bytes 30 bytes 16 bytes 4 bytes 8 bytes 8 bytes
P A= ~ A N AN A —A
S S S S S S E
o) AS(1) 0 AS$(2) 0 B$ o] “ABCD” |o| 123 |o|] N o)
\Y \ \Y \Y \Y \Y B \
N
Sov Ssov SOV Sov SOV SOV End of data UNUSED
for for for for for for control byte
AS(1) AS(2) B$ “ABCD” 123 N
2 sector
control
bytes

Figure 4-3. One Logical Record, Showing Sector Control Bytes
and Start-of-Value Control Bytes for Each Field

4-8

From this illustration, the following disk storage requirements can be inferred:

a) Each numeric value, variable, or array element in the argument list always occupies nine
bytes on disk (eight bytes for the numeric value and one byte for the SOoV).

b) Each literal string in quotes occupies a number of bytes on disk equal to the number of
characters in the literal string, plus one SOV byte.

¢) Each alphanumeric variable or array element occupies a number of bytes on disk equal to
the dimensioned length of the variable or element, plus one SOV byte.

Note that in the case of an alpha variable or array element, it is the dimensioned size, and not the
number of characters actually stored in the variable or element, which must be counted. For example,
the routine

50 DIM A$ 20
60 A$ = “ABC”

produces an alpha variable A$ which occupies 21 bytes on the disk (20 + 1), despite the fact that A$
contains a literal string only three characters in length. The remaining 17 bytes of A$ are blanks
(spaces).

Inter-Field Gaps

In no case will the system overlap a single field from one sector to the next. If a field does not fit
completely into one sector, it is written in its entirety into the next sequential sector. If record layouts
are not carefully designed, this situation often gives rise to gaps between fields in multisector records.

Suppose, for example, that a logical record has been created with the following routine:

10 DIM A$(5)50, B$(3)64, C$48

100 DATASAVE DC A$(), BS(), C$

You could do some quick calculating, and making sure to add a control byte for each argument,
conclude that the total record occupies 499 bytes. Since each sector can hold 253 bytes of data and
control information (after the three sector control bytes are subtracted, two sectors can contain a
total of 506 bytes). You might assume, therefore, that the record will fit easily into two sectors. Un-
fortunately, this calculation does not take into account the possibility of an inter-field gap. The argu-

Gap
+

\

AS(1) | AS(2) | AS(3) | AS(4) A$(5) | BS(1) | BS(2)| BS(3) \ Ccs$
N\

_

N — N — N N S —_— —\— —_—— N—— 7 e Ve ~
51 51 51 51 49 51 65 65 65 (unused) 49 204
{Unused)
~ "~ "
253 253 253
Sector # 100 Sector # 101 Sector # 102

Figure 4-4. Inter-Field Gapina Multi-Sector Record

4-9

Notice that the last field in sector 100 consists of 49 bytes, and is marked “unused”. Since A$(5)
requires 51 bytes of space, it does not fit into the remaining 49 bytes in sector 100, and the entire
field is written into the next sector {sector #101). The unused 49 bytes in sector #100 represent a
“gap” of wasted space between A$(4) and A$(5). As a result of this gap, C$ must be written in a
third sector. Instead of requiring two sectors, as the figures indicated, this record occupies three sec-
tors. If the file contains, say, 100 such records, it will require 100 more sectors than were initially
estimated.

The waste resulting from inter-field gaps can, in many cases, be decreased or eliminated by careful
attention to the design of the record. In this case, for example, the record can be made to fit into two
sectors simply by rearranging the order of the arguments in the DATASAVE DC argument list:

100 DATASAVEDC C$, AS$({), B$()

The resulting logical record now looks like this:

c$ AS(1) A$(2) AS$(3) A$(4) AS$(5) B$(1) B$(2) B$(3)
— N e N —_ = Y
49 51 51 51 51 51 65 65 65 7
Unused
—V '
253 253
Sector#100 Sector#101

Figure 4-5. A Multi-Sector Record with No Gaps

By moving C$ from the end of the argument list to the beginning, the 49-byte gap in sector 100 is
filled, thereby eliminating the need for a third sector in the record.

4.7 THE “LIMITS” STATEMENT

A special catalog statement, LIMITS, enables the programmer to obtain the sector address parame-
ters of a cataloged file under program control. For catalog operations alone, LIMITS is useful in such
ways as, for example, keeping track of the amount of free space remaining in a file during an input
routine. When the catalog procedures are supplemented with Absolute Sector Addressing operations
(discussed in Chapter 6), which provide direct access to individual sectors, LIMITS becomes a truly
powerful programming tool. One important use of LIMITS in conjunction with Absolute Sector Ad-
dressing statements is in the binary search technique described in Chapter 6.

The LIMITS statement has two forms. In Form 1, the name of a cataloged disk file is specified in
the LIMITS statement. In this case, LIMITS goes directly to the disk and retrieves the starting sector
address, ending sector address, and number of sectors used for the named file from the Catalog
Index. In Form 2, the file name is omitted from the LIMITS statement. When this form is used, LIMITS
reads the sector address parameters from a specified slot in the Device Table (the default slot if no
file number is specified), and retrieves the starting, ending, and current sector address parameters
from that slot. In this case, the disk is never accessed.

Form 1 of LIMITS
In Form 1 of the LIMITS statement, the following information must be specified:
1. The disk platter on which the named file resides (‘F',’R",or ‘T').
2. Optionally, a file number (#0-#15).

The name of the file whose parameters are to be obtained.

4. Three numeric return variables designated to receive the file parameters. Variable #1 is set
equal to the starting sector address of the file, variable #2 is set equal to the ending sector
address, and variable #3 is set equal to the number of sectors used in the file.

5. Optionally, a variable #4 designated to receive a value indicating the status of the specified
file.

Form 1 of the LIMITS statement reads the Catalog Index entry for the named file and extracts the
starting and ending addresses, and number of sectors used, and copies them into the three designat-
ed return variables (variables #1, #2, and #3). The status parameter variable #1 receives one of the
following values indicating the status of the file:

Value Status
2 active data file
1 active program file
0 filename not in index

(in this case, variable #1 =
variable #2 = variable #3 = 0)

-1 scratched program file
-2 scratched data file
Example 4-12: Form 1 of the LIMITS Statement {'File Name’ Specified)
60 LIMITS F “TEST”, AB,C.D
Line 60 instructs the system to search the Catalog Index on the ‘F’ platter for the file “TEST",
and retrieve the beginning and ending sector addresses of TEST, as well as the number of sec-
tors used. These values are transferred to the variables A,B,C, and D according to the following
scheme:
A = Starting sector address.
B = Ending sector address.
C = Number of sectors used.
D = 1 (if “TEST" is an active program file).
Example 4-13: Form 1 of the LIMITS Statement (‘File Name’ and a File Number Specified)

100 LIMITS T #2, “FILE-1", N,O,P,Q

Line 100 instructs the system to retrieve the file parameters of FILE-1 from the platter address
listed under file #2 in the Device Table. The parameters are stored in the designated return varia-
bles N,O,P. If “FILE-1" is a data file, Q assumes the value 2.

Example 4-14: Form 1 of the LIMITS Statement (‘File Name’ Not in Catalog Index)

200 LIMITS R “DATA-2", T,O,N,Y

Line 200 instructs the system to retrieve the file parameters of DATA-2 from the ‘R’ platter.
However, DATA-2 is not in the ‘R’ platter; therefore the sector variables are all set to zero as is
the status variable, variable #4.

T=0=N=Y = zero.

Example 4-15: Form 1 of the LIMITS Statement (‘'File Name’ Scratched)

300 LIMITS F #10, “CRAPS44”,L,U,C K

Line 300 instructs the system to retrieve the file parameters of CRAPS44 from the ‘F’ platter.

The parameters are stored in the designated return variables L,U,C. The variable K takes on the
value -2 to signify that CRAPS44 is a scratched data file.

Form 2 of Limits

In Form 2 of the LIMITS statement, the following information must be specified:

1. The T’ parameter.

2. The file number (#0-#15) of a currently open file (if no file number is specified, the default
file number, #0, is used).

3. Three numeric return variables designated to receive the file parameters. Variable #1 is set
equal to the starting sector address of the file, variable #2 is set equal to the ending sector
address, and variable #3 is set equal to the current sector address.

Form 2 of the LIMITS statement reads the sector address parameters from a specified slot in the
Device Table, and stores them in the designated return variables. Unlike Form 1, Form 2 does not
access the disk to read the Catalog index.

Example 4-16: Form 2 of the LIMITS Statement (‘File Name’ Not Specified)
150 LIMITS T A,B,C

Line 150 reads the sector address parameters (starting, ending, current) from the default slot in
the Device Table (since no file number is specified), and stores them in variables A,B,C in the fol-
lowing order:

A = Starting sector address.
B = Ending sector address.
C = Current sector address.

Example 4-17: Form 2 of the LIMITS Statement (‘File Name’ Not Specified)
200 LIMITS T #3,N,O,P

Line 200 retrieves the sector address parameters from the Device Table slot opposite file
number #3, and stores those parameters in variables N,O,P.

Note that Form 2 of the LIMITS statement makes no check on the validity of the information read
from the Device Table. It is the programmer’s responsibility to ensure that the specified file number is
associated with a currently open cataloged file. Because Absolute Sector Addressing operations do
not store meaningful file parameter information in the Device Table, LIMITS should not be used with
files maintained in Absolute Sector Addressing Mode. (LIMITS may be used in conjunction with Abso-
lute Sector Addressing procedures to process a cataloged file, however; see Section 6.7.)

4.8 CONCLUSION

The discussion of catalog procedures is now concluded. All of the characteristics of the several
catalog statements and commands and their applications have been touched upon. The programmer
who wishes to make the most efficient use of the catalog procedures should press on, however, and
read Chapter 6, which deals with the Absolute Sector Addressing Mode. Absolute Sector Addressing
statements and procedures can be used in conjunction with cataloging procedures to produce a more
versatile and efficient disk management system. In particular, Chapter 6 discusses the “binary
search” technique for directly accessing records in a cataloged file.

CHAPTERS5
AUTOMATIC FILE CATALOGING STATEMENTS AND COMMANDS

5.1 INTRODUCTION

This chapter contains capsule descriptions and general forms for the following Automatic File
Cataloging statements and commands, listed alphabetically for ease of reference:

DATALOAD DC LOAD (Command)
DATALOAD DC OPEN LOAD (Statement)
DATASAVE DC LOAD RUN
DATASAVE DC CLOSE MOVE
DATASAVE DC OPEN MOVE END
DBACKSPACE SAVE

DSKIP SCRATCH

LIMITS SCRATCHDISK
LIST DC VERIFY

$FORMAT DISK

5.2 SYSTEM 2200VP/MVP DISK STATEMENTS AND COMMANDS

The distinction between a statement and a command requires some explanation. Statements are
programmable instructions used to write programs in BASIC-2. Every line in a BASIC-2 program con-
sists of one or more statements, each of which directs the system to perform a specific operation or
sequence of operations. Commands are used by the operator to control system operations directly
from the keyboard, and generally are not programmable. Commands are entered and executed im-
mediately by the operator; they are not stored in memory as part of a program.

Almost all BASIC-2 instructions governing disk operations are statements, and, as such, may be ex-
ecuted either in Program Mode (i.e., on a numbered program line) or in Immediate Mode. The se-
quence of operations associated with a disk statement when it is executed within a program is identi-
cal to the sequence of operations associated with the statement when it is executed in Immediate
Mode.

A single exception to this rule, however, is represented by LOAD (and LOAD DA). The sequence of
operations initiated by a LOAD (or LOAD DA) instruction when it is executed in Immediate Mode is
significantly different from the sequence of operations initiated by the same instruction when execut-
ed on a numbered program line. For this reason, the LOAD instruction is treated as two separate and
distinct entities, distinguished by their mode of execution: the LOAD statement (executed in a pro-
gram), and the LOAD command (executed in Immediate Mode). LOAD DA is treated similarly in Chap-
ter 7.

The only command in the BASIC-2 disk instructions is LOAD RUN. This command cannot be ex-
ecuted in a program.

5-1

5.3 BASIC RULES OF SYNTAX AND TERMINOLOGY

Rules of Syntax

The notation and rules of syntax employed in the General Forms of disk statements follow the con-
ventions used in the System 2200VP/MVP BASIC-2 Language Reference Manual. The conventions
are summarized below:

1.

The following symbols must be included in an actual BASIC statement exactly as they
appear in the General Form of the statement:

a. Uppercase letters A through 2
b. Comma .

c. Double Quotation Marks "’

d. Parentheses ()

e. Pound Sign #

f. Slash /

Lowercase letters and words in the General Form of a statement represent items whose
values must be assigned by the programmer. For example, if the lowercase word “file-
name” appears in a General Form, the programmer must substitute a specific file name
(such as “PROG 1”), or an alphanumeric variable containing the name, in the actual
statement.

Three special symbols are used in the General Forms to indicate optional, alternate, or
repetitive items. These symbols are never included in an actual BASIC statement:

a. Brackets []
b. Braces {}
c. Ellipses

Square brackets, [], indicate that the enclosed information is optional, and may be included
or not in the actual BASIC statement, at the programmer’s discretion.

Vertically stacked items represent alternatives, only one of which should be included in an
actual BASIC statement:

a. Square brackets, [], enclosing vertically stacked items, indicate that all of the items
are optional.

b. Braces, { }, enclosing vertically stacked items, indicate that one of the items must be
included in an actual statement.

Ellipses, ..., indicate that the preceding item(s) may be repeated once or several times in
succession.

Blanks (spaces); used to improve the readability of the General Forms, are meaningless to
the system (unless enciosed in double quotation marks), and may be omitted or included in
an actual statement, at the option of the programmer.

The sequence in which terms are listed in the General Form of a statement must be fol-
lowed exactly in an actual statement.

5-2

Definition of Terms Used in General Forms

The following terms are used frequently in the General Forms of disk statements and commands in
this chapter and in Chapter 7. They are defined here rather than repeated for each statement or
command.

BA = a parameter specifying Absolute Sector Address Mode and block data
format.
DA = a parameter specifying Absolute Sector Address Mode and standard
System 2200 data format.
DC = aparameter specifying Disk Catalog Mode.
disk
address = /xyy

where: x = device type (see Section 1.4).
yy = unit device address of disk.

If neither a file # nor a disk-address is explicitly specified in a disk
statement, the default Device table slot (#0)is used.

literal-string

file { }

name = lalpha-variable), length of file name must be from 1 to 8 characters. The file-name
specifies a cataloged disk file.

integer

file# = #{numeric-variable}, the value of the integer or value of the variable must be from O
to 15. The file # specifies the Device Table Slot to be used by the disk statement.
The Device Table Slot contains the disk address (assigned by a SELECT statement)
and file ‘start’, ‘end’, and ‘current’ sector address information for certain Disk Catalog
Mode statements. If neither a file # nor a disk address is explicitly specified in a disk
statement, the default Device Table slot (#0) is used.

F
platter = R
T

where: F specifies the fixed platter of a Model 2260 series drive, the platter in the
first drive of a 2270/2270A, the diskette in the first drive of a minidiskette,
or the diskette in the third drive of a 2270-3/2270A-3.

R specifies the removable platter of a Model 2260 series drive, the diskette in
the second drive of a 2270/2270A or the diskette in the second drive of a
minidiskette.

T specifies either ‘F" or ‘R’ depending on the device type specified in the disk
address.

5-3

On the Model 2260 and 2270 Series, device type 3 implies ‘F’; device type B
implies ‘R’.

Platter specification T must be used whenever device type ‘D’ is used to
access a disk.

= a parameter specifying read-after-write verification is to be performed on all data
written to disk. Read-after-write not only detects improperly written information, but
also effectively doubles the time required for the write operation.

5-4

DATALOAD DC

General Form:

DATALOAD DC [file#, | argument-list

where:
variable variable
argument-list = [{] eee
array array
Purpose:

The DATALOAD DC statement is used to read logical data records from a cataloged disk file and
sequentially assign the values read to the variables and/or arrays in the argument list. An error results
if numeric data is assigned to an alpha variable, or vice versa. If data assigned to an alpha variable is
shorter than the length of the variable, the value is padded with trailing spaces; if the value is longer,
it is truncated. Before data can be read from a cataloged file, the file must be opened by a
DATALOAD DC OPEN or DATASAVE DC OPEN statement. Thereafter, each time a DATALOAD DC
statement is executed, the system begins reading data from the file at the next sequential logical
record in the file. Arrays are filled row by row. Notice that alpha arrays (e.g., A$()) receive a separate
data value for each element of the array. However, the STR () of an array receives only one value.

If the DATALOAD DC receiving variable list is not filled by one logical record, the next logical
record is read. If the logical record being read contains more data than is required to fill all receiving
variables in the argument list, data not used is read but ignored. Each time the DATALOAD DC state-
ment is executed, the Current Sector Address associated with the file in the Device Table is updated
to the Starting Sector Address of the next consecutive logical record. If an end-of-file trailer record is
read, an end-of-file condition is set, the Current Sector Address is set to the address of the trailer
record, and no data is transferred. The end-of-file condition can be tested by a subsequent IF END
THEN statement. If the user attempts to read beyond the final sector address for the file, an error is
signalled.

Examples of valid syntax:
100 DATALOAD DC S(), Y, Z

100 DATALOAD DC #2, A$(), B()
100 DATALOAD DC #B2, B(), C, D$

5-5

DATALOAD DC OPEN

General Form:

file-name
DATALOAD DC OPEN platter [file #, |
TEMPI, |start-sector, end-sector
where:
TEMP = A temporary work file is to be reopened.

start-sector = An expression whose value is the starting sector address of the temporary
work file.

end-sector = An expression whose value is the ending sector address of the temporary
work file.

Purpose:

The DATALOAD DC OPEN statement is used to open data files that have previously been cataloged
on the disk. When the statement is executed, it locates the named file on the specified disk platter,
and sets up the starting, current, and ending sector addresses of the file in the Device Table (the cur-
rent address is set equal to the starting address). The platter digit in the file status column of the
Device Table reflects which platter the file was open on (1" if ‘F’ and ‘2’ if ‘R’). Any subsequent use of
the same file number in other catalog (DC) statements accesses this file. If no file number is included,
the file is assumed to be associated with the default file number (#0) and can be accessed by subse-
quent DC statements with the file number omitted, or by specifying file # = #0.

An error will result if the file name cannot be located in the Catalog Index of the specified disk, or if
the file has been scratched.

The TEMP parameter is used to re-open a temporary work file; the starting and ending addresses
must not be located in the cataloged area. Temporary file areas can be accessed with catalog state-
ments and commands (e.g., DATASAVE DC, DATALOAD DC, etc.). Caution must be exercised when
using temporary files in a multi-user or multiplexed disk environment. Here the temporary file start-
sector and end-sector parameters are maintained local to each CPU. The system does not restrict
two or more users from requesting the same temporary file space on disk.

The DATALOAD DC OPEN statement must be used when reopening an existing cataloged data
file; use of the DATASAVE DC OPEN statement results in an error if the named file is already in the
catalog and has not been scratched. Therefore, DATALOAD DC OPEN is used to reopen a cataloged
file irrespective of whether data is to be written in the file with a DATASAVE DC statement or read
from the file with a DATALOAD DC statement.

Examples of valid syntax:
100 DATALOAD DC OPEN F “HEADING”
100 DATALOAD DC OPENR #2, A$

100 DATALOAD DC OPEN T #A, TEMP 8000, 9000
100 DATALOAD DC OPEN T “PARTFIL”

5-6

DATASAVEDC

General Form:

END
DATASAVEDCI[$] [fie#, |
argument-list

where: .
literal litera
. i variable
argument-list = { variable . oo
expression) expression
array array
END = Write a data trailer (end-of-file) record.
Purpose:

The DATASAVE DC statement causes one logical record, consisting of all the data in the
DATASAVE DC argument list, to be written onto the disk, starting at the current sector address asso-
ciated with the specified file number (#n) in the Device Table. If no file number is specified in the
DATASAVE DC statement, the data is written into the file currently associated with the default file
number (#0) in the Device Table. The file must previously have been opened with a DATASAVE DC
OPEN or DATALOAD DC OPEN statement. No data can be saved into an unopened file; if the
DATASAVE DC statement specifies a file number not associated with a currently open file, an error
results.

The DATASAVE DC argument list may include literal strings (e.g., “JOHN JONES”) and expressions
(e.g., B+C), as well as alphanumeric and numeric variables and arrays.

The ‘DC’ parameter implies that the data in the argument list is to be written as one logical record
in standard System 2200 format, including the necessary control information. The values in the argu-
ment list are stored sequentially on the specified disk. Arrays are written row by row. It should be
noted that each element of an array is written as a separate data value. However, the STR () of an
alpha array represents a single data value. Alphanumeric values must be < 124 bytes in length. Each
single logical record may consist of one or more sectors on the disk.

NOTE:

Each numeric value in the argument list requires 9
bytes of storage on disk. Each alphanumeric varia-
ble requires the maximum length to which the
variable is dimensioned plus 1 byte; e.g., if the
length of A$ is set to 24 characters in a DIM A$24
statement, then A$ requires 25 (24 + 1) bytes of
storage on disk. Each 256 byte sector also re-
quires 3 bytes of sector control information (refer
to Section 7.6).

The ‘$’ parameter specifies that a read-after-write verification test be made on all data written
to the disk. This test not only provides an extra safeguard against disk write errors, but it also sub-
stantially increases the time required for the DATASAVE DC operation.

5-7

If the END parameter is specified, a data trailer record is written in the file, and the Catalog Index
entry for the file is updated so that the number of sectors used by the file includes all sectors up to
the trailer record just written. A cataloged file always should be ended by a trailer record. A new data
record can be stored in the file by writing over the trailer record, and subsequently creating a new trail-
er record. (A DSKIP END statement positions the system to the beginning of the trailer record; a
DATASAVE DC statement can be executed at that point to store the new record over the trailer
record, and a subsequent DATASAVE DC END statement executed to create a new trailer record.)

Examples of valid syntax:

100 DATASAVEDC A X, “CODE#4"

100 DATASAVEDC $ #2, M$, P2(), F1$()

100 DATASAVEDC $ #1, “ADDRESS”, {3+1)/100, J$()
100 DATASAVEDC #3, END

100 DATASAVE DC #A, A$()

5-8

DATASAVE DC CLOSE

General Form:

file #
DATA SAVEDC CLOSE
ALL

where:

ALL = Al currently open files are to be closed

Purpose:

The DATASAVE DC CLOSE statement is used to close an individual data file or all data files which
are currently open, if they are no longer needed in the current or subsequent programs. The
DATASAVE DC CLOSE statement closes a file by setting the starting, ending, and current sector ad-
dresses and platter digit associated with its file number in the Device Table equal to zero. When the
file is closed, a disk statement referencing that file causes an ERROR D8O (File Not Open) to be
displayed.

If the file # parameter is used, the single file associated with that file number is closed. If the ALL
parameter is used, every open file is closed. If neither parameter is used, the currently open file asso-
ciated with the default file number (#0) is closed.

The DATASAVE DC CLOSE statement should not be confused with DATASAVE DC END. The
latter writes an end-of-file record at the end of a newly written file. The end-of-file record should
always be written prior to executing DATASAVE DC CLOSE.

It is good programming practice to close a file with DATASAVE DC CLOSE upon completion of
processing, since it ensures that subsequent disk users will not erroneously access the file and possi-
bly destroy data. Likewise, DATASAVE DC CLOSE can be used at the beginning of a program to ini-
tialize file parameters to zero before they are set by DATASAVE DC OPEN or DATALOAD DC OPEN.
DATASAVE DC CLOSE does not remove disk device addresses from the Device Table.

Examples of valid syntax:
900 DATASAVE DC CLOSE
900 DATASAVE DC CLOSE #3

900 DATASAVE DC CLOSE ALL
900 DATASAVE DC CLOSE #A

5-9

DATASAVE DC OPEN

General Form:

(old-file-name) new-file name
DATASAVE DC OPEN platter [$] [file #, | space

TEMP[, | start-sector, end-sector
where:

old-file-name = The name of an existing scratched program or data file which is cataloged on the
specified disk platter.

space = An expression signifying the number of sectors to be reserved for a new file.

new-file-name = The name of the data file being opened.

TEMP = A temporary work file is to be established.
start-sector = An expression whose value is the starting sector address of a temporary
work file.
end-sector = An expression whose value is the ending sector address of a temporary
work file.
Purpose:

The DATASAVE DC OPEN statement is used to reserve space for cataloged files in the Catalog
Area, and to enter appropriate system information in the Catalog Index. It is also used to reserve
space for temporary work files outside the Catalog Area, and to reuse space in the Catalog Area occu-
pied by scratched files.

Data files can be opened on any disk platter by including the proper parameter (‘F’ or ‘R’) in the
DATASAVE DC OPEN statement. Each data file must be opened initially with a separate DATASAVE
DC OPEN statement; if multiple files are to be opened simultaneously, each file must be assigned a
different file number. Since there are 16 file numbers available (0-15), a total of 16 data files can be
opened simultaneously.

