WANG
BASIC-2
LANGUAGE

_ Pucket Guide

WANG
BASIC-2
LANGUAGE

Pocket Guide

© Wang Laboratories, Inc., 1980

HOW TO USE THIS POCKET GUIDE

This pocket guide contains the salient features of the BASIC-2 lan-
guage available on Wang systems. For more information on BASIC-2,
refer to the Wang BASIC-2 Language Reference Manual (700-4080D).

TABLE OF CONTENTS

NUMERIC FUNCTIONS

P ART L 1
B Pl 1
TERM L 1
ABS (BXD) . ..o 1
ARCCOS (BXP) .. oo 1
ARCSIN (eXP) .. 1
ARCTAN (BXP) - .. v v oo oo oot e 1
ATN (EXP) . 1
COS (BXP) .. oot 1
ERR 1
EXP (eXP) .. 1
FIX XD . oo 1
INT OXP) .« oot 1
LGT (@XP) .. 1
LOG (BXP) .. oot 1
MAX (eXP1, 8XP2, @XPN) ..ottt 1
MIN (@Xp1, @XP2, @XPN) . ..ottt e 1
MOD (eXP1, @XP2) ...ttt 1
RND (EXD) ..o 1

NUMERIC FUNCTIONS

ROUND (exp1, €XP2) ... 1
SGN (XP) ..o 2
SIN (BXP) ..o 2
SPACE . .. 2
SPACEK .. 2
SQR (BXP) ..o 2
TAN (EXP) oot 2
ALPHA FUNCTIONS AND LITERALS
ALL FUNCHION ..o 3
BIN FUNCHION 3
HEX Literal 3
LEN FUNCHION e 4
NUM FUNCHiON e 4
POS FUNCHION o e e 4
SPSTAT FUNCHIONt 5
STR FUNCHONo 5
VAL FUNCHION ... 5
VER FUNCHION ... 6
ALPHA OPERATORSt 7

STATEMENTS AND COMMANDS

BBREAK ... 9
BCLOSE ... 9
BFORMAT . 10
BGIO . 11
BIF ON/OFF o 12
SINIT 12
BMS G 13
BOPEN ..o 13
PP ACK 13
PP ST AT 14
SRELEASE PART 14
SRELEASE TERMINAL i 14
BTRAN . 15
BUNPACK .. 15
COM L 16
COM CLEAR .. 16
CONVERT .. 17
DA T A e 17
DEFFN . 18
DEFFN* Keyboard Text Entry Definition 18
DEFFN’ Subroutine Entry Point 18

STATEMENTS AND COMMANDS

DEFFN @PART 19
DIM 19
END . 19
ERROR ... 20
FOR. . TO . 20
GOSUB ... 20
GOSUB' . . 20
GOT O . 21
HEXPACK .. 21
HEXUNPACK . 21
IF. . THEN 22
IFEND THEN 23
Image () ... 23
INPU T 23
KEYIN 24
LET 24
LINPUT 24
M AT = 25
M AT 25
M AT) 25
MA T - 25

MAT CON .. 26
MAT COPY . 26
MAT IDN . 26
MAT INPUT 26
MAT INV 27
MAT MERGE 27
MAT MOVE . 28
MAT PRINT 29
MAT READ ... 29
MAT REDIM .. 29
MAT SEARCH ... 30
MAT SORT .. 31
MAT TRN 31
MAT ZER 32
NEXT 32
ON GOTO, ON GOSUB i 32
ON/SELECT ... 33
PACK . 33
PRINT 34
PRINTUSING 34
PRINTUSING TO i 356

vi

vii

viii

STATEMENTS AND COMMANDS

READ . 356
REM 35
RESTORE 36
RETURN .. 36
RETURN CLEAR 36
ROTATE 37
SELECT 37
SELECT @ PART L. 39
ST P 39
UNPACK 39

COMMANDS AND KEYS

CLEAR e 40
CONTINUE KBY -+ oo eve e e e e e e 40
HALT/STEP KBY « .o ovvv e e e e e e e e 40
[41
LIST # oot 41
ST et 42
ST DT oottt 42
R 43