The ‘$’ parameter specifies that a ‘read-after-write’ verification test be performed to ensure that
the file and all file control information is written correctly in the Catalog Index. This test not only
detects disk write errors, but also substantially increases the time required for the DATASAVE DC
OPEN operation.

The ‘file #’ parameter is the file number which identifies the newly-opened file in the Device Table.
The disk on which the file is stored, along with the file’s starting, ending, and current sector ad-
dresses, are entered in the Device Table in System 2200VP/MVP memory. Also, the platter digit
under the ‘file status’ column of the Device Table reflects which platter the file was opened on {'1’ for
‘F’, and ‘2’ for ‘R’). The information in the Device Table is identified only by the file number assigned
to the file in the DATASAVE DC OPEN statement. A file number must be included in the DATASAVE
DC OPEN statement if more than one file is to be open at one time. If no file number is specified, or if
file # = #0, the system automatically assigns the newly opened file to the default slot, #0, in the
Device Table. Subsequent reference to a file number in a disk catalog statement or command auto-
matically provides access to the current sector address of the associated file. (For a detailed discus-
sion of the Device Table and the use of file numbers, see Chapter 6.)

5-10

The ‘old-file-name’ parameter specifies the name of a previously scratched cataloged file (either
program or data) which is to be renamed and reused. The new file is given the space previously occu-
pied by the scratched file.

If the ‘space’ parameter is used instead of ‘old-file-name’, the new file is appended at the current
end of the Catalog Area, and given a total number of sectors equal to the value of the 'space’
expression.

NOTE:

The last sector of each cataloged data file is re-
served for systems information. Therefore, the
number of sectors available for data storage is
always at least one less than the number of sec-
tors reserved for the file.

The ‘new-file-name’ parameter is the name of the new data file being opened. If the new file is
being stored in space previously occupied by a scratched cataloged file (‘old’), then ‘new’ can be
identical to ‘old’. Otherwise, ‘new’ must be unique.

The TEMP parameter is used to specify a temporary work file. Temporary files are not cataloged
and cannot be located in the Catalog Area. If temporary files are to be used, sufficient space must be
left outside the Catalog Area to accommodate them (see SCRATCH DISK). Caution must be exercised
when using temporary files in a multi-user or multiplexed disk environment. Here the temporary file
start-sector and end-sector parameters are maintained local to each CPU. The system does not re-
strict two or more users from requesting the same temporary file space on disk.

The ‘start’ and ‘end’ parameters identify the starting and ending sectors of the area reserved for a
temporary file. An error results if the value of ‘start’ is less than or equal to the last (highest) sector of
the Catalog Area.

Examples of valid syntax:

100 DATASAVE DC OPEN R (100) “DATFIL1"

100 DATASAVE DC OPENR #1, (A*2) “I/O DATA"

100 DATASAVE DC OPEN F #2, (“DATFIL1") “DATFIL2”
100 DATASAVE DC OPEN F TEMP 1000, 2000

100 DATASAVE DC OPEN T$#4, (200) A$

5-11

DBACKSPACE

General Form:

BEG
DBACKSPACE [file #, |

expression[S |

where:
BEG = Backspace to beginning of file.
expression = The number of logical records or sectors to be backspaced.
S = Backspace absolute number of sectors.
Purpose:

The DBACKSPACE statement is used to backspace over logical records or sectors within a cata-
loged disk file. If ‘expression’ is used alone, the system backspaces over the number of logical
records equal to the value of the ‘expression’, and the Current Sector Address of the file in the Device
Table is updated to the starting sector of the new logical record. For example, if ‘expression’ = 1, the
Current Sector Address is set equal to the starting address of the previous logical record. If the BEG
parameter is used, the Current Sector Address is set equal to the Starting Sector Address of the file
(that is, the starting address of the first logical record in the file).

If the ‘'S’ parameter is used, the value of the expression equals the total number of sectors to back-
space. The Current Sector Address of the file in the Device Table is decremented by the number of
sectors specified. If the amount specified is too large, the Current Sector Address is set to the starting
Sector Address of the file. The ‘S’ parameter is particularly useful in files where all the logical records
are of the same length (i.e., have the same number of sectors per logical record). Backspacing with
the ‘S’ parameter is much faster than backspacing over logical records in a file since the system
merely decrements the Current Sector Address in the Device Table by the specified number of sectors
and no disk accesses are required. However, the user must be certain that he knows exactly how
many sectors are in each logical record.

Examples of valid syntax:

100 DBACKSPACE BEG
100 DBACKSPACE 2+X
100 DBACKSPACE #2, 65
100 DBACKSPACE #1, BEG
100 DBACKSPACE #A, 10

DSKIP

General Form:

END
DSKIP [file #,]
expression [S|

where:
END = skip to current end-of-file.
expression = The number of logical records or sectors to be skipped.

S = Absolute number of sectors are to be skipped.

Purpose:

The DSKIP statement is used to skip over logical records or sectors in a cataloged disk file. If ‘ex-
pression’ is used alone, the system skips over a number of logical records equal to the value of ‘ex-
pression’, and the Current Sector Address for the file is updated to the starting address of the new
logical record. If the ‘END’ parameter is used, the system skips to the end of the file, i.e., the current
sector address for the file is updated to the address of the end-of-file trailer record. Once a DSKIP
END statement has been executed, data can be added to the end of the file using DATASAVE DC
statements. Note that the DSKIP END statement cannot be used unless a trailer record has previously
been written in the file with a DATASAVE DC END statement. DSKIP END results in an Error D87 (No
End of File) if no trailer record can be located in the file.

If the ‘S’ parameter is used, the value of the expression equals the total number of sectors to be
skipped. The Current Sector Address of the file is incremented by the number of sectors specified. If
the amount specified is too large, the Current Sector Address is set to the Ending Sector Address of
the file. The ‘S’ parameter is particularly useful in files where all logical records are of the same length
(i.e., have the same number of sectors per logical record). Skipping with the ‘S’ parameter is much
faster than skipping logical records in a file since the system merely increments the current address
by the specified number of sectors and no disk accesses are necessary. However, the user must be
sure that he knows exactly how many sectors are in each logical record.

Examples of valid syntax:

100 DSKIP 4

100 DSKIP #2, END
100 DSKIP END
100 DSKIP #3, 4*X
100 DSKIP #A, 20S

5-13

LIMITS

General Form:

Form 1:
LIMITS platter [file #,1 file-name, start, end, used [,status]
Form 2:
LIMITS piatter | file #, 1 start, end, current
where:

file name = The name of the cataloged data or program file whose limits are to be retrieved
(Form 1). If ‘file-name’ is not specified (Form 2), limit information on a currently
open file {in the Device Table) is to be retrieved.

start = A numeric variable designated to receive the starting sector address of the file.
end = A numeric variable designated to receive the ending sector address of the file.
used = A numeric variable designated to receive the number of sectors used by the file.
current = A numeric variable designated to receive the current sector address of the file.
status = A numeric variable designated to receive a value indicating the status of the
specified file.
Purpose:

The LIMITS statement obtains the beginning and ending sector address and current sector address
or number of sectors used for a cataloged file. In addition, LIMITS determines the status of the speci-
fied file.

LIMITS can be used within a program to find out the status of a file, how much remaining space is
left in a file, or to get sector address limits of an active file.

Form 1: Limits of a Cataloged File {‘file-name’ Specified)

If a file-name is specified, the LIMITS statement finds the named program or data file on the speci-
fied disk and sets the ‘start’ variable equal to the starting sector address of the file, the ‘end’ variable
equal to the ending sector address of the file, the ‘used’ variable equal to the number of sectors cur-
rently used by the file, and the ‘status’ variable equal to a value that specifies the status of the file.
The number of sectors currently being used by the file is accurate only if an end-of-file record has
been written in the file. An end-of-file record is written in a data file with a DATASAVE DC END
statement.

Therefore, in order to be able to tell how many sectors are used in a data file, the file must be ended
with an end-of-file record.

If a file-name is specified and a ‘status’ variable is also specified, the LIMITS statement causes the

‘status’ variable to receive a value indicating the status of the file. The following values may be as-
signed to the variable.

5-14

|2 if active data file
{1 if active program file
‘status’ variable= {0 if file name not in index (in this case
| variables ‘start’, ‘end’, and ‘used’
will also be set to zero)
{-1 if scratched program file
{-2 if scratched data file

Examples of valid syntax:

100 LIMITS F “PAYROLL", A,B,C.D

100 LIMITS T A%, SEEA

100 LIMITS T #A, “DATFIL 1", X,Y,Z(3)
100 LIMITS F #1, “"SAM”, A,B,C

Note that in Form 1 of the LIMITS statement if the ‘status’ variable is not specified, an error will
result if the specified file does not exist.

Example:

100 LIMITS F “PRICE”,A,B,C (and “PRICE" is on the “R” platter)
1 ERR D82
Form 2: Limits of a Currently Open File ("file-name’ Not Specified)

If a file name is not specified, the LIMITS statement gives the starting, ending, and current sector
addresses of the file currently open at file # or in the default slot. The disk is not accessed; the data is
read directly from the Device Table.

Examples of valid syntax:

100 LIMITS T #A(1), A1,A2,A3

100 LIMITS T #5, AB,C
100 LIMITS T X,Y,Z(2)

LISTDC

General Form:

file #
LISTI S [title] DC platter
disk-address

where:
S = Aparameter indicating that the Disk Catalog Index is to be listed in sections.
literal-string
title =
alpha-variable
Purpose:

The purpose of the LIST DC statement is to display or print out a listing of the information con-
tained in the Catalog Index. When the List DC statement is executed, the following information is dis-

played on the currently selected LIST device:

a. The number of sectors in the Catalog Index.
b. The address of the last sector reserved for the Catalog Area.
c. The address of the last used sector in the Catalog Area.

For each cataloged file, the LIST DC statement outputs the following data:

The file name.

The file status (S if scratched).

The file type (program (P) or data (D)).
The Starting Sector Address.

The Ending Sector Address.

A S

one, and is updated only when an end-of-file record is written in the file.
g. The number of sectors not used in each file.

If the entry in the index is invalid, a ‘?’ is displayed rather than the ‘'S’, ‘P’ or ‘D’".

The number of sectors currently used in the file. For a data file, this value is originally set to

The ‘S’ parameter is a special feature for the CRT terminal. It permits the listing of the catalog in
sections, that is, listing stops when the screen is full. To continue listing, (EXEC) must be keyed. Note
that for nonstandard CRT's, the number of lines on the CRT is specified by a SELECT LINE statement.
The 'S’ parameter is ignored in Program Mode.

Keying HALT/STEP during the listing stops the listing after the current line has been listed. Howev-
er, the listing cannot be continued. Alternatively, the operator may slow down listing on the CRT by
selecting a pause of from 1/6 to 1 1/2 seconds by executing a SELECT P statement. In this case, the
system pauses for the specified interval after each line is listed.

5-16

The optional “title” parameter is a convenient means of identifying a hardcopy catalog listing. If a
title is included in the LIST DC command, the system performs the following actions:

a. Issues atop-of-form (HEX(OC)) code.
b Prints the title in expanded print.

c. Skips aline.

d. Prints the listing.

On the printer, these actions cause the title to be printed at the top of a new page in expanded
print, followed by a blank line and the catalog listing. On a CRT, the title is displayed before the cata-
log listing.

When the system is Master Initialized, the CRT is initially selected for all LIST operations. Other
printing devices may be selected for listing with a SELECT LIST statement.

Examples of valid syntax:

LISTDCF

LISTDCF #2

LISTSDCR

LISTDCT

LISTDCT #A

LIST SDCF/320

LIST “DISK#2" DCR
LIST “DISK#5” DC T/D15
LISTDC T/D10

5-17

LOAD (Command)

General Form:

file #,

LOAD [DC] platter [] file-name

disk-address,
where:

file-name = The name of the cataloged program to be loaded.

Purpose:

The LOAD command is used to load BASIC programs or program segments from the disk. This
command causes the system to locate the named program in the catalog, and append it to the pro-
gram text currently in memory. Programs can be loaded into memory from any disk platter.

LOAD can be used to add to program text currently in memory, or if executed following a CLEAR
command, to load a new program. An error results if the requested file is not a program file, or if it is
not present in the catalog.

Examples of valid syntax:

LOAD F “PROG1”

LOADR #2, “TESTI/O”
LOAD R /320, “OUTPUT1"
LOAD T AS$

LOADDC T #A1,B$

LOAD T/D11, “PARFILE”
LOAD T/B10, “DATFILE”

LOAD (Statement)

General Form:

where:
file-name
expression

alpha-variable

line-number-1

line-number-2

LOAD [DC] platter [

begin-line-number = The line number of the program where execution is to begin after the program is

lline-no. -1], lline-no. -2]

file #, file-name
<expression> alpha-variable [BEG begin-line-no.]

disk-address

= The name of the cataloged program file to be loaded into memory.
= The number of files to be loaded from disk.

— The names of the files to be loaded. Names are 8 characters in length {padded with
trailing spaces if necessary) and are stored sequentially in the alpha-variable. The
alpha-variable must be a common variable.

= The number of the first program line to be deleted from the program currently in
memory prior to loading the new program.

= The number of the last program line to be deleted from the program currently in
memory before the new program is loaded.

loaded into memory.

Purpose:

The LOAD statement loads a BASIC program or program segment into memory from the disk, and
automatically executes it. LOAD is a BASIC statement which in effect produces an automatic combi-
nation of the following BASIC statements and commands:

STOP

CLEARP

CLEARN

LOAD DC

RUN

(Stops current program execution and makes sure the file exists.)

(Clears program text from memory, beginning at ‘line 1’ (if specified) and ending
at ‘line 2’ (if specified); if no line numbers are specified, clears all currently stored
program text from memory.) The Interrupt Table and subroutine stacks in memory
are also cleared.

(Clears all non-common variables from memory.)
(Loads new program or program segment from disk.)
(Runs new program, beginning at ‘begin-line-no’, if specified. If the BEG parameter

is not specified, program execution begins at line-number-1, or at the lowest pro-
gram line in memory, if line-number-1 is not specified.)

If ‘line 2’ is omitted, the remainder of the currently stored program is deleted, starting with line-
number-1, prior to loading the new program from disk. If line-number-1 is omitted, all program lines
up to and including line-number-2 are deleted. If both line numbers are specified, all program lines in
memory between and including these lines are cleared prior to loading the new program. If no line
numbers are specified, all currently stored program text is cleared. In all cases, all non-common varia-
bles are cleared prior to loading the new program.

The LOAD statement permits segmented programs to be run automatically without normal user in-
tervention. Common variables are passed between program segments. If LOAD is included on a mul-
tistatement line, it must be the last executable statement on the line.

The LOAD statement can be used to load several programs from disk when the <expression >
parameter and an alpha-variable are specified. This feature allows a reduction in program overlay
time (since the program is resolved only after all overlays have been loaded, rather than after loading
each overlay), and provides more flexibility for program assembly from several program modules.

Examples of valid syntax:

100 LOAD R “PROG1"

100 LOAD F #2, “I/OMSTR”

100 LOAD DC F/320, “I/OSUB1” 250, 299
100 LOAD R “I/OCNTRL” 500

100 LOAD T A$ 100

100 LOADDC T #X, B$

100 LOAD F “R. NIXON” 10, 500 BEG 300
100 LOAD T/D12, “INFILE”

Example of multiple file LOAD statement:

10 COM A$(5)8
:20 A$(1) = PROG1": A$(2) = PROG2": A$(3) = “PROG3"
:30LOADF<3> AS$()

Line 30 specifies that 3 program files (PROG1, PROG2, PROG3) are to be loaded, in that order.

NOTE:

When a Load statement is executed, the system
stacks are cleared of all subroutine and loop
information.

In Immediate Mode, LOAD is interpreted as a command {see LOAD command).

5-20

LOAD RUN (Command)

T

General Form:
LOAD RUN [platter | [

where:

file-name = The name of the cataloged program to be loaded. The default file-name is

file #,
[file-name |
disk-address,

The default platter parameter if platter is not specified.

"START".

Purpose:

The LOAD RUN command is used to load and initiate execution of a program stored on disk. This
command produces an automatic combination of the following operations:

1.

2.

3.

CLEAR all program text and removes all variables from memory. PRINT, PRINTUSING, and
LIST operations are selected to current Console Output device; INPUT, LINPUT, and KEYIN
operations are selected to the current Console Input device. Device Table slots #1-#15 and
the file parameters in #0 are set to zero. Pause (SELECT P) and TRACE are turned off. The
interrupt Table and subroutine stacks in memory are cleared. Radians are selected for trig
functions and SELECT ERROR > 60 is established for computational error control. The ERR
function is set to zero. (See CLEAR in BASIC-2 Reference Manual.)

LOAD the named program from the designated platter.

RUN the program.

Since default values are provided for the platter, disk-address, and filename parameters, a system ini-
tialization program named “START” can be loaded and run by pressing 3 keys on the system key-
board: ‘LOAD’ ‘RUN’, and ‘RETURN (EXEC)’. The “START" program can then provide a menu and
entry points of available programs.

Examples of valid syntax:

:LOAD RUN

:LOAD RUN R “BEGIN”

:LOAD RUN R /320, “NAMES”
:LOAD RUNR

:LOAD RUN T/D13, “CITIES”

5-21

MOVE

General Form:
Form 1:
file#, file#,
MOVE piatter TO platter
disk-address, disk-address,
Form 2:
file#, file#, file-name
MOVE platter file-name TO platter)
disk-address, disk-address, space
where:
space = An expression whose truncated value equals the number of sectors to be reserved in
addition to the number required to store the program on the destination platter.

Purpose:

The purpose of the MOVE statement is to copy information from platter to platter within the same
disk unit, or from one disk unit to another on the same system. Two forms of MOVE are provided:

Form 1 copies the entire Catalog.
Form 2 copies only a specified file.

Following a MOVE, the user can execute a VERIFY statement to ensure that the information was
copied correctly.

When MOVE is executed, approximately 800 bytes of memory must be available for buffering (not
occupied by a BASIC program or variables); otherwise an error AO3 results and the MOVE is not per-
formed. The large buffer minimizes the time required for the MOVE operation.

Form 1: Moving the Entire Disk Catalog

When the filename is not specified, execution of the MOVE statement copies the entire catalog of
the origin platter, except for scratched files, to the destination platter. The starting, ending, current,
and free sector addresses of all relocated files are automatically altered to reflect the files’ new posi-
tions in the Catalog. Temporary files are not copied and the origin platter is not modified.

Examples of valid syntax:

10 MOVE R TO R/320,
10MOVERTOF

10 MOVE R/310, TO F/350,
10 MOVET/D11, TO T/D10,
10 MOVE T/D12, TO T/D15,

5-22

Form 2: Moving a Specified File

When the filename is specified in the MOVE statement, the system causes the named file to be
copied from the Catalog Area of the origin platter to the Catalog Area of the destination platter. The
filename is entered in the Catalog Index on the destination platter. If the expression in parentheses is
specified, the system reserves an additional amount of sectors for the named file in the Catalog Area
of the destination platter. The truncated value of the expression indicates the number of additional
sectors to be reserved.

If a destination filename is included within the parentheses, it is the scratched file to be overwritten
by the new file when MOVE is executed.

If a scratched file with the same name as the file to be moved is to be overwritten, the destination
filename can be omitted from the parentheses. For example,

SCRATCHR “DATAFILE”
MOVE F “DATAFILE” TOR ()

replaces the scratched file “DATAFILE” on the ‘R’ platter with the file called ‘DATAFILE’ from the ‘F’
platter.

Examples of valid syntax:

10 MOVE F “STOCKS” TOR

10 MOVE R/320, “PRICES” TO F/310,

10 MOVER “DATA” TO F(100)

10 MOVE F “NAMES” TO R(2.5+V)

10 MOVE F “ADDRESS2” TO R("ADDRESS1")
10 MOVE F “DELTA” TOR{()

10 MOVE T/D11, “BONDS” TO T/D10, ()

10 MOVE T/D15, “SHARES” TO T/D10,

5-23

MOVE END

General Form:

file #
MOVE END platter = expression

disk-address

Purpose:

The MOVE END statement is used to increase or decrease the size of the Catalog Area on a disk
platter. The upper limit of the Catalog Area is initially defined by the END parameter in the SCRATCH
DISK statement (see SCRATCH DISK). Once the limit of this area has been set, it can be altered using
the MOVE END statement. The value of the ‘expression’ specifies the sector address of the new end
of the Catalog Area. An error results if a previously cataloged file resides at this address, or if the ad-
dress is higher than the highest legal address on the platter. Note that MOVE END does not alter the
size of the Catalog Index.

Examples of valid syntax:

MOVEEND F = 4799
MOVE END R = .5+
MOVEEND T#12 = X+Y
MOVE END R/320 = 2399
MOVEEND T/D13 = 9400

5-24

SAVE

General Form:

old-file-name
!
P

new-file-name

<S> file#, Id-fil |
SAVE [DC] platter [$] [O) Ie_name] P new-file-namelstart-line-no.li.|end-line-no. |
< SR> disk-address,] [\LSP2°°
where:
<S> = A parameter specifying that unnecessary spaces (not including spaces in character
strings enclosed in quotes, REM or % statements) will be deleted from a program as it
is saved.
<SR> = A parameter specifying that both spaces and remarks (REM statement lines) are
deleted from the program as it is saved.
space = An expression whose value equals the number of sectors to reserve in

addition to the number required to store the program.

The name of a currently scratched program or data file to be overwritten.

Protect (scramble) the file to be saved.

= Set the protection bit on the file to be saved.

= The name of the program to be saved.

start-line-number = The first line of program text to be saved.

end-line-number = The last line of program text to be saved.

Purpose:

The SAVE statement causes a BASIC program, or a portion of a program, to be recorded on the
designated disk platter. The file name, file type (program file), starting sector address, and ending
sector address are entered in the Catalog Index, and the program is automatically stored, starting in a
location determined by the system on the basis of the current entries in the Catalog Area.

The ‘$’ parameter specifies that a read-after-write verification test be performed to ensure that all
program text is written correctly to the disk. The read-after-write check he time required for the
SAVE DC operation, however.

When saving a program on disk, nonessential spaces and/or remarks can be deleted from a pro-
gram as it is saved by using the ‘< >' parameter. An <S> implies that any unnecessary spaces
(except spaces in character strings enclosed in quotes and % or REM statements) are to be deleted.

NOTE:

The system automatically inserts spaces after line
numbers, statement separators (colons), and most
BASIC words for readability when displaying a
program line. These extra spaces are not in the
program in memory.

5-25

Using <SR> in the SAVE statement means delete both spaces and remarks (REM statement
lines). An <SR> causes all REM statements to be deleted from the program. If certain REM’s are to
be saved, the REM statements can be changed to image statements %. Image statements are not dis-
turbed by <SR>.

Inclusion of the ‘space’ parameter instructs the system to reserve a number of sectors in addition
to the number actually needed to store the program at the end of the program file. These additional
sectors can be used for future expansion of the program. The truncated value of ‘space’ equals the
number of extra sectors to be reserved.

Overwriting an Old File

A new program also can be stored over a scratched program or data file on the disk if the ‘old-
file-name’ parameter is used. The ‘old-file-name’ parameter specifies the name of the scratched file,
and the ‘new-file-name’ parameter indicates the name of the new program which is to be stored in its
place. If the scratched file identified by ‘old-file-name’ does not occupy adequate space to hold the
new program, an error results. When replacing an old program with a new one on disk, it is possible
for ‘old” and ‘new’ to be identical. Otherwise, ‘new’ must be unique (i.e., not already present in the
Catalog Index).

If neither the ‘old-file-name’ nor the ‘space’ parameter is included in the SAVE statement, the
system uses only the exact number of sectors required for the program being stored, and appends
the new program file at the current end of the Catalog Area.

If the ‘old-file-name’ is the same as the ‘new-file-name’, the ‘old-file-name’ can be omitted, al-
though the ‘()" is still required to indicate that an old file is to be overwritten.

For example,

SCRATCH F “RIDER”
SAVE F() “RIDER”

saves the program currently in memory on the ‘F’ platter where the old file called “RIDER” was
located.

Protecting a Program

The ‘P’ parameter permits a program to be protected against accidental modification. After a pro-
gram which has been saved via SAVE P is loaded into memory, the program cannot be modified
(except by overlaying). The operator cannot, then, inadvertently modify the program. SAVE P also
prevents the program from being listed or resaved.

The ‘I" parameter performs not only the same function as ‘P’ but also provides a secure means of

preventing program examination. The entire program is scrambled when recorded on disk, and
cannot be examined via DATALOAD BA.

5-26

The error message display for protected programs is modified to suppress the display of program
text. Only the line number, statement separators (:), and error code are displayed.

Example:
100X=1:Y=2:2=21/0
RUN (EXEC)

Output: {unprotected program)

100X =1:Y=2:2=21/0
1ERR C62

Output: (protected program)

100:: ERR C62

NOTE:

In order to save or list any program after a protect-
ed program has been loaded, it is necessary to
clear all of memory either by executing a CLEAR
command with no parameters, or by MASTER
INITIALIZING the system.

Saving Part of a Program

The ‘start-line-no’ and ‘end-line-no’ parameters specify the first and last lines, respectively, of the
program in memory which is to be saved. Both of these parameters are optional; if only ‘start’ is
included in the SAVE command, all program lines in memory beginning with that line through the end
of the program are saved on disk. If only the ‘end-line-no’ is specified, all program text from the
beginning of the program through the specified line is saved. If neither line number is specified, all
program text in memory is saved.

Examples of valid syntax:

SAVE DC F “CONVERT”
SAVE <S> R “OUTPUT"” 300, 500
10 SAVET $ #2 (100), “OUTPUT2"
10 SAVEF/320, (A$) B$
10 SAVE <SR> T #A, “COORD”
10 SAVEF {“OLD") “NEW"
10 SAVEFP “PROG 1"
10 SAVER! “MONEY”
10 SAVE T/D11, “PAYLOAD”

5-27

SCRATCH

General Form:
SCRATCH platter [

where:

file#,
file-name [,file-nameje o ®
disk-address,

file-name = The name of the cataloged file (program or data) to be scratched from the catalog.

Purpose:

The SCRATCH statement is used to set the status of the named disk file(s} to a scratched condi-
ment does not remove the files from the catalog; a subsequent listing of the
catalog shows the normal information for both scratched and non-scratched files, as well as which
files have been scratched. The program text or data in the scratched files is not altered or destroyed
by the SCRATCH statement. Once files have been scratched, they cannot be accessed by
DATALOAD DC OPEN or LOAD statements. They can, however, be renamed by DATASAVE DC
OPEN statements or SAVE commands and statements, and the sectors utilized by scratched files can

tion. The SCRATCH state

be reused to save new programs or data files.

The SCRATCH statement is generally used prior to MOVE statements. When a MOVE statement is
executed, information concerning all scratched files is deleted from the Catalog Index, and the corre-

sponding program text or data is deleted from the Catalog Area (see MOVE).

NOTE:

Untit a MOVE is executed, all scratched file names
remain in the Catalog Index, even if the space
occupied by the files in the Catalog Area has been
renamed and reused. In the latter case, the
scratched file name no longer appears in a listing
of the Catalog Index, but it continues to occupy
space in the Index. A scratched file name is re-
moved from the Index only when a MOVE is
executed.

Examples of valid syntax:

SCRATCHF “H

EADER"

SCRATCHR #2, “FLD4/15", “FLD10/7"
SCRATCH R/320, “COLHDR”
10 SCRATCHF A$,B$,C$
10 SCRATCHF #2, “TEMP 1", A%
10 SCRATCHF #A2, “SORT"”, “MERGER”
10 SCRATCHT/D12, “HEADER”
10 SCRATCHT #10, “PROB-1", “PROB-2"
10 SCRATCHT “MATTEST"

5-28

SCRATCH DISK

General Form:

file #,

SCRATCH DISK platter [] [LS =expression — 1,] END = expression — 2

disk-address,
where:
LS = A parameter specifying the number of sectors to be set aside for the Catalog Index.

expression — 1 = An expression whose value is from 1 to 255. If the ‘'LS" parameter is not
included, the size of the Catalog Index is set automatically at 24 sectors.

END = A parameter specifying the last (highest) sector address in the Catalog Area.

expression —2 = An expression whose value must be less than or equal to the last
{hightest) sector address on the disk.

Purpose:

The SCRATCH DISK statement is used to reserve space for the Catalog Index and Catalog Area on
a disk platter (each disk platter must be initialized separately) prior to saving program files or data
files on the disk. This space must be reserved prior to the use of any other catalog statement; other-
wise, an error is indicated. Caution must be exercised when using SCRATCH DISK since this state-
ment will destroy an existing Catalog Index on the platter being scratched.

When the SCRATCH DISK statement is executed, the system reserves a number of sectors, starting
with sector number O on the specified platter, for a disk catalog. The ‘LS’ parameter defines the size
of the Catalog Index, and the value of ‘expression-1" specifies the number of sectors to be reserved.
A maximum of 255 sectors (sectors 0-254) can be reserved for the Index. If the ‘LS’ parameter is not
included in the SCRATCH DISK statement, 24 sectors (sectors 0-23) are reserved automatically for
the Index. The entry for each cataloged file in the Catalog Index consists of the file’s name and asso-
ciated sector address parameters; each sector of the Index can hold 16 file entries, with the exception
of sector 0, which holds 15 entries (a small portion of sector number O contains systems information
used to maintain the catalog). When the catalog is initially established, the remainder of sector
number O and all other sectors reserved for the Catalog Index are filled with zeroes.

The END parameter defines the limit of the Catalog Area on disk. The value of ‘expression-2’ speci-
fies the address of the last sector to be used for storing cataloged files. The END parameter is partic-
ularly useful when temporary work files are to be established since temporary files must be estab-
lished outside the Catalog Area. An error will result if the user attempts to establish a temporary file
within the Catalog Area.

5-29

The end of the Catalog Area can be altered with the MOVE END statement (see MOVE END).

NOTE:

Although, in general, the Catalog Area can be ex-
panded or retracted when necessary with the
MOVE END statement, the size of the Catalog
Index cannot be altered once specified without
reorganizing the entire catalog. Take special care,
therefore, to provide ample space for future ex-
pansion when specifying the size of the Catalog
Index in the ‘LS’ parameter. Number of entries in
Index = 16 (no. of index sectors)-1.

Examples of valid syntax:

SCRATCH DISK REND = 9791

SCRATCH DISK F LS =4, END = 1000
100 SCRATCH DISK F/320, END = X*2
100 SCRATCHDISK T #X,LS =L,END =E
100 SCRATCH DISK T/B10, END = 10000
100 SCRATCHDISK T END = 12550

5-30

VERIFY

General Form:

file #,
VERIFY platter [] | (start-sector, end-sector) | [numeric-variable |

disk-address,

where:
start-sector = An expression whose value equals the address of the first sector to be
verified.
end-sector = An expression whose value equals the address of the last sector to be
verified.

numeric-variable = A numeric variable designated to receive a value equal to the address + 1 of the first
spector that did not verify during the verify operation (equal to zero if no errors).

Purpose:

The VERIFY statement reads all sectors within the specified range from the designated disk platter,
and performs cyclic and longitudinal redundancy checks to ensure that information has been written
correctly to those sectors. The value of ‘start-sector’ specifies the address of the first sector to be
verified, and the value of ‘end-sector’ specifies the address of the last sector to be verified. If the
‘start-sector’ and ‘end-sector’ parameters are omitted, the entire Catalog Index and Catalog Area (up
to the current end) are verified.

When an error is detected during the verify operation, one of two things happens. If a numeric-
variable is specified, the variable is set equal to the sector-address +1 of the sector in error and the
verify operation terminates. (If there were no errors, the numeric-variable is set equal to zero.) If the
numeric-variable is omitted, an error message showing the sector address of the bad sector is dis-
played on the Console Output device and the verify operation continues. The HALT/STEP key can be
used to terminate the printout of erroneous sectors, but the verify operation cannot be continued.

Examples of valid syntax:

10 VERIFY F #2,

10 VERIFY T #A(1), {(100,200)
10 VERIFY R (0,1023)

10 VERIFY F/320, (0,2000)
10 VERIFY F #15,(50,300)R
10 VERIFY T/D14, (0,10550)
10 VERIFY T/D11,

ERROR OUTPUT:

ERROR IN SECTOR 1097
ERRORIN SECTOR 8012

5-31

$FORMAT DISK

General Form:

file #

$FOR MAT DISK Platter
disk-address

Purpose:

The $FORMAT DISK statement is used to format a disk platter. Before a platter can be used for the
storage and retrieval of data, the platter must be formatted. Formatting involves recording a unique
address for each sector on the disk platter, along with other control information. The control informa-
tion helps the system maintain the disk and keep a check on the validity of the data written to and

from it.

CAUTION:

Formatting a disk platter overwrites all data pre-
viously stored on the platter. Zeros are written
within each sector.

The $FORMAT DISK statement is available in 2200VP BASIC-2 Release 1.9, 2200MVP BASIC-2
Release 1.7, and subsequent editions. It can only be used with Wang disk units that support format-
ting under software control (e.g., Models 2260C, 2260BC, and 2280).

Examples of valid syntax:
10 $FORMAT DISK T/310

20 $FORMATDISK T/D11
30 $FORMAT DISK R#2

5-32

CHAPTER 6
ABSOLUTE SECTOR ADDRESSING

6.1 INTRODUCTION

Absolute Sector Addressing Mode is comprised of eight BASIC-2 statements and commands
which enable the programmer to read or write information in specific sectors on the disk. No catalog
or Catalog Index can be established or maintained in Absolute Sector Addressing Mode (except by
user-supplied software), nor is it possible to name programs or data files. Files are identified only by
reference to their starting sector addresses. Similarly, individual records must be saved into or loaded
from a file by specifying a starting sector address. All file addressing information must be maintained
by the programmer; such information is not maintained automatically by the system. Because the
disk statements in Absolute Sector Addressing Mode provide direct access to individual sectors, they
are referred to as “direct addressing” statements.

It is sometimes useful to use direct addressing statements in conjunction with automatic file
cataloging statements. The DC statements can provide a framework for file access and control while
the direct addressing statements provide the programmer with a means of writing customized disk
operating systems and special access procedures within a file, such as binary searches, sorting rou-
tines, etc. which cannot be done efficiently - and, in some cases, which cannot be done at all - with
catalog procedures alone. Two classes of statements are available in Absolute Sector Addressing
Mode: the DA statements (where “DA” is a mnemonic for “direct address”) and the BA statements
(where “BA” is a mnemonic for “block address”). Both permit direct access to specific sectors on the
disk.

The DA statements can be used to write or read programs or data records beginning at a specified
sector on the disk. Multi- sector programs and data records are automatically read or written, just as
they are with DC statements. All records saved with a DA statement or command are automatically
formatted to contain the standard System 2200 control information (see Chapter 4, Section 4.6),
and records loaded with a DA statement or command must contain this format information. Records
created by DA statements or commands are, therefore, identical in format to records created by DC
{catalog) statements or commands, and records saved in one mode may be retrieved in the other.

The BA statements comprise a special class of statements which read and write exactly one sector
(256 bytes) of unformatted data. Records created with a DATASAVE DC or DATASAVE DA state-
ment are automatically formatted by the system to contain certain control information. (Refer to
Chapter 4, Section 4.6, for a discussion of the control information automatically included in each
sector of a logical record.) When a data record is read from the disk with a DATALOAD DC or
DATALOAD DA statement, the system expects to find the control information; a record which does
not contain the expected control information cannot be read with a DC or DA statement. When a
record is created with a DATASAVE BA statement, however, no control information is written by the
system. In this special case, the programmer is free to write his own control information in each
record, and to format his records in a way best suited for his application. Records with a non-standard
format can be read with a DATALOAD BA statement; they cannot be read with DC or DA statements.
DATALOAD BA can also be used to read sectors {program or data) written originally with a DC or DA
statement.

6-1

No Catalog or Catalog Index is established or maintained in Absolute Sector Addressing Mode and
the Device Table is used only to obtain the disk-address.

The DA and BA statements do not modify any file start, end, or current sector address information
in the Device Table.

In addition to reading and writing information on the disk, Absolute Sector Addressing Mode also
provides the capability to perform platter-to-platter copy operations and verify the transferred data.
The Absolute Sector Addressing statements and commands are:

SAVE DA

LOAD DA (command)
LOAD DA (statement)
DATASAVE DA
DATALOAD DA
DATALOAD BA
COPY

VERIFY

6.2 SPECIFYING SECTOR ADDRESSES

When a data record or program is saved or loaded with a direct addressing statement or command,
the starting sector address must be specified by the programmer. The address may be supplied in the
form of an expression, or as the value of an alphanumeric variable. If the address is supplied as the
value of an alpha variable, the binary value of the first two bytes of that variable is interpreted as the
sector address. The value of the expression or alpha variable must, of course, be less than or equal to
the last (highest) sector address on the disk platter. After the statement is processed, the system au-
tomatically returns the address of the next available sector. A second alpha or numeric variable can
be included in the statement to receive this address.

SAVEDAF (100, A)
| 1
Specifies the After execution of

address of the the SAVE DA command,
first sector on this variable contains
the ‘F’ platter the address of the next
to be used to available sector on the
store the 'F’ platter.

saved program.

In order to economize on the use of memory and disk space, and to facilitate address calculations
in binary, the beginning sector address and the next available sector address may be expressed as
two-byte binary values, i.e., as the first two bytes of alphanumeric variables (see Example 6-8). A
sector address expressed as a two-character binary number occupies only two bytes of memory or
three bytes of disk storage, while the same address expressed as a decimal value requires eight bytes
of memory and nine bytes of disk storage. The savings in storage space gained by expressing the
sector address in binary can become appreciable when, for example, key files are established to facili-
tate random access operations. Typically, a key file contains a list of keys along with the sector ad-
dresses of records identified by those keys. In a key file containing, say, 9,000 keys and sector ad-
dresses, some 7,000 bytes of disk storage {about 27 sectors) are saved by expressing the sector ad-
dresses in binary rather than decimal. If the starting sector address is to be expressed as a binary
number, it must be specified as the value of an alphanumeric variable (the first two bytes are used). If
the next available sector address is to be returned as a binary number, the receiving variable must be
specified as an alphanumeric variable of at least two characters in length.

6-2

6.3 STORING AND RETRIEVING PROGRAMS ON DISK IN ABSOLUTE SECTOR
ADDRESSING MODE

In Absolute Sector Addressing Mode, the programmer himself must keep track of each program’s
location on the disk. The starting sector address of the program must be directly specified by the pro-
grammer when writing or reading a program on disk: it becomes the responsibility of the program-
mer, therefore, to ensure that information already recorded on disk is not overwritten by each new
program, and that the location of each program is saved for future reference. Because there are few
cases in which the advantage to be gained in direct addressing program operations offsets the added
complexities involved, program storage and retrieval are not commonly done in Absolute Sector Ad-
dressing Mode.

Apart from the important fact that a direct addressing statement must specify an absolute sector
address rather than a file name, the SAVE DA and LOAD DA instructions are not remarkably different
from their cataloging counterparts, SAVE [DC] and LOAD [DC]. Specifically, the format of a program
file written on disk with SAVE DA is almost identical to that of a cataloged file written with SAVE DC.
In both cases, the program file begins with a one-sector header record, and ends with a trailer record.
(In cataloged program files, the header record contains the file name; in program files created with
SAVE DA, the header record contains a field of blanks in place of a file name.) An additional sector of
control information, the end-of- file control record, is written at the end of every cataloged program
file by SAVE [DC]. This control record is not written in program files recorded with SAVE DA.

The close similarity between the formats of cataloged program files and those created with direct
addressing statements makes it possible for programs recorded in catalog mode (with SAVE DC) to
be read in direct addressing mode (with LOAD DA). LOAD DA, like LOAD [DC], begins reading a pro-
gram at the header record (the starting sector address of the program must, therefore, be known),
and terminates reading when it encounters the trailer record. In this way, the entire program file is au-
tomatically read and loaded into memory. In normal operations, there is no advantage to be gained by
loading cataloged programs with LOAD DA it is generally safer and easier to use LOAD DC. The only
situation in which it could be advantageous to employ LOAD DA for cataloged program files is recov-
ery from an accident which destroys entries for one or more program files in the Catalog Index, with-
out harming the programs themselves. In such a situation, the programs can be accessed only with
direct addressing.

The LOAD [DC] statement cannot be used to read non- cataloged files recorded with SAVE DA.
SAVE DA does not record the file name and sector address parameters in the Catalog Index when a
file is saved, and LOAD DC cannot access a program without this information.

Saving Programs on Disk with SAVE DA

Programs are stored on disk in Absolute Sector Addressing Mode with a SAVE DA command. The
following items of information must be included in the command:

1. The disk platter on which the program is to be stored.

2. The address of the first sector on the disk in which the program’is to be stored (specified
as an expression or alphanumeric variable).

3. Optionally, numeric or alphanumeric return variable designated to receive the address of
the first free sector following execution of the SAVE DA command.

6-3

4. Optionally, one or two line numbers identifying the program lines which are to be saved on
disk. If one line number is specified, all program lines beginning at that line are saved on
disk. If two line numbers are specified, all program lines between and including those two
lines are saved. If no line number is specified, all resident program text is saved.

Example 6-1: Saving Program on Disk with SAVE DA (No Line Numbers Specified)
SAVEDAF (1250,L)

This command (SAVE DA is also programmable) causes all program lines currently in memory to
be saved on the ‘F’ disk platter, beginning at sector 1250. As many sectors are used as are
needed to store the resident program text. Following execution of the command, the address of
the next available sector is returned to numeric variable L as a decimal value. For example, if the
program required 10 sectors on disk (sectors 1250-1259), then L = 1260 following execution
of the command.

Example 6-2: Saving a Program on the Model 2280 Disk with SAVE DA (No Line Numbers
Specified)

SAVE DAT/D13, (2970,M)

This command causes all program lines currently in memory to be saved on the D13 fixed plat-
ter, beginning at sector 2970. As many sectors are used as are needed to store the resident pro-
gram text. Following execution of the command, the address of the next available sector is re-
turned to numeric variable M as a decimal value. For example, if the program required 125 sec-
tors on disk (sectors 2970-3094), then M = 3095 following execution of the command.

Example 6-3: Saving a Program on Disk with SAVE DA (Two Line Numbers Specified)
SAVE DA R (1300,N) 100, 750

SAVE DA causes lines 100 through 750 to be recorded on the ‘R’ platter starting at sector
1300, and uses as many sectors as it needs to store the program. When the program is record-
ed, the address of the next available sector is returned to variable N.

Example 6-4: Saving a Program on the Model 2280 Disk with SAVE DA {Two Line Numbers
Specified)

SAVEDA T/D12, (4690,B) 50, 910

SAVE DA causes lines 50 through 910 to be recorded on the D12 fixed platter starting at sector
4690, and uses as many sectors as it needs to store the program. When the program is record-
ed, the address of the next available sector is returned to variable B.

A useful feature of the SAVE DA statement is the ability to delete unnecessary spaces and remark
statements in a program before it is stored on the disk. If the parameter <S> is specified in the
SAVE DA statement all unnecessary spaces (excluding spaces in character strings enclosed in quotes
and in % or REM statements) will be deleted from the program as it is saved. By specifying the
parameter <SR> in the SAVE DA statement both unnecessary spaces and remarks (REM state-
ments) are removed from the program when it is saved.

6-4

Example 6-5: Saving a Program on Disk with SAVE DA Using the <S> Parameter

10 REM THIS IS PART 5 OF PROGRAM PAYROLL
20 PRINT “CALCULATE X, Y”
30X =3.14:Y =5+X+7: GOTO 100

100 REM LOAD PART 6
SAVE DA <S> R (1500)

SAVE DA causes the program {lines 10 through 100) to be recorded on disk starting at sector
1500, and uses as many sectors as is required to store the program. The <S> deletes the unneces-
sary spaces in line 30 but does not effect the spaces in line 10 or the spaces enclosed in quotes in
line 20. If the parameter <SR > is used in SAVE DA instead of <S>, then program lines 10 and 100
are deleted in addition to the unnecessary spaces in line 30.

Retrieving Programs from Disk with LOAD DA

The LOAD DA instruction, like its catalog counterpart LOAD DC, is a hybrid having two distinct
forms, the LOAD DA command and the LOAD DA statement. As with LOAD [DCI, the two forms of
LOAD DA have significantly different functions, and must be discussed separately. In both forms of
LOAD DA, however, the starting sector address of the program to be loaded must be specified. It is
important to note in this context that LOAD DA always expects to read a complete program, begin-
ning with a header record, including one or more program records, and ending with a trailer record.
For this reason, it is not possible to begin program loading in the middte of a program, or at any point
beyond the program header record. For example, if the starting sector address of a program is sector
#100, and the starting address specified in a LOAD DA instruction is 101 or beyond, the program is
not loaded.

The LOAD DA Command

The LOAD DA command causes a program to be read from disk, beginning at a specified sector ad-
dress, and appended to existing program text in memory. Program lines in memory having the same
numbers as lines in the newly loaded program are cleared and replaced by the new lines. Resident pro-
gram lines with different line numbers are not cleared, however, and remain in memory following the
LOAD DA operation. For this reason, resident program text should generally be cleared with a CLEAR
or CLEAR P command prior to loading in the new program.

Example 6-6: Loading a Program from Disk with LOAD DA Command

CLEAR
LOAD DA F (100, D)

The LOAD DA command causes the system to load a BASIC program from the ‘F’ platter begin-
ning at sector 100 (if sector 100 does not contain a program header record, an error results).
When the program has been loaded, the address of the next sequential sector following the trail-
er record is returned to variable D. (For example, if the program trailer record resides at sector
#112, D = 113 following execution.)

Example 6-7: Loading a Program from the Model 2280 Disk with LOAD DA Command

CLEAR
LOAD DA T/D10, (250, P)

6-5

The LOAD DA command causes the system to load a BASIC program from the D10 removable
platter beginning at sector 250 (if sector 250 does not contain a program header record, an
error results). When the program has been loaded, the address of the next sequential sector fol-
lowing the trailer record is returned to variable P. {For example, if the program trailer record
resides at sector #275, P = 276 following execution.)

The LOAD DA Statement

The operation of the LOAD DA statement is analogous to that of the LOAD DC statement. LOAD
DA permits programs to be loaded from a specified sector location on disk under program control.
Prior to loading the program from disk, LOAD DA automatically clears out all or a specified portion of
the resident program text, as well as all noncommon variables. {Common variables are not cleared.)
Once loaded in memory, the new program is executed automatically.

The LOAD DA statement contains the following parameters:
1. Aplatter parameter (‘F’, ‘R’ or ‘'T).

2. The starting sector address of the program to be loaded, specified as an expression or
alpha variable. This address must be the address of the program header record.

3. Optionally, numeric or alphanumeric return variable designated to receive the address of
the next sequential sector following the program trailer record. {Note: This variable must be
a common variable.)

4. Optionally, one or two program line numbers defining the portion of resident program text
which is to be cleared prior to loading the new program. Inclusion of one line number
causes all program lines beginning at that line to be cleared. Inclusion of a pair of line num-
bers causes all program lines between and including the two specified lines to be cleared.
Omission of both line numbers causes the totality of resident program text to be cleared.

5. Optionally, a third program line number preceded by ‘BEG’. This line number value signifies
the line number of the program where execution is to begin after the program is loaded into

memory.
Example 6-8: Loading Programs from Disk with a LOAD DA Statement {No Line Number
Specified)
10COMD

50 LOAD DA F (24,D)

Statement 50 causes a program to be loaded from the ‘F’ platter beginning at sector 24. Prior to
loading in the new program, all program text in memory is cleared, along with all non-common
variables. After the new program has been loaded, program execution begins automatically at
the lowest program line. The address of the next sequential sector following the program trailer
record is returned as a decimal value to numeric variable D. For example, if the program trailer
record is located in sector #33, then D = 34 following execution of statement 50.

Note that the return variable (‘D' in the above example) must be a common variable. Otherwise, it is

cleared along with all other noncommon variables before the program is loaded, and an Error P54
{Common Variable Required) is signalled.

6-6

The LOAD DA statement, like LOAD [DC], can be used to load program overlays from disk and
append them to an existing program in memory. In this case, one or both of the optional line number
parameters are specified to define the portion of resident program text which must be cleared prior
to loading the program overlay. Note that when one or both line numbers are included, execution of
the overlay begins automatically at the first line number specified in the LOAD DA statement. If the
new program does not contain a line having the first line number specified, an ERROR P36 (Missing
Line Number) is signalled.

If the program overlays are stored in sequential areas of the disk, it is possible to use the same
variable to contain the starting sector address and receive the address of the next available sector fol-
lowing statement execution. in this way, the starting sector address is automatically updated to the
address of the next available sector every time the LOAD DA statement is executed. Note that this
technique must be modified if cataloged programs are read, since a cataloged program has an addi-
tional system end-of-file sector following the trailer record which is not read as part of the program
by LOAD DA, and the address of this sector will be returned by the LOAD DA statement. For normal
processing, it is recommended that cataloged programs be read only with the catalog instruction
LOAD DC.

Example 6-9: Loading Program Overlays from the Disk with the LOAD DA Statement (Two
Line Numbers Specified)

80 COMD

90 D=24

500 LOAD DA F (D,D) 100,490

Statement 500 causes a program to be loaded into memory from the ‘F' platter, starting at the
sector whose address is stored in D. Prior to loading the program overlay, program lines 100
through 490 are cleared from memory, along with all non-common variables. After the program
has been loaded, program execution begins automatically at line 100. Following statement exe-
cution, the address of the next available sector is returned to D {however, D must have been
specified as a common variable). When Statement 500 is executed a second time, the new value
of D is the starting sector address of the second program overlay {assuming that the overlays
are stored sequentially on the disk, and that they are not cataloged files). The second overlay is
automatically loaded over the first overlay, and run from line 100. The process can be continued
in this way for as long as necessary.

Example 6-10: Loading a Program from the Disk with LOAD DA Statement (BEG Line
Number Specified)

100 LOAD DA R {70) BEG 120
Statement 100 causes a program to be loaded into memory from the ‘R’ platter, starting at
sector 70. Prior to loading the new program, all program text in memory is cleared, along with all

non-common variables. After the new program has been loaded, program execution begins au-
tomatically at line 120.