LIS T T 43
ST Vo 44
RENUMBER 44
RESET Key 45
RUN 45
Special Function Key 45
TRACE . 45

DISK STATEMENTS AND COMMANDS

S FORMAT DISK ... 46
COPY 46
DATALOAD BA 47
DATALOAD DA ... 47
DATALOAD DC ... 48
DATALOAD DC OPEN 48
DATASAVE BA 49
DATASAVE DA o 50
DATASAVE DC ... 51
DATASAVE DC CLOSE 51
DATASAVE DC OPEN 52

DISK STATEMENTS AND COMMANDS

DBACKSPACE 53
DSKIP 53
LIMIT S . e 54
L ST DO . 55
LOAD {Command) 55
LOAD (Statement)o 56
LOAD DA (Command) i 57
LOAD DA (Statement) 58
LOAD RUN (Command)i i e 59
MOVE . . 59
MOVE END . .. 60
SAVE 60
SAVE DA 61
SCRATCH .. 62
SCRATCH DISK ... 62
VERIFY 63

BASIC-2 ERROR CODES (SUMMARY)

Miscellaneous Errors e 64
Syntax Errors 64
Program Errors 65

RECOVERABLE ERRORS

Computational Errors

... 67
Execution Errors 67
Disk Errors 68

1/0 Errors

GLOSSARY

alpha

char
device-address
dim

elt

eof

exp

fen
file-number
h

hex

int

image-spec

literal
mat
num
0S.
parm

GLOSSARY

print-elt

pd
ref
spec
str
val
var

nauuwuwu

[LI | | I 1 R]

alphanumeric
character

/taa, where t = device-type and aa = physical device-address

dimension
element
end-of-file
expression
function

#n, where n is an int or num-var with truncated val of 0-15
hexadecimal digit (0-9 or A-F)

hexadecimal
integer

alpha-var containing image
line-num of image statement
lit specifying image

literal string
matrix

numeric
operating system
parameter

alpha-variable

expression
literal string

packed decimal
reference
specification
string

value

variable

|

xii

Xiii

NUMERIC FUNCTIONS

#PART Returns the partition number.
#Pl Returns 3.14159265359.
#TERM Returns terminal number.
ABS(exp) Finds the absolute val of exp.

ARCCOS{exp) Finds arccosine of exp.
ARCSIN(exp) Finds arcsine of exp.
ARCTAN(exp) Finds arctangent of exp.

ATN(exp) Finds arctangent of exp.

COS{exp) Finds cosine of exp.

ERR Returns error code of most recent error condition.
EXP(exp) Finds e raised to power of exp (naturnal anti-log of exp).
FiX{exp) Finds the int portion of exp.

INT {exp) Finds the greatest int val of exp.

LGT{exp) Finds common log (base 10) of exp.

LOG(exp) Finds natural log (base e) of exp.

MAX{exp1,exp2,..expn) Finds maximum val among exps or num arrays.

MiN({exp1,exp2,..expn) Finds minimum val among exps or num arrays.

MOD(exp1,exp2) Finds remainder of exp1/exp2.

RND(exp) Produces random number between O and 1.

ROUND(exp1,exp2) Finds the value of exp1 rounded to the exp2th decimal place if exp2 > O,
to nearest int if exp2=0, —(exp2)+1 to the left of decimal point if n < O.

Xiv

NUMERIC FUNCTIONS

SGN(exp) Returns 1 if exp is positive, — 1 if negative, O if zero.
SIN(exp} Finds sine of exp. _

SPACE Returns amount of free space in user memory.
SPACEK Returns total user memory size/1024.

SQR(exp) Finds square root of exp.

TAN(exp) Finds tangent of exp.

ALPHA FUNCTIONS AND LITERALS
ALL Function

hh
alpha-var = [..] ALL { alpha-var] [..]
literal

Defines a repeating str in which each char is as specified in the fcn.