6-7

Example 6-11: Loading a Program from the Model 2280 Disk with LOAD DA Statement
(BEG Line Number Specified)

100 LOAD DA T/D10, (165) BEG 90

Statement 100 causes a program to be loaded into memory from the D10 platter, starting at
sector 165. Prior to loading the new program, all program text in memory is cleared, along with
all non-common variables. After the new program has been loaded, program execution begins
automatically at line 90.

6.4 STORING AND RETRIEVING DATA ON DISK IN ABSOLUTE SECTOR ADDRESSING MODE

In Absolute Sector Addressing Mode, named data files are not maintained by the system, nor are
the file parameters stored in the Catalog Index or Device Table.

Storing Data on the Disk with DATASAVE DA

Data is stored on the disk in Absolute Sector Addressing Mode with the DATASAVE DA statement.
At least four items of information must be provided in the statement:

1. Thedisk platter on which the data is to be saved.

2. The address of the first sector on that platter in which the data is to be stored (specified as
an expression or alphanumeric variable).

3. Optionally, numeric or alphanumeric variable which is to receive the address of the next
available sector following statement execution.

4. The data which is to be saved in a record on the disk.

Each DATASAVE DA statement (like DATASAVE DC) saves one logical record, consisting of
enough sectors on disk to store all data specified in the argument list. Records saved on the disk with
DATASAVE DA are identical in format to those created by DATASAVE DC, and contain the standard
System 2200 format information. Records initially saved with DATASAVE DA can therefore be
loaded with DATALOAD DC. Note, however, that when DATASAVE DA is used to write a record in a
cataloged data file, it does not update the file parameters in the Catalog Index. In normal processing
operations, the use of direct addressing statements to alter cataloged files is not recommended.

Example 6-12: Storing Data on Disk with a DATASAVE DA Statement

100 B$ = HEX(01EO)
150 DATASAVE DAR (B$,X$) A, B(), C()

Statement 150 causes the value of numeric variable A and arrays B() and C() to be stored on
the ‘R’ platter, starting at sector #480 (480 is the decimal equivalent of HEX(01EOQ), which is the
value of B$). One logical record is written containing enough sectors to store all data specified in
the argument list. Following the execution of statement 150, X$ is set equal to the binary ad-
dress of the next available sector. For example, if A, B(), and C() require nine sectors on the
disk, the value of X$ following statement execution is HEX(O1E9) (decimal equivalence, 489).

6-8

Example 6-13: Storing Data on the Model 2280 Disk with a DATASAVE DA Statement

100 D$ = HEX(OOFF)
200 DATASAVE DA T/D11, (D$,F$) A, B(), C()

Statement 200 causes the value of numeric variable A and arrays B() and C() to be stored on
the D11 platter, starting at sector #255 (255 is the decimal equivalent of HEX(OOFF), which is
the value of D$). One logical record is written containing enough sectors to store all data speci-
fied in the argument list. Assuming that A, B(), and C() require 15 sectors on the disk, the value
of F$ following statement execution is HEX (O10E) (decimal equivalence, 270).

If a number of records are to be saved or loaded in sequential sectors on the disk, it is possible to
use the same variable to contain the starting sector address and receive the address of the next
available sector following statement execution. In this way, the starting sector address is automatical-

ly updated to the address of the next available sector following each save or load operation.
Example 6-14: Saving a Number of Data Records in Sequential Areas of the Disk

200 DIM B(25)

210A1 =50

220FOR1=1T0 25

230 INPUT “VALUES FOR THIS RECORD", B(l
240 NEXT I

250 DATASAVE DA F(A1,A1) B()

290 GOTO 220

The starting sector address (A1) is initially set to 50. At line 230, the values to be stored in the
first record are entered. The first time through the loop, line 250 saves array B() on the ‘F’ platter
beginning at sector 50. When the record has been written, the address of the next available
sector is returned in A1. Assuming that B() required ten sectors, A1 is set equal to 60 following
execution of statement 250. The second time through the loop, array B() is saved on the ‘F’ plat-
ter beginning at sector 60, since this is the new value of A1. The process may be continued in
this way in order to store records in sequential areas of the disk.

After all data records have been saved in a file, the file should be ended with an end-of-file trailer
record, which can be used subsequently to test for the end-of-file if the records are read sequentially
for processing. In Absolute Sector Addressing Mode, the trailer record is the programmer’s only way
of protecting himself from reading beyond the legitimate data in a file (unless he designs his own trail-
er record), since the data file has no absolute limit (as it does in catalog mode). If no trailer record is
written, the program may read beyond the limit of legitimate data in the file and retrieve meaningless
data from the subsequent, unused sectors. An end-of-file record is written in Absolute Sector Ad-
dressing Mode exactly as it is written in Catalog Mode, by specifying the “END" parameter instead of
an argument list in a DATASAVE DA statement:

6-9

Example 6-15: Writing an End-Of-File Record in a Data File with a DATASAVE DA END
Statement

180 DIM B(25): A1 = 50

190FORI=1TO 25

200 INPUT “VALUES FOR THIS RECORD", B(l)

210 NEXT |

220 DATASAVEDAR (A1,A1) B()

230INPUT “IS THIS THE LAST RECORD? (Y ORN)”, F$
240IFF$ = “Y” THEN 350

250 GOTO 190

;'350 DATASAVE DAR (A1,A1) END

This routine illustrates a simple input loop in which the operator is asked after entering each
record if it is the last record. If a response of “N” (or any response other than “Y”) is entered, the
routine loops back to input another record. When a response of “Y” is entered, however, the rou-
tine branches to line 350 and writes an end-of-file record in the file.

When a new record is written into a file which has been ended with a trailer record, the trailer
record should be overwritten, and a new trailer record created following all subsequent data saving
operations. For example, if the trailer record occupies sector 497 in a file, the next data record should
be saved beginning at sector 497, and a new trailer record written following the save operation.

Retrieving Data from Disk with DATALOAD DA

Data is retrieved from a data file on the disk in Absolute Sector Addressing Mode with a
DATALOAD DA statement. Four items of information must be specified:

1. The disk platter on which the data is stored.

2. The address of the first sector on that platter from which data is to be read (specified as an
expression or alphanumeric variable).

3. Optionally, a numeric or alphanumeric return variable designated to receive the address of
the next sequential logical record following statement execution.

4. An argument list consisting of one or more alpha or numeric receiving variables, arrays, or
array elements designated to receive the data read from the disk.

Example 6-16: Retrieving Data from a Data File on Disk with a DATALOAD DA Statement
300 DATALOAD DAR (481,B2) AB.C

Statement 300 causes the system to load data from the ‘R’ platter beginning at sector 481, and
store the data in numeric variables A, B, and C in memory. Enough data is read from the disk to
fill all variables specified in the argument list (unless the trailer record is encountered, at which
point reading stops). However, it is recommended that exactly one logical record be read with
each DATALOAD DA statement. In order to read one logical record, the argument list of the
DATALOAD DA statement must correspond to the argument list of the DATASAVE DA state-
ment which originally saved the record. If only the first few fields in a logical record are loaded,
the remaining fields in the record are read but ignored. If the argument list contains more receiv-
ing arguments than there are fields in a logical record, values are read from the next sequential

6-10

logical record until the argument list is filled. The remainder of the second record is then read
and ignored. Following statement execution, the return variable B2 is set to the address of the
next sequential logical record. Thus, if the record occupies three sectors (481, 482, 483),B2 =
484 following statement execution.

If an end-of-file record has been written in the data file, it is possible to test for the end-of-file con-
dition with an IF END THEN statement. The IF END THEN statement is useful when processing records
sequentially from a file since it terminates reading and initiates a branch to a specified line number
when the end-of-file record is read. The end-of-file record is not transferred into the DATALOAD DA
argument list, and the value of the return variable in the DATALOAD DA statement is set to the ad-
dress of the end-of-file record rather than to the next sequential sector. The system is therefore posi-
tioned to save a new record over the end-of-file record if additional data is to be stored in the file.

Example 6-17: Testing for the End-of-File Condition in a Non-Cataloged Data File

400 DATALOAD DAR (B2,B2) A()
410 IF END THEN 500

490 GOTO 400
500 STOP

Statement 400 loads one logical record from the ‘R’ platter, beginning at the sector whose ad-
dress is stored in B2, and stores the data in array A(). Statement 410 checks for an end-of-file
trailer record (previously written with a DATASAVE DA END statement). If the trailer record is
detected, the program skips to statement 500 and stops. If no trailer record is detected, program
execution continues normally, with data in A() being processed until, at statement 490, the
system is instructed to loop back and load in another record. Note that when the trailer record is
read, the receiving variable (B2) is set to the address of the trailer record, not the address of the
next consecutive sector.

6.5 THE ‘BA’ STATEMENTS

Two special statements, DATASAVE BA and DATALOAD BA, enable the programmer to save and
load records that do not contain the standard System 2200 control information (such records cannot
be saved or loaded with DC or DA statements). Since records saved or loaded with a BA statement
are not formatted automatically with System 2200 control information, the programmer is free to
write his own control information, and format his records in a manner appropriate to his application.
Records which are saved with a DATASAVE BA statement must be loaded with a DATALOAD BA
statement. The DATALOAD DC and DATALOAD DA statements cannot be used to read a record
which was saved initially with DATASAVE BA. However, DATALOAD BA can be used to read sectors
which were written initially with DC or DA statements or commands.

The DATASAVE BA statement writes exactly one sector (256 bytes) of unformatted data into a
specified sector on the disk. A single variable, alpha array, or literal-string must be used in the
DATASAVE BA argument list. Numeric variables and arrays, are illegal. Multiple arguments are not
permitted. It is not possible to write a multi-sector record with a single DATASAVE BA statement. If
the alpha array in the DATASAVE BA argument list contains more than 256 bytes of data, the addi-
tional data is ignored. If the array contains fewer than 256 bytes, the remainder of the sector being
addressed is filled with unpredictable data. It is therefore always advisable to specify an array which
contains at least 256 bytes of data in the DATASAVE BA argument list. Four items of information
must be specified in the DATASAVE BA statement:

6-11

1. The disk platter on which the data is to be stored.

2. The address of the sector in which the data is to be written (multi-sector records are not
written automatically).

3. Optionally, a numeric or alphanumeric return variable designated to receive the address of
the next consecutive sector following statement execution.

4. One alphanumeric variable, array or literal containing the data to be saved on the disk. (It is
recommended that the array contain 256 bytes of data.)

Example 6-18: Writing an Unformatted Sector with DATASAVE BA
200 DATASAVEBA F (LS,LS) AS()

Statement 200 causes 256 bytes of unformatted data to be transferred from array A$() into
the sector on the ‘F’ platter whose address is stored in alpha variable L$. If A$() contains more
than 256 bytes of data, the additional data is ignored. If A$() contains fewer than 256 bytes of
data, the remainder of the sector is filled with garbage. Following statement execution, the ad-
dress of the next consecutive sector is returned to L$ (i.e., if L$ = HEX(O1EO) prior to execution
of statement 200, then L$ = HEX(O1E1) following statement execution).

Example 6-19: Writing an Unformatted Sector on the Model 2280 Disk with DATASAVE BA
500 DATASAVE BA T/D14, (F$,F$) B$()

Statement 500 causes 256 bytes of unformatted data to be transferred from array B$() into the
sector on the D14 platter whose address is stored in alpha variable F$.

The DATALOAD BA statement loads exactly one sector (256 bytes) of data from a specified sector
on the disk into a specified alphanumeric array in memory (numeric arrays, as well as alpha and
numeric variables and array elements, are illegal). The receiving array must be dimensioned to contain
at least 256 bytes. If the array contains fewer than 256 bytes, an error is signalled and the data is not
transferred; if the array contains more than 256 bytes, the additional bytes are undisturbed. It is not
possible to read multi-sector records with the DATALOAD BA statement. The DATALOAD BA state-
ment must include the same four elements specified in the DATASAVE BA statement (i.e., disk platter
to be accessed, address of sector to be loaded, variable specified to receive address of next consecu-
tive sector (optional), and alpha array specified to receive data read from disk).

Example 6-20: Reading a Sector from Disk with DATALOAD BA

240 DIM A$(256)1
250 DATALOADBAF (20,L) A$()

Statement 250 causes all information stored in sector 20 on the ‘F’ platter (256 bytes) to be
loaded into alpha array A$() in memory. A$() is dimensioned at line 240 to contain 256 bytes
of data. If A$() held fewer than 256 bytes, an error would be signalled. Following execution of
the statement, the address of the next consecutive sector is returned in numeric variable L fi.e.,
following statement execution, L=21). If A$() were dimensioned larger than 256 bytes, the
additional bytes of A$({) would remain unaltered.

6-12

6.6 PLATTER-TO-PLATTER COPY WITH “COPY"”

Absolute Sector Addressing Mode provides the capability to copy all or part of the contents of one
disk platter onto another with the COPY statement. The entire contents of a disk platter, or any speci-
fied portion of its contents, can be copied from one disk platter to another, and from one disk unit to
another disk unit. Unlike MOVE (see the discussion of MOVE in Chapter 2), COPY transfers all infor-
mation located on the specified portion of the disk platter which is to be copied (including scratched
and temporary files) to the corresponding sectors on the second platter. If the beginning and ending
sector addresses of the portion of the disk platter which is to be copied are not specified, the disk
catalog index and cataloged files are copied. If the disk is not catalogued or if the entire disk platter is
to be copied, the starting sector address specified must be O and the ending sector address specified
must be the highest sector address on the platter. It is recommended that MOVE be used instead of
COPY when transferring the catalog from platter to platter (since, in that case, scratched files are au-
tomatically deleted).

Example 6-21: Copying Disk Platters in the Same Disk Unit with the COPY Statement
10 COPYR (0,2399) TOF

Statement 10 causes the contents of sectors zero through 2399 to be transferred from the ‘R’
disk platter to the corresponding sectors (O - 2399) on the 'F" disk platter.

Example 6-22: Copying Disk Platters in the Model 2280 Disk Unit with the COPY Statement
100 COPY T/D12, (0, 5800) TO T/D10,

Statement 100 causes the contents of sectors zero through 5800 to be transferred from the
D12 platter to the corresponding sectors (O - 5800) on the D10 platter.

If it is convenient, the starting and ending sector addresses may be expressed as the values of
numeric variables or expressions.

Example 6-23: Copying from One Disk Unit to Another with COPY (Model 2260 and 2270
Series)

700 A=10
710 COPY R/310, (A,A*100) TO F/320,(100)

Statement 710 causes sectors 10 (the value of A) through 1000 (the value of A*100) to be
transferred from the ‘R’ platter in the disk unit with address 310 to the ‘F’ platter in the disk unit
on the same system with address 320. The information is copied on the ‘F’ platter starting with
sector 100. All scratched and temporary files are included in the transfer. If the ‘starting-sector’
(A) and ‘ending-sector’ (A*100) expressions had been omitted, the catalog and cataloged files
would have been copied.

Following a COPY operation, the transferred information should be checked to ensure that it has
been written correctly. The VERIFY statement is used to perform such a validation check. If the entire
contents of the disk platter are copied, the entire platter can be checked by executing a VERIFY state-
ment which specifies sector O as the starting address, and the address of the last sector on the platter
as the ending address. If only a specific portion of a platter is transferred, the VERIFY statement can
be used to verify only that portion of the second platter.

6-13

Example 6-24: Verifying Data Transfer Following a COPY Operation

10 COPY F (0,1000) TOR
20 VERIFY R (0,1000)

Statement 10 copies sectors zero through 1000 from the ‘F’ platter to the same sectors on the
‘R’ platter. Statement 20 verifies the newly-copied sectors O - 1000 on the ‘R’ platter.

Example 6-25: Verifying Data Transfer on the Model 2280 Following a COPY Operation

100 COPY T/D14, (4000,8000) TO T/D10,
200 VERIFY T/D10, {4000,8000)

Statement 100 copies sectors 4000 through 8000 from the D14 platter to the same sectors on
the D10 platter. Statement 200 verifies the newly-copied sectors 4000 - 8000 on the D10
platter.

If the check performed by VERIFY is positive, the system returns the CRT cursor and colon to the
screen, indicating that the information has been written accurately. If one or more errors are discov-
ered, the system returns an error message indicating which sector(s) did not verify properly, e.g.,

ERROR IN SECTOR 946

If you encounter an error following a COPY operation, repeat the COPY. Repeated failure could indi-
cate a faulty disk platter. If the error persists with another platter, call your Wang Service
Representative.

VERIFY can be used to verify any portion of a disk platter, or an entire platter, for any reason. It
need not be used only in conjunction with COPY. It may be useful, for example, to verify data on a pre-
viously recorded platter before the platter is reused. Many programmers verify each platter at the
beginning of daily operation. The CRC and LRC checks performed by VERIFY provide an early detec-
tion of improperly written information on the disk.

WARNING:

It is important that backup copies of important
disk-based data files be maintained and kept up to
date. Like other storage media, disk platters can
be worn out with repeated use, and they are, of
course, subject to accidental damage or destruc-
tion. To avoid the necessity of recreating your
data base following such a disaster, you should
always maintain one or more backup platters con-
taining all important files. Non-cataloged files can
be copied to a backup platter with the COPY state-
ment. For cataloged files, the MOVE statement
should be used.

6-14

6.7 USING ABSOLUTE SECTOR ADDRESSING STATEMENTS IN CONJUNCTION WITH
CATALOG PROCEDURES (BINARY SEARCH)

In the concluding paragraph of Chapter 4, it was pointed out that Absolute Sector Addressing
statements can be used in conjunction with catalog procedures to develop more versatile and efficient
file access techniques. One of the data retrieval techniques most commonly used on data files is the
binary search technique. The System 2200 provides a special BASIC verb, LIMITS, which can be
used in conjunction with direct addressing statements to perform a binary search on cataloged files.
(LIMITS is discussed in Chapter 4, Section 4.7.)

A binary search is a technique for locating a particular record in an ordered file by searching succes-
sively smaller segments of the file until the record is found. Following is a simplified description of
this procedure: the highest and lowest records in the file are checked first; if neither is the desired
record, then the middle record is checked. If the middle record is not the desired record, then the
sought-after record must be located either in the top half of the file (that is, between the highest
record and the middle record), or in the lower half of the file (that is, between the lowest record and
the middle record). The middle record in the appropriate half is then checked, and the process of per-
forming successive bifurcations continues until the record is found (or until it is determined that no
such record exists in the file). Obviously a binary search cannot efficiently be performed if the file is
not sorted in ascending or descending order.

The use of a binary search can be illustrated with an example from industry. Consider a small
company which maintains a customer file on disk. In the simplest case, each record in the file might
contain only three fields, a three-digit customer I.D. number, the customer’s name, and the customer’s
credit rating:

CREDIT
1.D.# NAME RATING
062 JOHN Q. NOBLE A1

Figure 6-1. Typical Entry in Customer Credit File

6-15

The customer credit file is a cataloged file named CREDIT, in which each record occupies a single
sector. The file begins at Sector #100, and is sorted in ascending order on the customer |.D. numbers.

SECTOR # I.D.# NAME CREDIT
100 007 ELLER, CAROL A-2
101 011 HEAVER, HERBERT B-1
102 012
103 013
104 017
105 022
106 025
107 037
108 039
109 052 . .
110 056 FRACK, ALFRED R. A-1
111 062
112 073
113 101
114 111 . .
115 123 RAPPE, VIRGINIA S. B-2
116 128 SOLO, HAN C-3

Figure 6-2. Typical Customer Credit File (Sorted in Ascending Order)

As you can see, the file contains 17 records. Suppose, now, that one of the customers, Alfred R.
Frack, applies for additional credit. Before granting this credit, the credit manager will want to check
Mr. Frack’s credit rating. One way to locate Mr. Frack’s record is to search sequentially through the
file until his customer I.D. (055) is found. In the sample file, this technique involves reading and check-
ing 11 records, or slightly more than one half the total number of records in the file. A faster and
more efficient way to find the record is to search the file with a binary search. The procedure is as
follows:

1. Begin by checking the first (lowest) record in the file and the last (highest) record, to see if
either of them is the desired record. In this case, neither the first record (I.D.#007) nor the
last record {1.D.#128) is the desired record.

2. Next, check the middle record in the file. To find the sector address of this record, add the
sector address of the last (highest) record in the file (116) to the sector address of the first
(lowest) record in the file (100), and take the integer value of the average:

M = INT((H+L)/2)
M = INT((116+100)/2)
M= 108

For the first search, the highest address is 116 (H=116), and the lowest is 100 (L=100).
Thus, M=108. The first sector to be accessed is sector 108.

3. Compare the key of this record (.D. #039) with the desired key (.D. #055). Since the
desired key 055 is greater than the middle key 039, it must be located in the top half of the
file (that is, between sectors 108 and 116).

4. Using the middle sector address (108) as the new low sector address, find the middie
record in the top half of the file, midway between sector 108 and sector 1186. In this case,
INT((108+116)/2)=112.

5. Retrieve sector 112 and compare its key (1.D. #073) with the desired key (L.D. #055). Since
073 is larger than 055, the desired record must be in the lower quarter of this half of the
file (i.e. between sector 108 and sector 112). Using sector 112 as the new high address,
find the sector midway between 108 and 112. INT((108+112)/2)=110. Compare the key
of sector 110 (.D. #055) with the desired key (L.D. #055). Since the keys match, sector
110 contains the desired record, and the search is finished.

1st Search

Sector
Address Key

100 007
101 011
102 012
103 013
104 017
106 022
106 025 2nd Search
107 037

middle — 108 039 108 039
109 052 109 052
110 055 110 055 3rd Search
111 062 111 062
112 073 middle — 112 073 108 039
113 101 113 101 middle 109 052
114 111 114 111 and —110 0b5b
115 123 115 123 desired 111 062
116 128 116 128 record 112 073

Figure 6-3. Binary Search Technique

Although this example presumed an odd number of records in the file, the technique is the same
for a file which contains an even number of records. A more serious problem is presented by files in
which each record consists of two or more sectors. In such a case, the number of sectors in each
record must be taken into account when calculating the record addresses on each search. It is im-
possible to conduct a binary search if the number of sectors per record is not constant.

6-17

in o;'der to conduct a binary search on a file, then, there are three requirements:
1. The file must be sorted.
2. The number of sectors per record must be constant.
3. Thelimits of the file (i.e., beginning and ending sector addresses) must be known.

For cataloged files, the beginning and ending sector addresses can be obtained under program control
with the LIMITS statement.

It may be obvious that the ending sector address of a cataloged file should not be used as the
upper limit of the file, unless the file is filled with data. Use of the ending sector address as the upper
limit when the file is not full decreases the efficiency of the binary search, since one or more searches
may be wasted searching the empty sectors between the end-of-file trailer record and the last sector
of the file (or, those unused sectors may contain meaningless data - including old program text -
which would cause an error when the DATALOAD DA statement attempts to read it). It is generally
safer and more efficient to use the address of the last data record as the upper limit of the file in a
binary search since all sectors between the beginning of the file and the last data record are certain to
contain valid data. The address of the last data record in a file is computed by subtracting 1 from the
address of the end-of- file trailer record. The address of the trailer record can be computed by first
executing a LIMITS on the file (with the file name specified), then subtracting 2 from the number of
sectors used in the file, and adding this value to the starting sector address of the file. Thus, to deter-
mine the address of the trailer record in the file “CREDIT”, first execute a LIMITS:

20 LIMITS F “CREDIT”, A1, A2, A3

Since the file name is specified rather than a file number, LIMITS accesses the Catalog Index on the
‘F’ platter and retrieves the starting and ending sector addresses, and number of sectors used, for
CREDIT. Variable A1 contains the starting sector address, variable A2 the ending sector address, and
variable A3 contains the number of sectors used. The address of the trailer record then is computed
with the following formula:

T = Starting +(Used -2)
T =A1 +(A3-2)

The address of the trailer record is stored in variable ‘T’. The sector address of the last data record in
the file may now be found merely by subtracting one from the address stored in ‘T":

H=T-1
Here the address of the last data record is stored in variable ‘H’. This address is used as the upper

limit of the file for the first dichotomy in the binary search. The following example program illustrates
the binary search described above on the customer credit information file, “CREDIT".