BIN Function
alpha-var = [...] BIN(exp [,2]) [...]
Where:

0 < = val of exp < 256 if 2" omitted.
0 < = val of exp < 65536 if 2" included.

Converts int val of the exp to a one- or two-byte binary number.
HEX Literal

HEX(hh [hh..])
Permits the use of any eight-bit char code.

ALPHA FUNCTIONS AND LITERALS
LEN Function
LEN (alpha-var)
Determines the number of chars up to the first trailing space in the val of an alpha-var.

NUM Function

NUM (alpha-var)
Determines the number of sequential ASCIl chars in the specified alpha-var which represent a legal
POS Function

BASIC number.
alpha-var alpha-var
POS | [-] literal
literal hh

Returns the position of the first (or last) char which satisfies specified relation.

]

VVIEAA

<>

ALPHA FUNCTIONS AND LITERALS
$PSTAT Function
$PSTAT (exp)
Where:
1 < = val of exp < = number of partitions
Returns an alpha-str describing the current status of the partition specified by the exp.

STR Function
STR(alpha-var [[starting position][lengthl])
Defines a substr of an alpha-var.

VAL Function

VAL { falpha-var\ [,2]
literal

Converts the binary val of the first {or first two) byte(s) of alpha val to a num val.

ALPHA FUNCTIONS AND LITERALS
VER Function
VER ({ alpha-var, } fmt-spec)

literal,
Where:

fmt- — Jalpha-var
mi-spec {Iiteral made up of fmt-chars

A = alphabetic (A-Z, a-z)

= numeric (0-9)

N = alphanumeric (A-Z,a-z,0-9)
fmt-chars =< H = hexadecimal (0-9, A-F)

P = packed decimal
X = any character
other = only specified character

Verifies that the val of an alpha-var or literal conforms to fmt.

ALPHA OPERATORS
The following alpha operators, plus &, are only allowed in the assignment statement, as shown.
[LET] alpha-var [alpha-var]...= alpha-exp

_ J alpha-operand [& alpha-operand]...
alpha-exp = {[alpha-operand] [alpha-operator alpha-operand]...}
alpha-var
literal
alpha-operand =< STR function
BIN function
ALL function

ALPHA OPERATORS

ADD Adds the bin vals of two alpha-exps.

ADDC Adds the bin vals of two alpha-exps with carry.
AND Logically ANDs two alpha-exps.

BOOLh Generalized logical operator.

DAC Performs decimal addition. >
DSC Performs decimal subtraction.

OR Logically ORs two alpha-exps.

SUB Performs binary subtraction.

SUBC Performs binary subtraction with carry.
XOR Exclusive ORs two alpha-exps.

alpha-operator = j

& Operator
[LET] alpha-var [alpha-var]... = alpha-exp & alpha-exp

Concatenation operator. Combines two strings into one, putting one after the other, without inter-
vening characters. No other operators can be used in the same expression as &.

STATEMENTS AND COMMANDS
$BREAK
$BREAK [exp]
!

Where:

0 < =exp < 256, default = 1
Relinquishes specified number of units of CPU processing time. | stops processing.
$CLOSE

file-number file-number
$CLOSE | | device-address , | device-address/ |...

Releases the specified devices previously hogged via the $OPEN statement.

STATEMENTS AND COMMANDS

$FORMAT

$FORMAT alpha-var = field-spec [field-spec]...
Where:
SKIPxxx (skip field)
Fxxx (ASCII free fmt)
Ixxx[.dd] (ASCHl int fmt)
eld =< Dxxx[.dd] (IBM display fmt)
field-spec =< j;,x(dd] (IBM USASCII-8 fmt)
P+xxx[.dd] (IBM pd fmt)
Pxxx[.dd] {unsigned pd fmt)
Axxx (alpha fmt)

xxx = field width (0 < xxx < 256)

dd = implied decimal position (0 < =dd < 16)
Provides a mnemonic means of creating a fmt-spec for field form of $PACK and $UNPACK state-
ments.