Example 6-26: Performing a Binary Search on a Cataloged Data File

10 DIM R$3, A$3, F$26, C$4

20 LIMITS F "CREDIT",A1,A2,A3

75 REM ****xx COMPUTE ADDRESS OF LAST DATA RECORD Fkdkdkekk
30 T = A1+(A3-2)

40 H=T-1

50 REM ***%%* ENTER KEY OF DESIRED RECQRD **¥*x*

60 INPUT "DESIRED I.D.",R$

70 REM *%%%*%x READ & CHECK LOWEST RECORD *****x

80 DATA LOAD DA F (A1,S) A$,F$,C$

90 IF A$ = R$ THEN 260

100 REM ***%%*x READ & CHECK HIGHEST RECORD ******
110 DATA LOAD DA F (H,S) A$,F$,C$

120 IF A$ = R$ THEN 260

130 REM ***%%* COMPUTE MIDDLE SECTOR ADDRESS **¥kk*
140 M = INT((A1+H)/2)

150 REM ***%%*x READ & CHECK MIDDLE RECORD ******

160 DATA LOAD DA F (M,S) A$,F$,C$

170 IF A$ = R$ THEN 260

180 REM **%*** IS DESIRED KEY HIGHER OR LOWER THAN KEY READ? *xx**
190 IF R$ < A$ THEN 210

200 Al = M

201 GOTO 230

210 H=M

220 REM ***%%* HAVE ALL RECORDS BEEN CHECKED? ¥
230 IF H = M+1 THEN 280

240 GOTO 140

250 REM **%%%%* RECORD FOUND - PRINT RECORD ******
260 PRINT A$,F$,C$

265 STOP

270 REM ****** RECORD NOT FOUND - PRINT ERROR MESSAGE ***x*x
280 STOP "RECORD NOT IN FILE"

Statement 20 performs a LIMITS on the cataloged file CREDIT; the starting sector address of
CREDIT is returned to A1, the ending sector address to A2, and the number of sectors used to
A3. Statement 30 calculates the address of the trailer record in CREDIT by subtracting 2 from
the number of sectors used (A3), and adding this value to the starting address (A1). The re-
sultant address is stored in T. Statement 40 computes the address of the last data record by
subtracting 1 from ‘T’. Line 60 is an INPUT statement which requests the key for the desired
record. Line 80 loads in the first record of the file; its key is checked against the specified key. If
there is no match, the highest record in the file is loaded (line 110), and its key is checked (line
120). If neither the first nor the last record is the desired record, the address of the middle
record is computed (line 140), and this record is read and checked. If the middle record does not
hold the desired key, the process is repeated on the upper or lower half of the file, depending
upon whether the desired key is larger or smaller than the middle record key (lines 190, 200).
The process continues either until the desired record is found (in which case it is printed), or until
it is determined that no such record exists in the file (in which case an error message is
displayed).

6.8 CONCLUSION

Direct addressing statements and commands can be used in conjunction with catalog procedures
to develop an efficient and versatile data management system. One technique which might be used in
such a system is the binary search technique discussed in the preceding section. A variety of different
techniques also are available, and the interested reader is directed to the bibliography in Appendix D
for a list of texts which discuss disk file access techniques. The direct addressing statements need
not, of course, be regarded as merely supplemental to and supportive of catalog procedures. On the
contrary, highly sophisticated and complex data management systems can be constructed in Abso-
lute Sector Addressing Mode exclusively. The bibliography in Appendix D also lists a number of texts
which discuss disk management system design concepts and philosophies.

6-20

CHAPTER 7
ABSOLUTE SECTOR ADDRESSING STATEMENTS AND COMMANDS

7.1 INTRODUCTION

This chapter contains descriptions of and General Forms for the following Absolute Sector Ad-
dressing statements and commands, listed alphabetically for ease of reference:

COPY

DATALOAD BA
DATALOAD DA
DATASAVE BA
DATASAVE DA
LOAD DA (command)
LOAD DA (statement)
SAVE DA

7.2 STATEMENT/COMMAND DISTINCTION AND GENERAL RULES OF SYNTAX

Refer to Chapter 5, Section 5.2, for an explanation of the distinction between BASIC-2 statements
and commands.

Refer to Chapter 5, Section 5.3, for a list of the rules of syntax and notation used in the General
Forms.

7-1

COPY

General Form:

. file#,
COPY platter f'!e#' [[(start-sector, end-sector) | TO platter [(destination-sector)]
disk-address, disk-address
where:
start-sector = An expression whose value equals the address of the first
sector to be copied.
end-sector = An expression whose value equals the address of the last sector

to be copied.

destination-sector = An expression whose value equals the starting sector address
on the destination platter.

Purpose:

The purpose of the COPY statement is to copy information from one disk platter to another even
when both platters are located in separate disk units. In the COPY statement, the value of ‘start’ repre-
sents the address of the first sector to be copied, and the value of ‘end’ represents the address of the
last sector to be copied.

If the ‘start” and ‘end’ parameters are omitted, the entire Catalog Index and Catalog Area (up to the
current end) are copied. If the disk is not cataloged, the ‘start’ and ‘end’ addresses must be specified.
COPY does not delete scratched files. The specified sectors are copied to the specified destination
platter starting at ‘sector’. If the ‘sector’ is not specified, it defaults to the ‘start” address.

When COPY is executed, approximately 800 bytes of memory must be available for buffering (that
is, at least 800 bytes of memory must not be occupied by a BASIC program or variables); otherwise,
an ERROR AO3 (Memory Overflow) is signalled and the COPY is not performed. The large buffer mini-
mizes the time required for the COPY operation.

Following the COPY, a VERIFY statement can be executed to ensure that the specified information
was written correctly on the destination platter.

Examples of valid syntax:

100 COPYFTOR

100 COPY R/310, TO F/320,
1T00COPYT#A, TOT #B,

100 COPY F (1000,2000) TOR
100 COPY R (100,200) TO R (300)
100 COPY T/D10, TO T/D14,

7-2

DATALOAD BA

General Form:

file#,
DATALOAD BA platter [] (sector-address |,[return-variable] |) alpha-array
disk-address,

where:
sector address = An expression or alphanumeric variable whose value specifies the sector

address of the record to be read. The value of the expression or alpha variable must
be less than or equal to the last {(highest) sector address on the disk platter.

return-variaple= A variable which is set to the address of the next sequential sector after the
DATALOAD BA statement is processed.

Purpose:

The DATALOAD BA statement is used to load one sector of unformatted data from the disk. The
‘BA’ parameter specifies Absolute Sector Addressing Mode and block data format, and is not normal-
ly used when the referenced file is a cataloged file. The DATALOAD BA statement reads one sector
from the specified disk and sequentially stores the entire 256 bytes in the designated alpha-array (or
STR(of alpha-array). No check is made for control bytes normally found in System 2200 data
records. An error results if the alpha-array is not large enough to hold at least 256 bytes. If the array
is larger than 256 bytes, the additional bytes of the array are not affected by the DATALOAD BA
operation.

After the statement is executed, the system returns the address of the next consecutive sector,
either as a decimal value if a numeric return-variable is specified, or as a two-byte binary value if an al-
phanumeric return-variable is specified. This address can be used in a subsequent disk statement or
command to provide sequential access to data stored on the disk.

Execution of the DATALOAD BA statement does not alter the sector address parameters in the
Device Table default slot (or in one of the other slots, #1 - #15, if a file number is used in the
statement).

Examples of valid syntax:

100 DATALOAD BAF (20} AS$()

100 DATALOAD BA T #2, (B$,B$) B$()

100 DATALOAD BA F /320, (C,C) J$()

100 DATALOAD BA T #A, (A,B) STR(A$(),X,256)
100 DATALOAD BA T/D13, (30) A$()

7-3

DATALOAD DA

General Form:

file#,
DATALOAD DA platter [] (sector-address|, [return-variable]]) argument-list

disk-address,

where:

sector-address= An expression or alphanumeric variable whose value specifies the start-
ing sector address of the record to be loaded. The value of the expression
or alpha variable must be less than or equal to the last {highest) sector ad-
dress on the disk platter.

return-variable = A variable which is set to the address of the next available sector
after the DATALOAD DA statement is processed.

variable variable
argument list =

array .\ array

Purpose:

DATALOAD DA reads one or more logical records from the disk, starting at the absolute sector ad-
dress specified. The ‘DA’ parameter specifies direct addressing mode and generally is not used when
the referenced data file is a cataloged file. However, Absolute Sector Addressing can be used with
cataloged files and may be useful for certain applications (see Section 9.8). The data to be read must
be in standard System 2200 format, including the necessary control information (i.e., the data must
have been written onto the disk by a DATASAVE DA or DATASAVE DC statement).

The DATALOAD DA statement reads a logical record from the specified disk and assigns the
values read to the variables and/or arrays in the argument list sequentially. An error results if numeric
data is assigned to an alpha variable, or vice versa. If data assigned to an alpha variable is shorter than
the length of the variable, the value is padded with trailing spaces; if the value is longer, it is truncated.
Arrays are filled row by row.

It should be noted that alpha arrays (e.g., A$()) receive a separate data value for each element of
the array. However, the STR() of an array receives only a single value.

If the argument list in the DATALOAD DA statement is not filled, another logical record is read.
Data in the logical record not used by the DATALOAD DA statement is read but ignored. If the argu-
ment list requires more data than is contained in the logical record being read, data is automatically
read from the next logical record until the argument list is satisfied. The remainder of the next record
is then read but ignored. If an end-of-file (trailer record) is encountered while executing a DATALOAD
DA statement, no additional data is read, the next available sector is set to the sector address of the
trailer record, and the remaining variables in the argument list remain at their current values. An IF
END THEN statement will then cause a valid program transfer.

After the DATALOAD DA statement is executed, the system returns the address of the next
sequential logical record, either as a decimal value if a numeric return-variable is specified or as a
binary value if an alphanumeric return-variable is specified. This address can be used in a subsequent
disk statement or command to provide sequential access to data stored on disk.

7-4

Execution of the DATALOAD DA statement does not alter the sector address parameters in the
Device Table default slot {or in one of the other slots, #1 - #15, if a file number is used in the
statement).

Examples of valid syntax:

100 DATALOAD DA R (A$,L$) X, Y(), Z$()

100 DATALOAD DA T #3, (20) A$, B2$(), M2
100 DATALOAD DA F /320, (D,D) F$(), J

100 DATALOAD DAR (B$,B$) A,B,S()

100 DATALOAD DA T #A, (E,D) STR (X$(),Y,200)
100 DATALOAD DA T /D11, (C$,C$),R,S, T()

7-5

DATASAVE BA

General Form:

file#, alpha-varia ble}

] {sector-address/, [return-variable]]) {
literal

DATASAVE BA platter [$] [
disk-address,

where:

sector-address= An expression or alphanumeric variable whose value specifies the sector
address at which the record is to be saved. The value of the expression or alpha
variable must be less than or equal to the value of the last (highest) sector address
on the disk platter.

return-variable= A variable which is set to the address of the next sequential sector after the
DATASAVE BA statement is processed.

Purpose:

The DATASAVE BA statement is used to save data on the disk with no control bytes. The ‘BA’
parameter specifies Absolute Sector Addressing Mode and should be used with caution when refe-
rencing a cataloged data file. ‘BA’ also specifies block data format; each DATASAVE BA statement
writes one sector with no control information. The alpha-variable or literal-string contains the data to
be written (trailing spaces are also written). If the data to be written is longer than 256 bytes, only the
first 256 bytes are written on disk. If the data is shorter than 256 bytes, the remainder of the sector is
filled with unpredictable data.

The DATASAVE BA statement writes data to the specified sector on disk. After the statement is
executed, the system returns the address of the next sequential sector, either as a decimal value if a
numeric return variable is specified, or as a two-byte binary value if an alphanumeric return variable is
specified. This address can be used in a subsequent disk statement to permit sequential storage of
data on the disk.

The ‘$’ parameter specifies that a ‘read-after-write’ verification check be made on all data written
to the disk. This verification check not only provides added insurance that data is written accurately
on the disk, but also substantially increases the execution time of the DATASAVE BA statement.

Since information written with DATASAVE BA contains no control information, it can be read back
only with a DATALOAD BA statement (unless proper control information is included explicitly in the
data written).

Execution of the DATASAVE BA statement does not alter the sector address parameters in the
Device Table default siot (or in one of the other slots, #1 - #15, if a file number is used in the
statement).

Examples of valid syntax:

100 DATASAVE BA F (L$,L$) A$()

100 DATASAVE BAR $ #3, (20) B$()

100 DATASAVE BAF $/320, (2+1,L) F$()

100 DATASAVEBA T #2, (Q,Q) HEX (438D9247)
100 DATASAVEBA T /D12, (50) B$()

7-6

DATASAVE DA

General Form:

file#, END
DATASAVE DA platter [$] (sector-address|, [return-variable]])
disk-address, argument-list

where:

sector-address = An expression or alphanumeric variable whose value specifies the starting
sector address of the record to be saved. The value of the expression or alpha
variable must be less than or equal to the last (highest) sector address on the disk
platter.

return-variable = A variable which is set to the address of the next available sector after the
DATASAVE DA statement is processed.

variable variable
. literal i
argument list = . ,|J literal oo
expression expression
array array

Purpose:

The DATASAVE DA statement is used to save data on the disk in Absolute Sector Addressing
Mode. The ‘DA’ parameter indicates a direct addressing operation; the statement therefore generally
is not used when the referenced data file is a cataloged file, since there is a risk the user may uninten-
tionally destroy part of the catalog information. However, direct addressing statements can be used
with cataloged files for certain applications (see Section 6.8). The ‘END’ parameter in a DATASAVE
DA statement should never be used for records stored in a cataloged file. There are two important
considerations which must be kept in mind when writing a record into a cataloged file with
DATASAVE DA. First, the system provides no automatic boundary checking; hence, records can be
written past the end of one file and into the beginning of the next without system detection. Second,
the “number of sectors used” is not updated in the Catalog Index when a trailer record is written with
DATASAVE DA END. Therefore, DSKIP END cannot be used to skip to the end of the file.

The ‘DA’ parameter specifies that the data in the argument list is to be written in standard System
2200 format, including the necessary control information. Each DATASAVE DA statement writes a
logical record consisting of one or more sectors. The DATASAVE DA statement causes the values of
variables, expressions, and array elements to be written sequentially onto the specified disk. Arrays
are written row by row. It should be noted that each element of an array is written as a separate data
value. However, the STR() of an alpha-array represents a single data value. Alphanumeric values
must be <_124 bytes in length.

NOTE:

Each numeric value in the "argument list’ requires
9 bytes on disk; each alphanumeric variable re-
quires the maximum number of characters for
which the variable is dimensioned plus 1. Each
256-byte sector also requires three bytes of con-
trol information.

7-7

If the ‘END’ parameter is used, a data trailer record is written for the file. This record can be used to
test for the end of a file during processing with an IF END THEN statement.

The DATASAVE DA statement writes the data from the argument list onto the disk beginning at
the specified sector address. After the statement is executed, the system returns the address of the
next available sector, either as a decimal value if a numeric return variable is specified or as a two-byte
binary value if an alphanumeric return-variable is specified. This address can be used in subsequent
disk statements to provide sequential access to data on the disk.

The ‘$’ parameter specifies that a read-after-write verification test be made on all data written to
the disk. This verification check not only provides added insurance that data is written accurately on
the disk, but also substantially increases the execution time of the DATASAVE DA statement.

Execution of the DATASAVE DA statement does not alter the sector address parameters in the
Device Table default slot (or in one of the other slots, #1 - #15, if a file number is used in the
statement).

Examples of valid syntax:

DATASAVEDAF (20) X, Y(), Z$()
DATASAVEDAR $ /320, (C,C) F$(), A()
DATASAVEDAT $ #2, (B$,B$) M$(), “J.CARTER”
DATASAVE DAF (2*M+1,L) J(), K1
DATASAVEDAT (Q,Q) END

DATASAVEDAT #A, (A,B) END

DATASAVE DA T $/D13, (A,AIP$(),R()

7-8

LOAD DA (Command)

General Form:

file#,
LOAD DA platter [] (sector-address|, [return-variablei])

disk-address,

where:

sector-address= An expression or alphanumeric variable whose value specifies the starting
sector address of the program to be loaded. The value of the expression or alpha
variable must be the address of the program header record, and must be less than or
equal to the last (highest) sector address on the disk platter.

return-variable = A variable which is set to the address of the next available sector after the LOAD DA
command is processed.

Purpose:

The LOAD DA command is used to load BASIC programs or program segments from the disk in
Absolute Sector Addressing Mode. When the LOAD DA command is executed, the program which
begins at the specified sector address is read and appended to the current program in memory. {Note
that the sector address must be the address of a program header record.) The LOAD DA command
can be used to add program text to a program currently in memory or, if entered after a CLEAR com-
mand, to load a new program from the disk.

After the LOAD DA command is executed, the system returns the address of the next available
sector, either as a decimal value if a numeric return variable is specified or as a two-byte binary value
if an alphanumeric return variable is specified. This address can be used in a subsequent disk state-
ment or command to permit sequential access to programs on the disk.

Execution of the LOAD DA command does not alter the sector address parameters in the Device
Table default slot (or in one of the other slots, #1 - #15, if a file numberis used in the command).

LOAD DA can also be used as a program statement to chain programs or subroutines (see LOAD
DA statement).

Examples of valid syntax:

LOAD DA R (24)

LOAD DA F (A$,B$)
LOAD DAR /320, (L$,L$)
LOADDAT #2, (A,B)
LOAD DAR (24,L$)
LOAD DAR (A$,B)

LOAD DA T #A, (C,D)
LOAD DA T/D10, (100}
LOAD DA T (100)

7-9

LOAD DA (Statement)

General Form:

file#,
LOAD DA platter [J (sector-address|. i return-variable||Hline-number 1], lline-number 21| IBEG begin-line-number|
disk-address
where:
sector-address = An expression or alphanumeric variable whose value specifies the starting
sector address of the program which is to be loaded. The value of the expression or
alpha variable must be the address of the program header record, and must be less
than or equal to the last (highest) sector address on the disk platter.
line-number-1 = The line number of the first line to be deleted from the program currently in memory
before loading the new program. After loading, execution continues automatically
starting at this line number. An error results if there is no line with this number in the
new program.
line-number-2 = The number of the last text line to be deleted from the program currentiy in memory

before loading the new program,

begin-line-number= The line number of the program where execution is to begin after the program is
loaded into memory.

return-variable = A variable which is set to the address of the next available sector after the LOAD DA
statement is processed.

Note: The return-variable must be a common variable. J

Purpose:

The LOAD DA statement is used to load programs from a specified location on the disk. (Note that
the sector address specified must be the address of the program header record.) The ‘DA’ specifies
direct addressing; therefore, the LOAD DA statement is not generally used to load cataloged pro-
grams from the disk. LOAD DA is a BASIC program statement which, in effect, produces an automatic
combination of the following:

STOP (Stops current program execution.)

CLEARP (Clears program text from memory, beginning at ‘line-1' {if specified) and ending
at ‘line-2’ (if specified); if no line number is specified, clear all program text from
memory.) The Internal Table and subroutine stacks in memory are cleared.

CLEARN {Clears all non-common variables from memory.)

LOAD DA (Loads new program or program segment from disk.)

RUN {Runs new program, beginning at ‘begin’ if specified). If the ‘BEG’ parameter is not
specified, program execution begins at ‘line-1’, or at the lowest program line in
memory if ‘line-1" is not specified.

The two line number parameters may be used to cause the system to clear a specified portion of
resident program text prior to loading in the new program. If both line numbers are specified, all pro-

gram lines between and including the two specified lines are cleared prior to loading the new program.
If only ‘line-1" is specified, the remainder of the resident program is deleted starting with that line

7-10

number. If only ‘line-2' is specified, all program lines up to and including ‘line-2' are deleted. If no line
numbers are specified, the entire resident program is deleted. In every case, all non-common variables
are cleared. LOAD DA permits segmented programs to be run automatically without normal user inter-
vention, with common variables passed between program segments. If included on a multi-statement
line, LOAD DA must be the last executable statement on the line.

After the program is loaded, the system returns the address of the next sequential sector either as
a decimal value, if a numeric return-variable is specified, or as a two-byte binary value, if an alpha-
numeric return-variable is specified. This address can be used in a subsequent statement to permit
sequential access to programs on the disk.

Execution of the LOAD DA statement does not alter the sector address parameters in the Device
Table default slot (or in one of the other slots, #1 - #15, if a file number is used in the statement).

In Immediate Mode, LOAD DA is interpreted as a command (see LOAD DA command).
Examples of valid syntax:

100 LOAD DA F (40)
50 LOAD DA R/320, (L$,L$) 310,450
530 LOADDA T #2, (N$,L$) 570
700 LOAD DA F /320, {L,L)
1020 LOAD DAF (2+1+1,L$) 400
2000 LOAD DA T #B, (C,D)
3000 LOAD DAF (L$,L$) 310,450 BEG 400
500 LOAD DA T/D14, (J,K)
570 LOAD DA T #15, (100)

NOTE:

When a LOAD DA statement is executed, the
system stacks are cleared of all subroutine and
loop information.

7-11

SAVE DA

General Form:

<S> file#, !
SAVE DA p]atter [$] (sector-address|| return-variable|]) |start-line-number] [,[end-line-number| |

<SR> disk-address, }1P
where:

<S> = A parameter specifying that unnecessary spaces (not including spaces in character
strings enclosed in quotes, REM or % statements) will be deleted from a program as
it is saved.

< SR> = A parameter specifying that both spaces and remarks (REM statement lines) are
deleted from the program as it is saved.

! = Protect {scramble) the file to be saved.

P = Set the protection bit on the file to be saved.

sector-address = An expression or alphanumeric variable whose value specifies the starting
sector address of the program to be saved. The value of the expression or alpha
variable must be less than or equal to the last (highest) sector address of the disk
platter.

return-variable = A variable which is set to the address of the next available sector after the SAVE DA

command is processed.
start-line-number = The number of the first program line to be saved.

end-line-number = The number of the last program line to be saved.

Purpose:

The SAVE DA command is used to save programs on the disk beginning at a specified location. Be-
cause the ‘DA’ specifies Absolute Sector Addressing Mode, this command should not be used if the
program is to be saved under catalog procedures. SAVE DA causes BASIC programs (or portions of
BASIC programs) to be recorded on the designated platter beginning at the specified sector address.
The program cannot be named and can be loaded back into memory only with a LOAD DA statement
or command.

After each program is saved, the system returns the address of the next available sector, either as a
decimal value if a numeric return variable is specified, or as a two-byte binary value if an alphanumeric
return variable is specified. This address can be used in a subsequent disk command to permit the
sequential storage of programs on disk.

The ‘start-line-number’ and ‘end-line-number’ parameters specify the first and last lines, respec-
tively, of the program in memory which is to be saved. Both these parameters are optional; if only
‘start’ is included, all program lines in memory beginning with that line through the end of the program
are saved. If only the ‘end’ line number is specified, all program text from the beginning of the pro-
gram through the specified line are saved. If no line numbers are specified, all program text in
memory is saved.

Execution of SAVE DA does not alter the sector address parameters in the Device Table default
slot (or in one of the other slots, #1 - #15, if a file number is used in the command).

7-12

The ‘$’ specifies that a read-after-write verification check be performed on all information written
to the disk. This verification check not only provides added insurance that the program is recorded ac-
curately, but also substantially increases the execution time of SAVE DA.

When saving a program on disk, nonessential spaces and/or remarks can be deleted from a pro-
gram as it is saved by the ‘<>’ parameter. An <S> signifies that any unnecessary spaces (except
spaces in character strings enclosed in quotes and % or REM statements) are to be deleted.

NOTE:

The system automatically inserts spaces after line
numbers, statement separators (colons), and most
BASIC words for readability when displaying a
program line. These extra spaces are not in the
program in memory.

An <SR> in the SAVE DA statement means delete both spaces and remarks (REM statement
lines). The <SR> causes all REM statements to be deleted from the program. If certain REM's are to
be saved, the REM statements can be changed to image statements (%). Image statements are not dis-
turbed by <SR>.

The ‘P’ parameter permits a program to be protected against accidental modification. After a pro-
gram that has been saved via SAVE P is loaded, the program in memory cannot be modified (except
by overlaying). The operator cannot, then, inadvertently modify the program. SAVE P also prevents
the program from being listed or resaved.

The ‘" parameter performs the same function as ‘P’ but also provides a secure means of preventing

program examination. The entire program is scrambled when recorded on disk, and cannot be exam-
ined via DATALOAD BA.

The error message display for protected programs is modified to supress the display of the pro-
gram text. Only the line number, statement separators and error code are displayed.

Example:
100X=1:Y=2:Z=1/0
RUN (EXEC)

Output: (unprotected program)

100X =1:Y=2:Z=1/0
1ERR C62

Output: (protected program)

100:: ERR C62

7-13

NOTE:

In order to save any program on disk after a pro-
tected program has been loaded, the user must
enter a CLEAR command with no parameters, or
Master Initialize the system (i.e., turn main power
switch OFF, then ON).

Examples of valid syntax:

SAVEDAT (3)
10 SAVEDAR $/320,P (L,L)
10 SAVEDAR #2, (A$,A$) 200
SAVEDAT #2,P (A$,A$)
SAVE DA FI(2+X,L)
SAVEDA<SR>F(A$,A%)
SAVE DA T/D10, (1000)

7-14

CHAPTER 8
THE DISK MULTIPLEXER (MODEL 2230MXA-1/MXB-1)

8.1 INTRODUCTION

When more than one CPU is configured to have access to a common disk data base, a multiplexed
disk environment exists. Multiplexing adds an important dimension to disk ownership. A single disk
unit can be apportioned among several offices or departments. Each will have access to the disk data
base while retaining its own system in a convenient location. The participating systems may share a
common data base on disk, or each system may have a specified portion of the disk reserved for its
own use. In either case, the disk receives maximum utilization. Each user is provided with a random-
access mass-storage capability, and the costs incurred by any one user are reduced. The disk opera-
tions from multiple inquiring systems are interleaved, and disk time is allocated among the inquiring
systems in a manner which provides all systems with virtually concurrent access to the disk.

With the Model 2230MXA-1/MXB-1 up to four independent CPU’s can be multiplexed to the same
disk unit. The Model 2230MX is a “daisy-chain” multiplexer which consists solely of a series of spe-
cial multiplexer controller boards. The 2230MXA-1 “master” board, installed in the primary CPU, con-
trols all access to the disk unit. The 2230MXB-1 “slave” boards are installed in participating CPU’s,
and the slave CPU’s are connected together to form a chain. Only the system with the master board
connects directly to the disk drive.

NOTE:

The following disk drives can be multiplexed with
the Model 2230 MXA-1/MXB-1: 2260BC, 2270,
2270A.

The Model 2280 Disk Drive can be multiplexed
with the 2280 Disk Multiplexer (Refer to Appendix
F).

8-1

8.2 THE MODEL 2230MX MULTIPLEXER

Figure 8-1. Model 2230MXA-1 Master Board and 2230MXB-1 Slave Boards

The Model 2230MX Multiplexer is a “daisy chain” multiplexer consisting of a single 2230MXA-1
master controller board, and one to three 2230MXB-1 slave controller boards. The 2230MXA-1
master board and 2230MXB-1 slave boards are purchased separately. The number of slave boards
required is determined by the size of the total installation: a master board and one slave board permit
two stations to share the disk, a master board and two slave boards permit three stations to share the
disk, a master board and three slave boards permit four stations to share the disk.

The master board has a 50-pin input connector, labeled “MUX OUTPUT", and a 36-pin connector
labeled “DISK”. Each slave board has a 36-pin input connector labeled “MUX IN”, and a 50-pin
output connector labeled “MUX OQUT".

The PCSIIA and 2200 workstation have a built in slave board with a connector labeled “DISK”. A T-
connector must be used unless the system is at the end of the multiplexer chain.

T-Connector

m% hN

" Muitiplexer
Chain
PCSIHIA
or
2200
Workstation

Figure 8-2. T-connector with Multiplexed System

8-2

The connector cables correspondingly have two plugs, one of 36 pins and one of 50 pins. The sys-
tems are connected together by running cables from the MUX OUT jack of one CPU to the MUX IN
jack of the next consecutive CPU to form a chain. At the beginning of the chain is the master system
(the CPU with the 2230MXA-1 master board). The disk connector cable plugs into the DISK jack on
the master board to complete the chain. (See Figure 8-4) The master system is the only system
which connects directly to the disk unit.

in addition to the standard 12-foot (3.7m) connector cable shipped with each slave board, longer
extension cables are available in lengths of 50, 100, and 200 feet (15.5, 31, and 61 meters). The ex-
tension cable part numbers are listed below:

Cable Length Part #

50 ft (15.5m) 120-2225-50
100 ft (31m) 120-2225-100
200 ft (61m) 120-2225-200

These cables are “extension cables” in a literal sense since they serve as extensions for the stan-
dard connector cables; an extension cable cannot be used by itself to connect two systems. Each ex-
tension cable has two 36-pin plugs, one male and one female. The male plug is inserted in the MUX
IN jack of a slave board, while the female plug must be connected to the 36-pin male plug on a stan-
dard connector cable. The 50-pin plug on the other end of the standard cable is then inserted in the
MUX OUT jack of a second board. Because the extension cable is combined with the standard cable
in this manner, the total length of the cable between two units is always equal to the extension cable
length plus 12 feet. (See Figure 8-3.)

In special cases, it is possible to connect two or more extension cables together to create an exten-
sion longer than 200 feet. In every case, however, the maximum permissable distance between two
systems is 512 feet, and the maximum distance between the first and last systems in the chain is
536 feet. The cable connecting the disk unit to the master CPU is approximately ten feet (3 meters) in
length, and cannot be extended.

M M F M
/-
Standard Extension Cable
MUX OUTPUT Cable (12') (50", 10, or 200°) MUX INPUT

Figure 8-3. Connecting Extension Cable with Standard 12-foot Cable

8.3 INSTALLING THE MODEL 2230MX
Unpacking and Inspection

Carefully unpack your equipment and inspect it for damage. If a unit is damaged, notify the shipping
agency at once. Be certain that you have one 2230MXA-1 master board, and the expected number of

2230MXB-1 slave boards. Note: the DISK jack on the 2200 Workstation is equivalent to a slave mul-
tiplexer controller board jack.

8-3

Installation Procedure

If a connector cable is to be routed through a con-
duit or any tight space requiring removal of a plug,
it is important that the plug be disconnected and
reconnected by a qualified Wang Service Repre-
sentative. Reconnection of the plug is a delicate
job which, if done improperly, can impede or pre-
vent data transmission along the line. Contact
your Wang Field Service Office to perform all in-

stallation service.

NOTE:

12

12°

[-
o}
8|32 50
CPU # 1 2
“MASTER"' i
Y
‘ 3 |2 36
| [a]
DISK
£
3 36
o}
=
CcPU#4 a
“SLAVE" 5
Q O
v Ix
-]
s

12°

—_—

=
c
36 x
2 CPU = 2
= “SLAVE"
S
1 5o o
c
—4
12'
g
— 36 x
Z
2 CPU =3
= “SLAVE"
50 x
o)
c
-

Figure 8-4. Typical System Configuration: Model 2230 MX Multiplexer,

1. Install the 2230MXA-1 master controller board in CPU #1 (the system nearest the disk). In-
stall 2230MXB-1 slave boards in the remaining systems. In systems which already have a
disk controller board, the multiplexer board replaces the disk board.

2. Plug the disk I/O cable into the jack marked “DISK” on the 2230MXA-1 master board.

8-4

Disk Unit, and Four Attached CPU's.

3. Insert the 50-pin connector cable plug in the jack labelled “MUX OUTPUT” on the master
board. If no extension cable is used, insert the 36-pin plug on the other end of the cable
into the MUX IN jack in the slave board in CPU #2 (or into the T-connector cable if the next
system is a PCS-IIA or 2200 workstation). If an extension cable is used, plug the standard
cable into the extension cable, and plug the extension cable into the MUX INPUT jack.
Repeat this procedure for all attached systems.

4. Be sure that all attached systems are properly set up and ready for operation.

5. Plug all power cords into grounded (three-hole) wall sockets.

NOTE:

When routing the multiplexer connector cables be-
tween participating systems, take care to avoid
exposing a cable to intense electric or magnetic
fields, or sources of electronic noise, since they
may interfere with data transmission over the
cable. In general, you should try to keep the
connector cable away from electrical trunk lines,
fluorescent lights, and electrical office equipment
(such as electric typewriters and tape recorders).
if you have a specific question about routing a
cable, contact your Wang Service Representative.

Power-On Procedure
1. Switch ON the power switches on all system peripherals, including the disk unit.
2 Switch ON the Main Power Switches on all system CPU’s.

3. The POWER light should illuminate on the disk unit. The CRT display at each station looks
like this:

MOUNT SYSTEM PLATTER
PRESS RESET

8-5

NOTE:

When several systems are multiplexed to the
same disk with the 2230MX Multiplexer, the
master CPU (the CPU with the 2230MXA-1
master board) must be powered ON before any
other system can access the disk. However, one or
more of the slave CPU’s may be OFF without dis-
turbing the operation of the other CPU’s. Powering
on or off while the disk is in use may cause disk
errors to occur.

4. Touch RESET on the keyboard of the master system to initialize the controller. The disk
may now be accessed via the multiplexer from any attached system. Turn to Section 8.4
for an explanation of how the multiplexer operates, and a discussion of some programming
considerations.

NOTE:

If you experience difficulty in maintaining valid
data transmission between the disk and one or
more systems, the problem may lie in the connec-
tor plugs. A coating sometimes forms on the pins
of a plug during extended periods of disuse. To
remove this coating, which may inhibit transmis-
sion, simply insert and remove the plug in a jack
several times, or cut a piece from an ink-type
eraser small enough to fit between the pins, and
use it to clean the surfaces of the pins. (Transmis-
sion problems also can be created by electrical
and magnetic interference in the cables.)

8.4 MULTIPLEXER OPERATION

The disk multiplexer controls all communication between participating systems and the disk unit.
The multiplexer automatically “polls” each system, beginning with system {(or “station”) #1, until it
finds a system which is attempting to access the disk. At that point, the multiplexer permits the in-
quiring station to execute one disk statement or command. Following execution of the statement or
command, the multiplexer resumes its polling until it encounters another system trying to access the
disk. The multiplexer does not monitor the amount of time required to execute each statement, nor
does it limit the number of sectors transferred by a statement. A single statement may read or write
only one sector, but it is equally possible to carry out multi-sector transfers with one statement. (A
MOVE or COPY statement, for example, might transfer an entire disk platter to a second platter.) It is
recommended, however, that major file maintenance operations be executed only by a station in Hog
Mode (see below). In any case, the system which is executing the statement retains use of the disk
until statement execution is completed. Control is then transferred to the next inquiring station. The

Model 2230MX provides no external indication of which system has access to the disk.

8-6

In normal operation, the multiplexer imposes no special demands or conditions upon the program-
mer. The disk is simply addressed as usual with the appropriate disk statements and commands. If no
other systems are accessing the disk, the total execution time of a multi-statement disk operation is
not noticeably affected by the Multiplexer. If more than one multi-statement disk operation is being
carried on at once, however, the time required for each operation is roughly equal to the total time re-
quired to execute all operations, since one statement from each system is executed on each pass by
the multiplexer.

Although in general all systems attached to the multiplexer gain access to the disk on a statement-
by-statement basis, there are cases in which it is desirable to give one system a period of exclusive
and uninterrupted access to the disk. During certain critical file maintenance or update procedures,
for example, it is important that other systems be prevented from accidentally interfering in the rou-
tine, since they might unknowingly overwrite valuable data or pointers, or otherwise confuse the situ-
ation. Because operators on remote stations have no way of knowing that critical maintenance proce-
dures are being carried out at any given time, it is necessary to prevent them from unknowingly inter-
rupting a routine by locking them out. A system which monopolizes the disk in this way is said, some-
what picturesquely, to be “hogging” the disk. Note that every disk platter in the disk unit is hogged
when the disk unit is hogged.

Whenever a CPU is granted access to a disk platter, it automatically gains control of all platters as-
sociated with that disk drive. A station that has the disk in hog mode can execute any number of disk
statements or commands while maintaining exclusive control of the disk, preventing other stations
from executing any operation on the hogged disk drive.

8.5 HOG MODE

The disk drive may be hogged by either of two methods: $GIO hog, or address hog. $GIO hog con-
sists of a series of microcommands directed from the CPU to the MXA-1 controller board. In hog ad-
dress, the disk is accessed using special disk addresses, called “hog mode addresses”. The disk re-
mains hogged until a disk statement accesses the disk with the normal disk address.

The $GIO hog is recommended since it instructs the multiplexer to hog or unhog the disk without
actually performing a disk operation. Furthermore, with $GIO hog the program need not be concerned
with two sets of disk addresses since the normal disk addresses are always used with this form of
disk hog; unhogging is done with the $GIO DISK RELEASE statement.

$GIO Hog
The general form of $GIO hog is as follows:

a) to hog the disk:
file number
$GIO DISK HOG or (4480)
disk device address

b} to release the disk:

file number
$GIO DISK RELEASE or (4400)
disk device address

8-7

File numbers are values which are assigned within programs to replace disk device addresses. For
example, SELECT #1/B10 assigns #1 to disk device address B10. Disk device addresses are not pro-
grammer selectable, but are preset within each disk controller board.

NOTE TO MVP/LVP USERS:

The recommended statements for HOG MODE on
the MVP or LVP (and the VP, Release 1.8 or later)
are as follows:

a) to hog the disk:
$OPEN disk device address
b) torelease the disk:
$CLOSE disk device address
The user should refer to the BASIC-2
Language Reference Manual for an in-

depth discussion of $OPEN and
$CLOSE.

Example 8-1: Entering and Leaving Hog Mode Using $GIO Hog

110 REM OPEN FILE IN NON-HOG MODE
120 SELECT #1/B20
130 DATA LOAD DC OPEN T#1, “DATAFILE”

(processing)

270 DBACKSPACE #1, BEG

280 DSKIP #1,N S : REM SKIP N SECTORS

290 REM UPDATE RECORD IN HOG MODE

300 $GIO DISK HOG #1 (4480):REM ENTER HOG MODE
310 DATA LOAD DC #1, A,B,C :REM READ RECORD

320 DBACKSPACE #1,1 S

330 DATA SAVEDC #1, A, B+K, C:REM UPDATE

340 $GIO DISK RELEASE #1 (4400):REM LEAVE HOG MODE

This example illustrates a typical update routine in which hog mode is activated temporarily during
the actual updating (from the time the record is read until its updated version is written.) The file is
opened with the disk drive in non-hog mode {line 130). Lines 270 and 280 locate the desired record
also while in non-hog mode. Hog mode is entered upon execution of line 300. (The multiplexer
ceases its polling of the stations upon entering hog mode. This station maintains exclusive access to
the entire disk drive until executing line 340, when hog mode is left. (The hogging station also loses
control of the disk drive if RESET is keyed on the station’s keyboard.)

8-8

Address Hog

When using address hog, a special disk address, called a “hog mode address”, must be used for all
disk statements. When, during normal mode operation, the multiplexer finds a station waiting to exe-
cute a disk statement with a hog mode address, it gives that station hog mode control of the disk
drive, and normal station-polling ceases. The hogging station maintains control of the disk drive until
it executes a disk statement with a non-hog mode address (or RESET is keyed on the station’s key-
board). As soon as a hogging station completes execution of a disk statement with a non-hog mode
address, hog mode is released, and the normal mode station-polling resumes.

For any multiplexed disk device, the hog mode address can be calculated by adding HEX(80) to the
device address. Sample non-hog and hog mode addresses are:

NORMAL
(NON-HOG) HOG MODE
ADDRESS ADDRESS
310 390
B10 B9O
320 3A0
B20 BAO
330 380
B30 BBO

The hog-mode addresses refer to the same disks as do their non-hog versions. Thus, if the disk
drive normally addresses as 320 is a multiplexe. Jisk, then 3AO0 refers to this same disk. The only dif-
ference is that when a disk statement is executed at address 3AO0, it signifies to the multiplexer that
the station executing the disk statement wishes to hog the disk drive.

Example 8-2: Entering and Leaving Hog Mode Using Address Hog

290 REM UPDATE RECORD IN HOG MODE

300 SELECT #1/BAO :REM HOG MODE ADDRESS

310 DATA LOAD DC #1, A,B,C :REM ENTER HOG MODE AND READ RECORD
320 DBACKSPACE #1,1 S

330 SELECT #1/B20 :REM NON-HOG ADDRESS

340 DATA SAVE DC #1, A, B+K, C:REM UPDATE, THEN LEAVE HOG MODE

In the above example line 300 substitutes the hog mode address, BAO, for its non-hog version,
B20, in the device table. Note that this does not affect the file parameters, and that, of itself, this
does not cause the disk drive to be hogged. Line 310 loads the record, and, since a hog mode address
is in file number #1, activates hog mode for the disk drive. After line 310 is executed, the multiplexer
ceases its polling of the stations. This stations maintains exclusive access to the entire disk drive,
until it executes a disk statement at a non-hog address. Line 320 backspaces one sector. This disk
statement takes place at a hog mode address (in file number #1), so hog mode is maintained. Line

8-9

330 selects a non-hog address in preparation for leaving hog mode after the next statement. Line
340 updates the record, and, since file number #1 now contains a non-hog address, it returns the
disk drive to normal mode after execution is complete.

The following points should be noted in regard to the operation of hog and non-hog mode:

1.

2.

When a multiplexed disk drive is hogged, the entire disk unit (all platters) is hogged.
Only the stations which activates hog mode can deactivate it.

If a station attempts to execute a disk statement while another stations is hogging the disk
drive, the station simply waits, with the processing light on, until hog mode is released.

Hog mode is deactivated if RESET is keyed at the hogging station.

APPENDIX A

DISK ERROR CODES

ERR D80

Error: File Not Open

Cause: The file was not opened.

Recovery: Open the file before attempting to read from it or write to it.

ERR D81

Error: File Full

Cause: The file is full: no more information may be written into the file.

Recovery: Correct the program, or use MOVE to move the file to another platter and
reserve additional space for it.

ERR D82

Error: File not in Catalog

Cause: A non-existing file name was specified, or an attempt was made to load a data
file as a program file.

Recovery: Make sure the correct file name is being used, the proper disk is mounted, and
that the proper disk drive is being accessed.

ERR D83

Error: File Already Cataloged

Cause: An attempt was made to catalog a file with a name that already exists in the
Catalog Index.

Recovery: Use a different name, or catalog the file or a different platter.

ERR D84

Error: File Not Scratched

Cause: An attempt was made to rename, or write over a file that has not been scratch-
ing.

Recovery: Scratch the file before renaming it.

A-1

ERR D85

Error:

Cause:

Recovery:

ERR D86
Error:

Cause:

Recovery:

ERR D87

Error:

Cause:

Recovery:

ERR D88

Error:

Cause:

Recovery:

ERR D89

Error:

Cause:

Recovery:

Catalog Index Full

There is no more room in the Catalog Index for a new name.

Scratch any unwanted files and compress the catalog using a MOVE state-
ment, or mount a new disk platter and create a new catalog.

Catalog End Error

The end of the catalog area is defined to fall within the catalog index, or an at-
tempt has been made to move the end of the catalog area to fall within the
area already occupied by cataloged files (with MOVE END), or there is not
room left in the Catalog Area to store more information.

Correct the SCRATCH DISK or MOVE END statement, or increase the size of

the Catalog Area with MOVE END, or scratch unwanted files and compress
the catalog with MOVE, or open a new catalog on a separate platter.

No End of File

No end-of-file record was recorded in the file (with DATASAVE DC END or
DATASAVE DA END), and therefore none could be found by the DSKIP END
statement.

Correct the file by writing an end-of-file trailer after the last data record.

Wrong Record Type

A program record was encountered when a data record was expected, or vice
versa.

Correct program. Be sure the proper platter is mounted and be sure the proper
drive is being accessed.

Sector Address Beyond End of File
The sector address being accessed by the DATALOAD DC or DATASAVE DC

operation is beyond the end-of-file. This error can be caused by a bad disk
platter.

Run the program again. If error persists, use a different platter or reformat the
platter. If error still exists, contact your Wang Service Representative.

A-2

ERR 190
Error:

Cause:

Recovery:

ERR 191
Error:

Cause:

Recovery:

ERR 192
Error:

Cause:

Recovery:

ERR 193
Error:

Cause:

Recovery:
ERR 194
Error:

Cause:

Recovery:

Disk Hardware Error

The disk did not recognize or properly respond to the System at the beginning
of a read or write operation (the read or write has not been performed).

Run the program again. |f error persists, contact your Wang Service Repre-
sentative.

Disk Hardware Error

A disk hardware error occurred, e.g., the disk is not in file-ready position. This
could occur, for example, if the disk is in LOAD mode or power is not turned
on.

Ensure disk is turned on and properly set up for operation. Set the disk into
LOAD mode and then back into RUN mode with the RUN/LOAD selection
switch. The check light should then go out. If error persits, call your Wang Ser-

vice Representative. (Note: disk must never be left in LOAD mode when turned
on.)

Time-out Error

The disk did not respond to the sytem during a read or write operation in the
proper amount of time (time-out).

Run program again. If error persists, reinitialize disk - if error still occurs, con-
tact your Wang Service Representative.

Disk Format Error

A disk format error was detected during a disk read or write. The disk is not
properly formatted. The error can be either in the disk platter or the disk hard-
ware.

Format the disk again; if error persists, call your Wang Service Representative.

Format Key Engaged

The disk format key is engaged (the key should be engaged only when format-
ting a disk).

Turn off the format key.

ERR (95
Error:

Cause:

Recovery:

ERR 196

Error:

Cause:

Recovery:

ERR 197
Error:

Cause:

Recovery:

ERR 198

Error:

Cause:

Recovery:

ERR 199
Error:

Cause:

Recovery:

Seek Error, or Platter Protected

A disk-seek error occurred; the specified sector could not be found on the
disk. This error may indicate a bad format, or it may result from an attempt to
write to a protected platter.

Run program again. If error persists, reinitialize (reformat) the disk. If error still
occurs, call your Wang Service Representative.

Cyclic Read Error

A cyclic redundancy check (CRC) error occurred during a disk read operation;
the sector being addressed has never been written to or was incorrectly writ-
ten.

If not formatted, format the disk. If the disk was formatted, rewrite the bad
sector. If error persists, use a different disk platter. If error persists on a fixed
platter, call your Wang Service Representative.

LRC Error

A disk longitudinal redundancy check (LRC) error occured when reading a
sector. This usually indicates a data transmission error occured when the
sector was read or written.

If error persists, rewrite the sector. If the error still persists, call your Wang Ser-
vice Representative.

lllegal Sector Address or Platter Not Mounted

The disk sector being addressed is not on the disk or the disk piatter is not
mounted. (Maximum legal sector address depends upon the model of disk
used.)

Correct the program statement in error, or mount a platter in the specified
drive.

Read After Write Error

The comparison of read after write to a disk sector failed, indicating that the
information was not written properly. This error usually indicates a bad disk
platter.

Write the information again. If error persists, try a new platter; if error still pers-
ists, call your Wang Service Representative.

A-4

APPENDIX B
COMPARISON OF BASIC AND BASIC-2
DISK STATEMENTS SYNTAX

Those Wang CPU’s which recognized BASIC-2 Syntax also recognize and execute Wang BASIC
syntax so programs can be written using instructions from either or both of these dialects. However,
when programs are to be shared with a CPU which recognizes BASIC syntax only, the programmer
must use the Wang BASIC instruction set alone. The syntax and processing differences in the disk
instructions of the two Wang BASIC dialects are presented in this appendix.

STATEMENTS
BASIC Syntax
#f, FR
COPY (expr 1, expr 2)
/xyy, RF

F #1,
DATALOAD BA {R} (expr 1, return var) alpha-array desig
T

/xyy,

F) [#f.
DATALOAD DA {R} (expr 1, return var) arg-list
/xyy,

DATALOAD DC [#f,] arg-list

F TEMP, expr 1, expr 2
DATALOAD DC OPEN (R [#f]

T file name

F #1,
DATASAVE BA {R} {expr 1, return var) alpha array desig
T) {/xyy,

B-1

F #f, END
DATASAVE DA R} [$] (expr 1, return var) J €XPression

arg-list
T /XYY, literal

END
arg-list
expression
literal

DATASAVE DC [$] [#f,]

#f,
DATASAVE DC CLOSE
ALL

F {old name}
DATASAVEDC OPEN R [$][#f] { (SPa¢® J.newname

T TEMP, expr 1, expr 2
BEG
DBACKSPACE [#f,]
sectors [S]
END
DSKIP [#f,]
sectors [S]
IF END THEN line no
F
LIMITS § R o [#f] file-name, starting, ending, used
T

B-2

T

F #1,
LISTDC §R
T /xyy,

F #f,
LOAD DA {R} {expr 1, return var) [line 1] [line 2]
T | /xyy,

F
LIMITS {R} [#f,] starting, ending, current

F) [#f,
LOADDC SR ¢ | file-name [line 1] [line 2]
T | /xyy,

MOVE }
/xyy,

F
MOVE END {R} = expr 2
T /xyy,

F
SCRATCH {R file name [, file name]
T /xyy,

F ,
SCRATCH DISK {R} [] [LS=expr 1,] END = expr 2
/xyy

F #f1,
VERIFY 4 R (expr 1, expr 2)
T) | /xyy.

COMMANDS

] (expr 1, return var)

#f,
file name
/Xyy,

#f,
($] [] [P] (expr 1, return var) [line 1] [line 2]

F (space) #f,
SAVEDC <R, [$] [P] new name [line 1] [,line 2]
T (old name) | | /xyy,

GIO HOG MODE
To Hog Disk:
file number
$GIO DISK HOG or (4480, return var)

disk device address

To Release Disk:

file number l
$GIO DISK RELEASE or (4480, return var)
disk device address J

B-4

STATEMENTS

BASIC-2 SYNTAX

F #1, F #1,
COPY <R {expr 1,expr2)|] TO 4R (expr 3)
T) |/xyy, T) | /xyy,

NOTES:

1) expr 1 and expr 2 optional

separate disk unit

2) “TO” allows copy to a specified sector of

F #f,
DATALOAD BA {R} {expr 1 [,return varl) alpha-array
T) | /xvyy,

NOTE:

1) return variable optional

F #f,
DATALOAD DA {R} {expr 1 [return varl) arg-list
TJ) |/xyy,

NOTE:

1) return variable optional

DATALOAD DC [#f,) arg-list
F} TEMP [,] expr 1, expr 2

DATALOAD DC OPEN {R #f,
T file name

B-5

NOTES:
1) comma after TEMP optional

2} file can be specified with a file number

FY [#f, alpha-variable
DATASAVEBA < R (expr 1 [,return var])

T) | /xyy, literal string

NOTES:
1) return variable optional

2) data can be saved specified as a literal string
or alpha-variable

F #f END
DATASAVE DA {R} ($] (expr 1, [return var]) expression

T /xyy. arg-list
vy literal

NOTE:

1) return variable optional

END
DATASAVE DC [$] [#f,] < arg-list.
expression
literal
#f,
DATASAVE DC CLOSE
ALL

B-6

old name

F {space } new name
[$] [#£]

DATASAVE DC OPEN {R
T TEMP [,]expr 1, expr 2

NOTE:

1) comma after TEMP optional

BEG

DBACKSPACE [#f)]
sectors [S]

END
DSKIP [#f,]
sectors [S]
line no
IF END THEN [:ELSE statement]
statement

NOTES:

1) if condition is true can also execute specified
statement

2) “ELSE” syntax can specify statement to be
executed if false

F
LIMITS {R} [#1] file name, starting, ending, used [,status]
T

NOTE:

1) can also return status (type and condition) of
file

F
LIMITS {R} [#f,] starting, ending, current
T

F #f
LIST [S] [tittke] DC < R
R /xyy

NOTES:
1) canlistin steps on CRT
literal string

2} prints title or in expanded print
alpha variable

F #1,
LOAD DA {R} (expr 1 [,return var]) [line 1] [line 2] [BEG begin]
T /xyy,

NOTES:
1} return variable optional

2) can begin execution at any line number

specified
F #f1, file-name
LOAD [DC] R (line 1] [line 2] [BEG begin]
T /xyy, < # files>alpha var

NOTES:

1} can specify number of files to be loaded and
begin execution at specified line no.

2} DC optional

B-8

F) | #f, F #f, (file name)
MOVE <R [file-namel TO <R
T) | /xyy. T /xyy. | | (space)

NOTES:
1) can move entire platter or specified file
between separate disk units

2) can reserve additional sectors for the
new file

F #f,
MOVEEND 4R = expr 2

T /xyy,

F #f
SCRATCH R file name [, file name]
T /xyy,

F #f1,
SCRATCH DISK {R} [LS=expr 1,] END = expr 2
T /xyy,

F #f,]
VERIFY {R} [{expr 1, expr 2)l[numeric receiver variable]
T /xXyy,

NOTES:
1) sector specification optional

2) can report address of next sector after that
which did not verify

B-9

F
R

LOAD DA {
T

LOAD [DC] {

NOTE:
1) DC optional
F #f
LOAD RUN R [file name]
T /xyy
<S> F #f, !
SAVE DA R, [$] (expr 1 [,return varl)lline 1] [line 2]
<SR> T /xyy, P
NOTES:
1) can save programs with spaces and remarks
(REM) deleted
2) cansave program scrambled
3) return variable optional
<S> F #f, (old name) !
SAVE [DC] R [$]
<SR> T /xyy, (space) P
B-10

COMMANDS

#f,
(expr 1, [return var])

}

/xyy,

NOTE:

1) return variable optional

F #f,
R file name
T /xyy,

] new name [line 1][,line 2]

NOTES:

1) can save programs with spaces and remarks
(REM) deleted

2) can save program scrambled

3) DC optional

GIO HOG MODE
To Hog Disk:
file number
$GIO DISK HOG or (4480)
disk device address
To Release Disk:
file number
$GIO DISK RELEASE or (4480)

disk device address

Glossary of pertinent descriptions:

sectors = number of sectors traversed expression
expr 1 = starting sector expression
expr 2 = ending sector expression
expr 3 = destination sector expression

alpha or numeric scalar
arg-list =

alpha or numeric array
space = no. of sectors (additional) to reserve
starting = numeric variable for starting sector address
ending = numeric variable for ending sector address
current = numeric variable for current sector address
used = numeric variable for sectors contained
file name = literal string or alpha variable up to 8

characters in length
the number of files used

files

B-11

APPENDIX C

A GLOSSARY OF DISK TERMINOLOGY

absolute sector
address

Absolute Sector
Addressing Mode

access

argument

argument list

Automatic File
Cataloging Mode

binary address

binary search

blocked records

Catalog Area

Catalog Index

command

An address permanently assigned to a disk sector.

A mode of disk operation which enables the programmer to address individual
sectors on disk. Also referred to as ‘direct addressing” mode.

See ‘disk access’ and ‘file access’.

In a DATASAVE DC or DA statement, a discrete value, specified directly (as a
numeric value or literal string in quotes) or indirectly (as the value of a variable
or array element). Each argument occupies a single field in the record on disk,
and is separated from neighboring fields by a Start-of-Value (SOV) byte. In a
DATALOAD DC or DA statement, each receiving variable or array element
which receives one value when the record is read from disk is regarded as a re-
ceiving argument. For the most part, multiple arguments in a statement must
be separated by commas; however, when an array designator is used to speci-
fy an entire array, each element of the array is regarded as a separate argu-
ment.

The list of all arguments in a DATASAVE DC/DA or DATALOAD DC/DA state-
ment.

A mode of disk operation in which the names and locations of files on disk are
maintained automatically by the system in a Catalog Index.

A sector address expressed as a two-byte binary number.

A dichotomizing search in which the number of records in the file is divided
into two equal parts at each step in the search.

Two or more short records stored in one sector. Since the minimum length of
any record is, from the system’s point of view, one sector, the blocking of
multiple records in a single sector must be a function of user’'s software.

The area on a disk platter reserved for the storage of cataloged files.

An.index containing names and pointers for each cataloged file in the Catalog
Area.

A BASIC-2 instruction which provides the operator with control of a system
function directly from the keyboard. Commands are entered and executed im-
mediately by the operator; they cannot be stored in memory as part of a pro-
gram.

C-1

control byte

cyclic redundancy
check

data file

data record

default address

default file

number

device address

Device Table

device type

Any of several special bytes created automatically by the system to help it
keep track of data stored on the disk, and which are completely transparent to
the user's software. See also ‘start-of-value control byte’ and ‘sector control
byte'.

A special checksum test automatically performed by the disk unit on all data
read from the disk. Abbreviated CRC.

A coliection of related data records treated as a logical unit. For example, an in-
ventory file contains a number of inventory records, each of which in turn con-
sists of specified items of information about a particular item in the inventory.
In catalog mode, a data file can be opened or reopened by name.

See ‘logical data record’.

The device address for a System 2200 peripheral which is used automatically
by the system when no other address is specified for the disk unit, the system
default address is 310. The disk default address is always stored opposite the
default file number (#0} in the Device Table, and may be changed temporarily
with a SELECT DISK statement. However, the system default address (310) is
automatically returned to the default slot upon Master Initialization. See also
‘device address’'.

The file number in the Device Table automatically used by the system when a
disk statement or command is executed which does not specify a file number.
The default file number is always #0, and cannot be changed. The default disk
address is always stored in the slot opposite the default file number. See also
‘default address’, ‘Device Table’, and ‘file number’.

A three-digit hexadecimal code used by the CPU to identify each peripheral
device. The device address is set in the controller board for each peripheral
either at the factory or by a Wang Service Representative, and should be clear-
ly printed on the top surface of the controller board. See also ‘default address’,
‘device type’, and ‘unit device address’.

A special section of memory used to store disk device addresses and sector
address parameters for currently opened files on disk. It consists of 16 rows,
or “slots”, identified by file numbers #0 - #15. A device address and a set of
sector address parameters for an open file can be stored in each slot. The
slots opposite file numbers #1 - #15 are also used for other /O devices in ad-
dition to the disk (such as paper tape readers, and card readers). The default
slot (opposite #0) is used only for the disk, however. Default addresses for
other 1/0 devices are stored in another section of memory. See also ‘default
address’, ‘default file number’, and ‘file number’.

The first digit of the three-digit device address. For the disk unit, the device
type can be either ‘3" or ‘B’ or ‘D’ {e.g., 3XX, or BXX). When used with the
Model 2260 or 2270 series in conjunction with the ‘T’ parameter, the device
type determines which disk platter in a multi-platter disk unit is to be accessed.
In this case, a device type of ‘3’ identifies the ‘F’ disk platter, while a device
type of ‘B’ identifies the ‘R’ disk platter. For the Model 2270-1 Single Remova-
ble Diskette Drive, and for the third platter of the Models 2270-3 and
2270A-3, a device type of ‘B’ is illegal. See also device address’ and ‘unit
device address’.

C-2

disk access

disk drive

disk latency
period

disk platter

ending sector
address

end-of-file trailer

expression

field

file

file access

Any disk read or write operation. See also ‘file access’.

1. Broadly, a disk unit containing one or more disk platters.

2. More specifically, the assembly (consisting of drive motor, spindle, and
access armls)) which drives the disk platter(s) and is activated by a single
disk command. See also ‘disk platter’.

The period of time which elapses from the time the read/write head positions
itself to a track until the desired sector in that track rotates to the read/write
head's position. Disk latency time is determined by the rotation speed of the
disk unit. Latency time may be important for random access operations; it is
generally negligible in sequential access operations. See also ‘track access
time’.

The flat, circular plastic or metal plate which is coated on its recording surface
with a magnetic substance such as iron oxide, and which serves as the storage
medium in a disk unit.

The address of the last sector in a file or multi-sector logical record. See ‘start-
ing sector address’ and ‘absolute sector address’.

A special record, one sector in length, which marks the end of currently stored
data in a data file. The end-of-file record is created with a DATASAVE DC END
or DATASAVE DA END statement. Creation of an end-of-file trailer record in a
cataloged file automatically causes the ‘used’ column in the Catalog Index to
be updated, and enables the programmer to check for the end-of-file with an
IF END THEN statement, or to skip to the end-of-file of a cataloged file with a
DSKIP END statement.

A numeric value (e.g., ‘1234’), operation (e.g., ‘A’B 2'), variable (e.g., ‘N’) or
array element (e.g., ‘N(3)’).

1. An individual item of data within a logical data record on the disk. Each argu-
ment in the DATASAVE DC or DATASAVE DA argument list is recorded as
a single field (marked off by SOV control bytes) in the logical record created
by the statement.

2. A specified section of a record reserved for a particular type of information.
For example, a 'key field’ consists of a number of bytes located at a specific
place in a record which always holds the key value for the record.

A collection of related records treated as a logical unit. Files may be of two
types, program files and data files. In catalog mode, files can be created and
accessed by name. See ‘data file” and ‘program file".

1. Any disk operation in which information (programs or data) is read from or
written in a file on disk.

2. Any disk operation which results in positioning the read/write head to a lo-

cation preparatory to reading or writing information in a file. See also ‘disk
access’.

C-3

file number

hashing technique

header record

Hog Mode

key field

key value

logical data

Logical Platter
Address

logical record

longitudinal
redundancy check

multiplexing

multi-volume

parameter

One of the 16 numbers #0 - #15 associated with slots in the Device Table,
and used to identify currently opened files on disk. File numbers are also used
to identify non-disk files. A file number is always preceded by a “#"” symbol.
See ‘default file number’ and ‘Device Table'.

A technique for storing and accessing information on disk in which a special-
ized algorithm, called a “hash function”, is used to convert a record’s key
value into an absolute sector address, which is then used as the location at
which the record is stored. This technique is used by the system in catalog
mode to store file names in the Catalog Index.

A record containing special control information and preceding all other
records in a file. Every program file saved on disk begins with a one-sector
header record. In cataloged programs, the header contains the program name,
along with catalog system control information. Data files on disk have no
header record, but cataloged data files do have a system control record at the
end of the file which serves the same purpose as a header. See ‘trailer record’
and ‘system control record’.

A mode of disk multiplexer operation in which one station obtains exclusive
access to the disk, while all other stations are locked out.

A field in a record on the disk consisting of one or more bytes, and containing
the key value for that record. See ‘field” and ‘key value’'.

A numeric or alphanumeric value in a record used to identify the record for pur-
poses of access and control. See ‘key field’, ‘sort’, and ‘hashing technique’.

A data record on the disk created by a record DATASAVE DC or DATASAVE
DA statement which occupies one or more sectors, and contains all of the
data from the DATASAVE DC or DATASAVE DA argument list. See also
‘record’ and ‘data file'.

A three digit hexadecimal code used by the CPU to identify each recording sur-
face on the Model 2280 Disk Drive.

See ‘logical data record’.

A checksum test performed by the system on each sector of data read from
the disk. Abbreviated LRC.

A process of allocating disk time to a number of systems by sequentially inter-
leaving disk operations from the various inquiring systems.

A file occupying two or more disk platters. Each separate platter is considered
a different “volume” of the file. Each volume must be carefully identified with
a file name and a volume number.

An element in a BASIC statement or command which follows the BASIC verb,
and whose function and meaning are defined for the purposes of the state-
ment. Parameters may be of two types, constant (or fixed) and variable. The
value of a fixed parameter is predefined and cannot be altered by the user. The
value of a variable parameter is specified by the user, although there are nor-

c-4

pointer —

program file -

program record —

protect parameter —

protected program —

read-after-write —
verification

read/write head —

record —

sector —

sector control —
bytes

sort —_

mally certain limitations imposed upon the range of values which may be as-
signed to a particular parameter. A fixed parameter is always indicated in the
general form of a statement or command as an uppercase letter (e.g., ‘P, ‘DC’,
‘S’, etc.), while a variable parameter is indicated with a lowercase letter (e.g.,

‘xxx’, 'n’) or described with a lowercase literal string (e.g., ‘name’, ‘sector ad-
dress’, etc.).

An absolute sector address or displacement which “points” to the location of
arecord on the disk.

A file on disk consisting of a single BASIC program or program segment, and
optionally also containing extra sectors reserved for possible future expansion
of the program. A program file always begins with a header record and ends
with a trailer record. In catalog mode, a program file can be saved and loaded
by name.

A sector in a program file between the header record and the trailer record
which contains program text. See ‘header record’ and ‘trailer record’.

A special parameter ('P’) or (!) used to protect programs saved on disk.

A program on disk which can be loaded and run, but cannot be listed or re-
saved.

An optional verification check which can be performed on each sector of data
as it is written on the disk. The read-after-write check is specified by including
the dollar sign ('$’) parameter in a disk statement or command. However, a
read-after-write check significantly increases the execution time of the disk
operation.

An electromagnetic recording head which reads and writes information on the
recording surface of a disk platter.

A collection of related items of data treated as a logical unit. See ‘logical data
record’ and ‘data file'.

The basic unit of storage on a disk platter, consisting of a data field with a
fixed length of 256 bytes, an absolute sector address, and certain control in-
formation. Each sector is regarded as a discrete unit, and is directly accessible
by the system.

Special control bytes containing system bytes control information which are
written automatically by the system into each sector of a logical data record
and each program record stored on disk. Each sector in a logical data record
contains three sector control bytes; each one-sector program record in a pro-
gram file contains two sector control bytes. The sector control bytes are trans-
parent to the user’s software.

1. To arrange data sequentially in ascending or descending order.

2. To sequentially order logical data records in a file based upon the key values
of the records.

3. The act of performing a sorting operation.

C-5

starting sector

start-of-value
control byte

statement

system control
record

temporary files

track

track access
time

trailer record

unit device
address

work files

The address of the first sector in a address file or multi-sector logical record.
See also ‘ending sector address’.

A control byte created automatically by the system independent of user soft-
ware, and prefixed to each field in a logical record when the record is written
with a DATASAVE DC or DATASAVE DA statement. This control byte separ-
ates fields within a record and marks the beginning of each new field. The
start-of-value bytes are not automatically written when a DATASAVE BA
statement is executed. Abbreviated SOV.

Broadly, a generic term for all BASIC-2 programmable instructions. Every line
in a BASIC-2 program consists of one or more statements, each of which
directs the system to perform a specific operation or sequence of operations.
Although statements are, by definition, programmable instructions, most
statements also can be executed in Immediate Mode simply by entering them
without a preceding line number.

A special record one sector in length which always occupies the last sector of
a cataloged data file, and contains control information and pointers for the file.
A system control record is automatically created and updated by the system
for each data file maintained in catalog mode; it is completely transparent to
the user’s software.

Files established outside the Catalog Area on a disk, generally for the storage
of transient data. Temporary files cannot be named, and no entry is listed for
them in the Catalog Index.

They can, however, be accessed with catalog procedures.

Any of the concentric circular electromagnetic paths into which the recording
surface of a disk platter is divided. Each track, in turn, is subdivided into a
number of sectors. The number of tracks on a platter differs according to the
disk model and configuration. See ‘sector’ and ‘disk platter’.

The time required for the access assembly to move the read/write head from
its current position to the track containing the desired sector. For random
access operations, the track access time may become significant if the sectors
to be accessed are scattered on widely separated tracks. For most sequential
access operations, however, the track access time is negligible. See also ‘disk
latency time’.

1.In program files, the sector immediately following the last program record.
The trailer record contains control information, written automatically by the
system, along with the last few lines of program text.

2. In data files, a special record created by specifying the ‘END’ parameter in a
DATASAVE DC or DATASAVE DA statement, to mark the limit of valid data
in the file. Also referred to as an “end-of-file” trailer record. See ‘end-of-file
trailer record’.

The last two digits of the three-digit device address f{e.g., X10, X20, X50,
etc.), which identify individual disk units when more than one is attached to
the same system. See ‘device address’, and ‘device type’.

See ‘temporary files'.

C-6

APPENDIX D
BIBLIOGRAPHY

The techniques involved in creating, maintaining, and accessing disk-based data files are the sub-
jects of an extensive number of textbooks and articles. The authors included in this bibliography ap-
proach the programming problems associated with disk storage from a variety of different perspec-
tives, and with varying degrees of sophistication. In general, however, the bibliography has been
heavily weighted toward the relative novice, although in all cases some background in programming
is required.

It is suggested that the programmer with little or no experience in disk operations begin with a text
which provides a general survey of the standard types of disk file structures and access techniques.
(The titles identified with asterisks provide such a survey at an introductory or intermediate level.)
The number of disk storage and access techniques which have been developed over the last 10 or 15
years is considerable, even if one restricts oneself only to the “standard” techniques, and each has
particular strengths and weaknesses which make it suitable for some applications and most unsuita-
ble for others. Armed with an overview of the available systems and techniques, the programmer will
be in a position to determine which of them most appropriately suit his own application. He then can
proceed to a textbook or article which treats the chosen techniquel(s) in greater depth.

1. Bosco, R.L., Data Bases, Computers, and the Social Sciences (Wiley-Interscience, New
York, 1970).

2. Brooks, F.P., and K.E. Iverson, Automatic Data Processing (John Wiley and Sons, New York,
1963).

3. Clemenson, W.D., “File Organization and Search Techniques,” Annual Review of Informa-
tion Science and Technology, Volume 1, Ed. C. Cuadra (John Wiley and Sons, New York,
1966).

4. Daley, R.C., and P.G. Newmann, “A General Purpose File System for Secondary Storage,”

Proceedings of the AFIPS 1965 Fall Joint Computer Conference, Volume 27, Part 1 (Spar-
tan Books, New York).

5. Dodd, G.G., “Elements of Data Management Systems,” Computer Surveys, Volume 1, No.
2, June 1966.

*B. Forsythe, A.L, and T.A. Keenan, E.Il. Organick, and W. Stenberg, Computer Science: A First
Course (John Wiley and Sons, New York, 1969).

7. Gear, C.W., Computer Organization and Programming (McGraw Hill, New York, 1969).

* Titles marked with an asterisk are intermediate-level texts recommended for programmers with limited background in disk operations.

10.

11.

12.

13.

14.

*15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

*25.

Gruenberger, F. (Ed.), Critical Factors in Data Management (Prentice-Hall, Englewood Cliffs,
N.J., 1969).

Hsiao, D. and Harary, F., “A Formal System for Information Retrieval from Files,” Communi-
cations of the ACM, Volume 13, Number 2 (February, 1970).

Hull, T.E. and D.F. Day, Computers and Problem Solving (Addison-Wesley (Canada) Ltd.,
Don Milis, Ontario, 1970).

Iverson, K.E., A Programming Language (John Wiley and Sons, New York, 1962).

Johnson, L.R., “Indirect Chaining Method for Addressing on Secondary Keys,” Communica-
tions of the ACM, Volume 4, Number 4 (May 1986l).

Korfhage, R.R., Logic and Algorithms (John Wiley and Sons, New York, 1966).

Knuth, D.E., The Art of Computer Programming, Volumes | and lil (Addison-Wesley, Read-
ing, Mass., 1968).

Lefkowitz, D., File Structures for On-Line Systems (Spartan Books, New York, 1969).

Lowe, T.C., “The Influence of Data-Base Characteristics and Usage on Direct Access File
Organization,” Journal of the ACM, Volume 15, Number 4 (October, 1968).

Martin, J., Design of Real-Time Computer Systems (Prentice-Hall, Englewood Cliffs, N.J.,
1967).

Mauer, W.D., “An Improved Hash Code for Scatter Storage,” Communications of the ACM,
Volume 11, Number 1 (January, 1968).

Mcilroy, M.D., “A Variant Method of File Searching,” Communications of the ACM, Volume
6, Number 1 (January, 1963).

Meadow, C.T., The Analysis of Information Systems (John Wiley and Sons, New York,
1967).

Morris, R., “Scatter Storage Techniques,” Communications of the ACM, Volume 11,
Number 1, (January, 1968).

Peterson, W.W., “Addressing for Random-Access Storage,” IBM Journal of Research and
Development, Volume 1 (1957).

Rosove, P.E., Developing Computer-Based Information Systems (John Wiley and Sons,
New York, 1967).

Williams, W.F., Principles of Automatic Information Retrieval (The Business Press, ElImhurst,
lllinois, 1968).

Yourdon, E., Design of On-Line Computer Systems (Prentice-Hall, Englewood Cliffs, N.J.,
1972).

* Titles marked with an asterisk are intermediate-level texts recommended for programmers with limited background in disk operations.

D-2

APPENDIX E
DISK FILE BACK-UP

Probably the most common form of the file security is file backup. File backup is simply maintaining
a backup copy of important files. Backing up important files is an area that should be given high
priority.

Disk storage devices are basically very reliable. However, like any other storage media, disk platters
are subject to accidental damage or destruction. Losing power during an update, dropping a disk car-
tridge, exposing it to a magnetic device are just a few of the things that could cause the destruction
of data.

Most computer users cannot afford the cost and inconvenience associated with the reconstruction
of a destroyed disk file. Some companies have been severely crippled when a critical file was acciden-
tally destroyed because they did not adhere to rigid backup procedures for all essential programs and
data files.

Many small computer users think that the cost and time associated with maintaining backup files is
high. The only cost associated with file backup is the price of an extra storage device such as a disk
platter or diskette. The time involved backing up a file is minimal when the alternatives are considered.

Frequency

There is no absolute rule governing backup frequency. It normally depends upon several factors.
One important factor is the amount of activity or the number of transactions processed against a
master file. With high activity, a user may wish to back up a data file daily. With fewer transactions, a
frequency of once or twice a week may be sufficient.

Another important factor is time. For example, to back up a full 2260 disk platter can take up to 30
minutes. Therefore, this time should be weighed against the time it would take to reconstruct the
data if the file were destroyed. While doing so, the user should also consider the overall effect the
time spent reconstricting a critical file would have on his business.

Each user, therefore, should carefully evalute the factors relating to his own business and data pro-
cessing requirements. As a general rule, it is recommended that important files be backed up with a
frequency that matches the processing activity of that file. In other words, if a file is updated daily, it
should be backed up daily; if a file is updated weekly, it should be backed up weekly.

It is also a good practice.to create an extra copy of a backup platter and/or keep more than one gen-
eration of these platters. Very often, the backup platter can be ruined by the same problem that de-
stroyed the original platter. Having this extra backup platter provides an additional measure of protec-
tion against time-consuming and costly data reconstruction.

Some companies also periodically store backup files at an off-premise location. By doing so, they
protect themselves against the danger of fire, explosions, or some other disaster.

E-1

Procedure

The procedure for backing up files varies from one application to another. With Wang-provided ap-
plication software, it is normally a matter of mounting a backup diskette or disk platter, loading the
proper module, and following the instruction prompts provided.

A user may back up a disk platter in one of the three following ways:

1. COPY statement
2. MOVE statement
3. COPY/VERIFY Utility

COPY Statement

The COPY statement copies the entire contents of a disk platter, or a specified portion of its con-
tents, to another disk platter in the same or different disk unit. The COPY statement is the only “Abso-
lute Sector Addressing” mode, BASIC-2 statement that should be used in backing up a file.

Example:

10 COPYF (0, 2000) TOR
20 VERIFY R (0, 2000)

Statement 10 copies sectors zero through 2000 from the fixed (F) platter to the same sectors on
the removable (R) platter. Statement 20 verifies through longitudinal and cyclical redundancy check-
ing (LRC + CRC) that the data recorded on the backup disk cartridge is valid.

Starting and ending sector addresses of the information to be copied should always be included in
the COPY statement. If the entire contents of a disk platter are copied, the beginning sector address
should be zero and the ending address should be the last sector on the platter.

If an error is encountered following a COPY operation, the process should be repeated. Repeated
failure could indicate a faulty disk platter. If the error persists with another platter, a Wang Service
Representative should be called.

Additional information concerning the use of the COPY statement can be found in Chapter 7 of
this manual.

MOVE Statement

The MOVE statement, used only with cataloged files, provides another means of backing up disk
files. In addition to copying the catalog index and data files, it also provides one additional function.
The MOVE statement eliminates scratched files from the catalog and compresses still-active files
into the available space.

Since it only copies active files, the MOVE statement results in a faster copy than the COPY state-
ment. However, caution should be exercised when using MOVE that only cataloged files, are on the
disk platter. Any other files will be lost unless a COPY statement is used.

Example:

10 MOVEFTOR
20 VERIFY R

E-2

Statement 10 copies all catalog information from the “F” disk platter to the “R” disk platter. State-
ment 20 checks the “R” disk platter to ensure that all information has been copied correctly.

Additional information concering the use of the MOVE statement can be found in Chapters 2 and
5 of this manual.

When using either the COPY or MOVE statements on the Mode! 2260 and 2270 Series, it is very
critical that the “F” and “R” parameters are positioned correctly. Reversing these two characters will
destroy the original files. To avoid this occurrence, a small utility can be written, incorporating the
MOVE and COPY statements, which provides the necessary prompts on the CRT and other safe-
guards to prevent the accidental destruction of a disk platter that is to be copied.

COPY/VERIFY Utility

There is one other way to back up important files. This final method utilizes the ISS utility
COPY/VERIFY and can be used by those customers who have purchases Wang's Integrated Support
System (ISS) software packages.

The COPY/VERIFY utility offers more flexibility than the COPY and MOVE statements and offers
the following features:

1. Copied files may be renamed and may replace existing files on the output disk.

2. Selected files or all files may be copied without altering files on the output platter.

3. Copyingis allowed between any two platter/disk addresses.

4. Copying is accomplished by read/write operations rather than COPY or MOVE statements.

5. The verify operation actually compares the data read from the input file to the data written
on the output file to insure that it has been copied correctly.

6. Additional sectors may be added to the copied file.

The operating instructions for the COPY/VERIFY utility are outlined in the /ntegrated Support
Systern User Manual.

With all diskette devices, accidental destruction of data can be avoided by the proper use of the
Write Protect feature. A small notch along the edge of the diskette’s plastic jacket controls the Write
Protect mechanism. When this notch is uncovered, the diskette is (write) protected. No information
can be recorded on it, nor can it be formatted.

In conclusion, file backup is extremely important to all Data Processing installations. Unless ade-

quate precautions are taken now, serious consequences may result later. We hope this discussion will
help avoid any serious and costly problems resulting from inadequate backup.

E-3

APPENDIX F
MODEL 2280 DISK MULTIPLEXER

With the Model 2280 Disk Muitiplexer, any combination of one, two, or three CPUs (2200MVP,
LVP, or VP) can share a Model 2280 Disk Drive or pair of 2280 disk drives fi.e., 2280 and 2280N).

When more than one CPU is configured to access a common disk data base, a multiplexed disk en-
vironment exists. Multiplexing adds an important dimension to disk ownership. A single disk unit can
be apportioned among several offices or departments. Each user can have access to a common disk
data base while retaining an individual CPU in a convenient location. The disk operations from
multiple-inquiring systems are interleaved, and disk time is allocated among the inquiring CPUs in a
manner that provides all CPUs with virtually concurrent access to the disk.

DISK MULTIPLEXER CONFIGURATION

The Model 2280 Disk Multiplexer is a “star-type” multiplexer consisting of the multiplexer board,
individual connector cables to each of up to three CPUs, and one controller board for each CPU in the
configuration. The Model 2280 multiplexer installs directly into a 2280 Multiplexable Disk Processing
Unit (MDPU) and contains the polling circuitry, the interface to the DPU, and three ports for cable con-
nection to the 2200 CPUs. (Some older DPUs require updates to the motherboard before multiplexing
can be supported.) Each participating CPU must have a Model 22C80 controller installed in its I/0
bus. (The 22C03 Disk Controller, 22C11 Dual Controller, or 22C32 Triple Controller cannot be used
to interface the 2280 multiplexer) A standard 12-foot (3.7 meters) connector cable is shipped with
each Model 22C80 controller board for connection to the multiplexer board.

In addition to the standard 12-foot (3.7 meters) connector cable, extension cables are available in
lengths of 25, 50, 100, 250, 500, 750, and 1000 feet (7.6, 15.2, 30.3, 75.8, 151.5, 227.3, and 303
meters). The following list contains the available extension cable lengths and their appropriate part
numbers.

Cable Length Part Number
25 ft (7.6 m) 120-2280-01
50 ft (15.2m) 120-2280-02
100 ft (30.3m) 120-2280-03
250 ft (75.8 m) 120-2280-04
500 ft (151.5m) 120-2280-05
750 ft (227.3m) 120-2280-06
1000 ft (303.0m) 120-2280-07

F-1

These cables can only serve as extensions for the standard connector cables; an extension cable
cannot be used by itself to connect a DPU to a CPU. Because the extension cable is combined with
the standard cable in this manner, the total length of the cable between two units is always equal to
the extension cable length plus 12 feet. In special cases, it is possible to connect two or more exten-
sion cables to create an extension longer than 1000 feet. In every case, however, the maximum per-
missible distance between the DPU and a CPU is 1012 feet.

INSTALLING THE MODEL 2280 DISK MULTIPLEXER
Unpacking and Inspection

Because the Model 2280 Disk Multiplexer unit is a sensitive device, it is packed using special tech-
niques to protect it from damage in shipping. It should be unpacked and inspected only by a qualified

Wang Service Representative. Failure to follow this procedure voids the Wang equipment warranty.

Installation/Power-on Procedure

CAUTION

Wang Laboratories, Inc., does not guarantee any
equipment modified by the user. Damage to equip-
ment incurred as a result of such modificaton is
the financial responsibility of the user. It is recom-
mended that only Wang Service Representatives
modify Wang equipment. Contact your Wang
Field Service Office to perform all installation ser-
vices.

To install the disk muitiplexer and to power on the system, use the following procedure.

1. Power down all system peripherals, including disk units, all terminals, and printers. Switch
off the main power switch of the DPU, followed by the main power switch of the CPU.

2. Install the Model 2280 multiplexer board into the DPU. Connect the cable between the DPU
and the multiplexer board. (Refer to Figure F-1.)

3. Set the proper disk address on each Model 22C80 controller {usually 10, 20, or 30). No
disk controller boards in the same CPU should have the same address. Iinstalla 22C80 con-
troller board in each participating CPU.

4. Plug one end of the disk I/0 connector cable into the 22C80 controller board. Plug the
other end of this connector cable into an available port on the 2280 multiplexer board.

5. Repeat Step 4 for all attached CPUs.

6. Be sure that all attached systems are properly set up and ready for operation and all power
cords are plugged into grounded (3-hole) wall sockets.

7. Follow the normal power-on procedure discussed in the Mode/ 2280/2280N Disk Drive
User Manual (700-5216A).

F-2

When routing the multiplexer connector cables between participating systems, take care to avoid
exposing a cable to intense electric or magnetic fields, or sources of electronic noise, since they may
interfere with data transmission over the cable.

If you have difficulty in maintaining valid data transmission between the disk and one or more sys-
tems, the problem may lie in the connector plugs. A coating sometimes forms on the pins of a plug
during extended periods of disuse. To remove this coating, simply insert and remove the plug ina
jack several times, or cut a piece from an ink-type eraser small enough to fit between the pins, and
use it to clean the surfaces of the pins.

22C80 Controller Board

Model 2280 Disk Multiplexer

Disk
Processing
Unit

2280N Disk Drive

Figure F-1. A Multiplexed 2280 Disk Drive

MULTIPLEXER OPERATION

The disk multiplexer controls all communication between participating CPUs and the disk unit. All
CPUs connected to a 2280MUX multiplexing DPU have equal access priority. Polling is done by
sequentially scanning each port. The multiplexer automatically “polls” each CPU, beginning with CPU
1, until it finds a CPU attempting to access the disk. At that point, the multiplexer permits the inquiring
CPU to execute one disk statement or command. Following execution of the statement or command,
the multiplexer resumes its polling until it encounters another CPU trying to access the disk. The mul-
tiplexer does not monitor the amount of time required to execute each statement, nor does it limit the
number of sectors transferred by a statement. A single statement may read or write only one sector,
but it is equally possible to carry out multisector transfers with one statement. (A MOVE or COPY
statement, for example, might transfer an entire disk platter to a second platter.) It is recommended,
however, that major file maintenance operations be executed only by a CPU in Hog mode (refer to
Section F.5). In any case, the CPU that is executing the statement retains use of the disk until state-
ment execution is completed. Control is then transferred to the next inquiring CPU. The Model
2280MUX provides no external indication of which system has access to the disk.

F-3

In normal operation, the multiplexer imposes no special demands or conditions upon the program-
mer. The disk is simply addressed as usual with the appropriate disk statements and commands. (All
disk addressing is identical to existing 2280 Disk Drives.) If no other CPUs are accessing the disk, the
total execution time of a multistatement disk operation is not noticeably affected by the multiplexer.
If more than one multistatement disk operation is being carried on at once, however, the time required
for each operation is roughly equal to the total time required to execute all operations, since one state-
ment from each CPU is executed on each pass by the multiplexer.

Multiplexing is transparent to user software except for the following.
1. Response time is degraded according to the disk load.

2. Single-user software must $OPEN the disk during critical periods when exclusive disk use
is required.

HOG MODE OPERATION

Although in general all CPUs attached to the multiplexer gain access to the disk on a statement-
by-statement basis, there are cases in which it is desirable to give one CPU a period of exclusive and
uninterrupted access to the disk. During certain critical file maintenance or update procedures, for
example, it is important that other CPUs be prevented from accidentally interfering in the routine,
since they might unknowingly overwrite valuable data or pointers, or otherwise confuse the situation.
Because operators on remote terminals have no way of knowing that critical maintenance procedures
are being carried out at any given time, it is necessary to prevent them from accidentally interrupting a
routine by locking them out. A CPU that monopolizes the disk in this way is said to be “hogging” the
disk. Every disk platter in the disk unit is hogged when the disk unit is hogged. Whenever a CPU is
granted access to a disk platter, it automatically gains control of all platters associated with that disk
drive. A terminal that has the disk in Hog mode can execute any number of disk statements or com-
mands while maintaining exclusive control of the disk, preventing other terminals from executing any
operation on the hogged disk drive.

The following statements are recommended for Hog mode on the 2200MVP, LVP, and VP (Release
1.8 or later).

® $OPEN disk device address (to hog the disk)

® 3$CLOSE disk device address (to release the disk)

The following program illustrates the $OPEN and $CLOSE statements used to hog the disk. The
user should refer to the BAS/C-2 Language Reference Manual for an indepth discussion of these two
statements.

110 REM OPEN FILE IN NON-HOG MODE
120 SELECT #1/D20
130 DATA LOAD DC OPEN T#1, “DATAFILE"

(processing)

270 DBACKSPACE #1, BEG

280 DSKIP #1,N S : REM SKIP N SECTORS

290 REM UPDATE RECORD IN HOG MODE

300 $OPEN #1 :REM ENTER HOG MODE

310 DATALOAD DC #1, A,B,C :REM READ RECORD

F-4

320 DBACKSPACE #1,1S
330 DATA SAVEDC #1, A, B+K, C:REM UPDATE
340 $CLOSE #1 :REM LEAVE HOG MODE

This program illustrates a typical update routine in which Hog mode is activated temporarily during
the actual updating {from the time the record is read until its updated version is written). The file is
opened with the disk drive in Non-hog mode {Line 130). Lines 270 and 280 locate the desired record
also while in Non-hog mode. Hog mode is entered upon execution of Line 300. The multiplexer
ceases its polling of the CPUs upon entering Hog mode. This terminal maintains exclusive access to
the entire disk drive until executing Line 340, when Hog mode is left. (The hogging terminal also loses
control of the disk drive if RESET is pressed on the terminal keyboard.)

The following points should be noted in regard to the operation of Hog and Non-hog mode.
1. When a multiplexed disk drive is hogged, the entire disk unit (all platters) is hogged.
2. Only the terminal which activates Hog mode can deactivate it.
3. If a terminal attempts to execute a disk statement while another terminal is hogging the

disk drive, the terminal simply waits, with the processing light on, until Hog mode is re-
leased.

P

Hog mode is deactivated if RESET is pressed at the hogging terminal.

F-5

INDEX

AArESS .« o o o e e s 1-3,3-16, 3-20
ATGQUIMENT . o o oot e et et et et e e e e 2-20
Argument Listo 2-17
Backup Platters, Importance of 2-31
Basic RUIES OF SYNTAXo\ttt 5-2
BINary SEArChottt 6-15
CatAlOg . .. oo it 2-2
Catalog ATEA oo oottt et 2-2
Catalog INAEXot ettt -2
Catalog Index, Sample Listing o i 2-12
Catalog ProCeAUIESttt 2-1
Calatog, Initializaton Of 2-3
COMIMANG .« .« e e e e 5-1
Control INFOrMAtION . . o o ottt e e e 4-7
COPY e 6-13,7-2
COPY EXGMPIES . . o\ttt e ettt e 6-13,7-2
CUITent SECtOr AdArESS . . . o oo ot i et et e e 3-12
Data FIle . .. oo e 2-14,2-15
Data RECOIA . . oot e e e e e 2-17,2-18
DATALOAD BAot e e 6-12,7-3
DATALOAD BAEXAMPIESottt 6-12,7-3
DATALOAD DA ..ottt e e 6-6,7-4
DATA DA EXAMPIES . . . o oottt a e e et 6-7,7-5
DATALOAD DC . . .ottt e e e 2-23,5-5
DATALOAD DCEXAMPIES . ..ot ittt e 2-23,5-5
DATALOAD DC OPEN . .. ittt e e e e e e e 2-22,5-6
DATALOAD DC OPEN EXAMPIES . .. oo oottt 2-22,5-6
DATASAVE BA . .ttt e 6-11,7-6
DATASAVE BAEXamMPIES oo 6-12,7-6
DATASAVE DA . . ot e 6-8, 7-7
DATASAVE DA EXAMPIES . . o oottt 6-9,7-8
DATASAVE DC . .t ottt e e 2-17,5-7
DATASAVE DC EXAMPIES . .« oo eeoe i e ettt 2-17,5-8
DATASAVEDC CLOSE ..ottt e 3-15,5-9
DATASAVE DC CLOSEEXAMPIES . . ottt e 3-16, 5-9
DATASAVE DCENDottt e 2-17,5-7
DATASAVE DC OPEN ... ot e 2-15,5-10
DATASAVE DC OPEN EXamPleS . ..o v it 2-16,5-11
DBACKSPACE . .t e 2-26,5-12
DBACKSPACE EXaMPleS . . . oottt e 2-28,5-12
DG ParameEter . . . v o o e et e e e e e e 2-5
D DEVICE TP .« - oottt et e e e 3-20
Default Disk AQAIESS . . . ittt it e et et e 1-4, 3-1
Default File NUMDBEE - . . . e e et e e e e e e e e e 3-1,3-2
DEVICE SEIECHION . . . o ot ot 3-1,3-5
DEVICE TADIE . . o oot e e e 3-2,3-5
DEVICE TYPE . o oottt e e e 3-18,3-19

Disk Device AdAress 1-2, 3-1

DSKIP 2-26,5-13
DSKIPEXamMPples 2-27,5-13
‘END’ Parameter 2-17,2-18
End-of-File Trailer Record 2-18, 2-29
Ending Sector Address 4-11, 6-9
FrParameter 1-2
File Numbers 3-2
Fixed Disk Platter 1-1
Hierarchy of Data 2-14
HogMode 8-7
IFEND THEN . .o 2-29
Indirect Addressing of Disk Unit 3-3
Inter-Field Gaps 4-9
LIMIT S . 4-10
LIMITS Examples o 4-11
LIST DO . . 2-11,5-16
LISTDCEXaMPIESo 2-12,5-17
LOADDA COMMANdo 6-5,7-9
LOAD DA EXamplesoo o 6-5, 7-9
LOAD DA Statement 6-6,7-10
LOAD DA Statement Examples oo 6-6, 7-11
LOAD Command 2-8,5-18
LOAD Command Examples 2-8,5-18
LOAD Statement 2-9,5-19
LOAD Statement Examples 2-10,5-20
LOADRUN Command 2-13,5-21
LOAD RUN Command Examples e 2-13, 5-21
Logical Platter ADdress 1-2
Logical Record 2-19, 2-20
LS Parameter 2-4
MOVE . 2-31,5-22
MOVEEND ... 5-24
MOVE Examples 2-32,5-22
Multiple Disk Units, Addressing Scheme for 3-22,3-23
Multiplexer Operation 8-6
Overlaying Programs from Disk i, 2-10, 6-7
ProgramFile 2-6,4-1,6-3
Protect Parameter 5-26,7-13
REParameter 1-1
Read-After-Write 5-26,7-13
Removable Disk Platter 1-1

INDEX-2

SAVE DA . . ot e e 6-3,7-12
SAVE DA EXAMPIES . ..ottt e et 6-4,7-13
SAVE . o e 2-6,5-25
SAVE EXBMPIES . . oo oottt ettt ettt 2-6,5-27
SCRATCH . o ot e 2-30, 5-28
SCRATCH EXAMPIES . . . oo e et e e 2-30,5-28
SCRATCH DISK . oottt 2-3,5-29
SCRATCHDISK EXamples oot 2-4,5-30
SCratChed File . . o oo e e 2-30
SECIOT . o o o e e e e e e e e 1-1,2-36
SECIOF AQATESS . . .« o o e e ettt e e e e 3-2
TeCONNECIOT .« . o v v e et e e e e e e e e e e e e 8-2
T Parameter on the Model 2260 0r 2270 S€eres i 3-17
T Parameter on the Model 2280 Disk Unit i 1-3, 3-20
VERIFY o o o e 2-36, 5-31

INDEX-3

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

700-4081G
TITLE OF MANUAL WANG BASIC-2 DISK REFERENCE MANUAL
COMMENTS:
Foid
Fold

(Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
.]
BUSINESS REPLY CARD —
]
FIRST CLASS PERMIT NO. 16 LOWELL, MA]
L]
POSTAGE WILL BE PAID BY ADDRESSEE EE——
L]
]
]
WANG LABORATORIES, INC. S—
ONE INDUSTRIAL AVENUE [—
LOWELL, MASSACHUSETTS 01851 e e—
L]
]
L]
Attention: Technical Writing Department
Fold
Printed in U.S.A.

13-1019

Cut along dotted line.

h

International
Representatives

Asgentina
Bahamas
Bahrain
Bolivia
Botswana
Brazi
Canary Islands
Chite
Colomina
Costa Rica
Cyprus
Denmark
Domincan Repubhic
Ecuador
Egypt

El Salvador
Finland
Ghana
Greace
Guam
Guatemala
Hait
Honduras
Iceland
India
Indonesia
Ireland
Israel

Italy

Ivory Coast
RELEY
Jordan
Kenya
Korea
Kuwat
Lebancon
Liberia
Malaysia
Malta
Mexico
Morocca
New Guinea
Nicaragua
Nigerna
Norway
Paraguay
Peru
Philppines
Partugal
Qatar
Saudi Arabia
Scotland
Senegal
South Africa
Span
SriLanka
Sudan
Tasmama
Thailand
Turkey
United Arab Emirates
Uruguay
Venezuela
Zimbabwe

- (WANG)

—
United States
Alabama Florida lowa Southfield Syossett South Carolina
Birmingham Coral Gables Ankany Minnesota Syracuse Charleston
Mobile Hialeah Kansas Eden Praine Tonawanda Columbia
Alaska Hollywood Overtand Park Minneapohs North Caroling Tennessee
Anchorage Jacksanville Wichita Mississippi Charlotte Chattanooga
Juneau Miami Kentucky Jackson Greensboro Knoxwllg
Arizona Orlando Louisville Missouri Raleigh Memphis
Phoenix Sarasota Louisiana tszour N Nashville
Creve Coeur Ohic

Tucson Tampz Baton Rouge - Ak Texas

_] St Louis ran Austin
California Georgia Metane Cincinnati Dall
Anahaim Atlanta Maine Nebraska Cleveland EIaP a5
Burlingame Savannah Portland Omaha independance f as;o
Culver City Hawaii Maryland Nevada Toledo S::i«ﬁ!nonl
Emerywile Honolulu Baltimore Las Vegas Worthington u °
Fountatn Valey Maui Bethesda New Hampshire Oklahoma P tlah Ci
Fresno Idaho Gaithersburg Manchester Oklahoma City ‘ﬁ ! I:a'ke 'ty
Los Angeles Rockville New J Tulsa irginia

ew Jerse
Batse ersey Newport News
Sacramento] Massachusatts Bloomfiaid Cregon Norfalk
San Diego llinais Baston Cifton Eugene Richmend
San Francisco Arlington Heights Burlington Edison Portland Ross ?1
Santa Clara Chicago Chelmstord Mountainside Salem Sprin;field
Ventura Morton L.awrence Toms River Pennsylvania Washington
Colorada Qakbrook Littletan New Mexico Allentown Richland
Englewood Park Ridge Lowell Albuguerque Erie Seattle
Connecticut Rock Island Methuen Santa Fe Harrisburg Spokane
New Haven Rosemont Tewksbury New York Philadelphia Wisconsin
Stamford Springheld Worcester Albany Pittsburgh Appleton
Wethersfield Indiana Michigan Jericho State College Broakfield
District of Fort Wayne Grand Rapids Lake Success Wayne Green Bay
Columbia Indianapalis Kalamazoo New York City Rhode Istand Madison
Washington South Bend Lansing Rochester Providence Wauwatosa
International Offices
Australia Victona, B.C. Japan Malmo
Wang Computer Pty., Ltd. Winnipeg, Manitoba Wanyg Computer Lid. Switzerland
Adalaide, S5 A China Tokyo Wang A.G.
Brisbane, Qid. N Netherlands Zurich
Canberra, AC T _\;Vgng_ Industrial Co., Ltd. Wang Nederland B.V. Basel
Perth, W.A alpel I sselstein Bern
South Melhourne, Vic 3 Wang Laboratories, Lid. Groningen Geneva
Sydney, NSW Taipei Lausanne
Austrig E New Zealand St Gallen
rance Wang Computer Ltd.
Wang Gessllschaft, mbH. wang France S.A.R.L. Auckland Wang Trading A.G.
Vienna Paris Christchurch Zug
Belgium Bordeaux Wellington West Germany
Wang Europe, S.A. Lille Wang Deutschland,
Brussels Lyon Panama GmbH
Erpe-Mere Marseilles Wang de Panama Frankfurt
Nantes {CPEC! S.A. .

Canada Nice Panama City Berlin
Wang Canada Ltd, Raven Cologne
Burlington, Ontano Strasbour Puerto Rico Dusseldort
Burnaby, B.C. 9 Wang Computadoras, Inc. Essen
Calgary, Alberta Great Britain Hato Rey Freiburg
Don Mills, Ontario :Fa;ﬂ (:-:(;KJ Ltd. Singapore Hamburg
Edmonton, Alberta ichmo Hannover
Halifax, Nova Scotia Birmingham ‘Sh'lan: g:.empmr (Pta) L1d. Kassel
Harmilton, Ontario London rgap Marnnhaim
Montreal, Quebec Manchester Swedan Munich
Ottawa, Ontario Hong Kong Wang Skandinaviska AB Nirnberg
Quebec City, Quebec Wang Pacific Ltd. Stockholm Szarbricken
Teronto, Ontario Horg Kong Gothenburg Stuttgant

ONE INDUSTRIAL AVENUE, LOWELL. MASSACHUSETTS 01881, TEL. (817) AES-5000, TWX 710 343-87680, TELEX 947421

Printed in U.S.A.
700-4081G
F"ﬁd~3M

	Table of Contents
	Chapter 1: Accessing a Disk Platter
	Chapter 2: Automatic File Cataloging Procedures
	Chapter 3: Disk Device Selection and Multiple Data Files
	Chapter 4: Efficient Use of the Disk
	Chapter 5: Automatic File Cataloging Statements and Commands
	DATALOAD DC
	DATALOAD DC OPEN
	DATASAVE DC
	DATASAVE DC CLOSE
	DATASAVE DC OPEN
	DBACKSPACE
	DSKIP
	LIMITS
	LIST DC
	LOAD (Command)
	LOAD (Statement)
	LOAD RUN (Command)
	MOVE
	MOVE END
	SAVE
	SCRATCH
	SCRATCH DISK
	VERIFY
	$FORMAT DISK

	Chapter 6: Absolute Sector Addressing
	Chapter 7: Absolute Sector Addressing Statements and Commands
	COPY
	DATALOAD BA
	DATALOAD DA
	DATASAVE BA
	DATASAVE DA
	LOAD DA (Command)
	LOAD DA (Statement)
	SAVE DA

	Chapter 8: The Disk Multiplexer (Model 2230MXA-1/MXB-1)
	Appendix A: Disk Error Codes
	Appendix B: Comparison of BASIC and BASIC-2 Disk Statements Syntax
	Appendix C: A Glossary of Disk Terminology
	Appendix D: Bibliography
	Appendix E: Disk File Back-Up
	Appendix F: Model 2280 DIsk Multiplexer
	Index