~

STATEMENTS AND COMMANDS
$GIO

[device-address[,]]
$GIO [comment] | file-number, (arg-1 [arg-2]) [arg-3 [;arg-3..1]

Where:

comment = A char str, ignored by system, identifying the particular operation (e.g., WRITE,
READ, CHECK READY). Only uppercase letters, digits, and spaces.

A customized microcommand sequence which defines the I/O operation:

a) Directly, by a hex lit, alpha lit, or a str of hexdigits, with each four-hexdigit

code denoting one two-byte microcommand.

b) Indirectly, by an alpha-var containing the microcommand sequence.
alpha-var whose individual bytes (‘“‘registers’’) are used for storage of special
chars and error/status information. Must have at least 10 bytes.
alpha-var used as the data buffer for multiple-char 1/0 operations. (Not
required for single-char I/O operations.)

arg-1

arg-2

arg-3

Used to perform I/O with non-standard devices.

12

STATEMENTS AND COMMANDS

$IF ON/OFF
ON | |device-address,
$IF)\ OFFf [file-number, line-number

Determines the ready/busy status of any given device attached to the CPU and branches when
ready or busy, depending on the form of the statement.
$INIT
Program statement (pass configuration parms to the 0.S.):
$INIT (alpha-1, alpha-2, alpha-3, alpha-4, alpha-5 [, alpha-6])
Immediate Mode statement {reconfigure system):
$INIT password

Where:
Ioh _ Jlit-str
alpha ~ \alpha-var
password = system reconfiguration password, which must be a literal one to eight chars in

length.
Passes the system configuration parms to the MVP O.S. to allow partition generation to occur.

STATEMENTS AND COMMANDS
$MSG
$MSG = alpha-exp

Used by Terminal 1 to define a broadcast message to be dlsplayed on each terminal whenever the
READY message is normally displayed.

$OPEN

[] file-number file-number
$OPEN | line-number, device-addressf |, | device-address| |...

Used to hog a peripheral for the current partition.

$PACK
F alpha-var lit lit
$PACK = alpha-var FROM) exp , Jexp
D literal var var
array, array,

Used to store data in a buffer in specified fmt.

13

14

STATEMENTS AND COMMANDS
$PSTAT
$PSTAT = alpha-exp
Sets up user-defined portion of partition status (1st 8 bytes).

$RELEASE PART

$RELEASE PART
Causes a partition to be reassigned from the current controlling terminal to the null terminal
(Terminal 0).

$RELEASE TERMINAL

exp
$RELEASE TERMINAL [TO {partition-name} [, STOP]]
Where:

lit-str
partition-name = {alpha-var} (1-8 bytes in length)

Detaches the terminal from the current partition.

-~ s -

STATEMENTS AND COMMANDS

$TRAN
$TRAN f(arg-1, arg-2) [mask] [R]
Where:
arg-1 = alpha-var
arg-2 = alpha-var or lit
mask = two hex digits
R = indicates which method is used to translate.

Translates the characters in arg-1 according to the translation table in arg-2.

$UNPACK

({F} alpha-var var } var
$UNPACK Df = \literal alpha-var TO \arrayf |, \arrayf | ..

Extracts data from a buffer and stores the data in vars.

15

STATEMENTS AND COMMANDS

coMm
COM com-elt [,com-elt]...
Where:
num-var
com-elt = J hum-array-name (dim1[.dim2])

alpha-array-name {(dim1[,dim2])[length]
alpha-var [length]

Define vars which will be used in common by several modules.

COM CLEAR

var
COM CLEAR [array-designator]

Redefines which variables are common.

STATEMENTS AND COMMANDS
CONVERT

1. CONVERT alpha-var TO num-var
2. CONVERT exp TO alpha-var, (fmt)

Where:
[+l[$][#[,]]...[.][#]...[TTTT] +

fmt = +4

alpha-var containing fmt
Used to convert num val to ASCIl alpha char str or vice versa.

DATA

number ,number
DATA literal Jiteral

Supplies vals to be used by a READ statement.

16

17

18

STATEMENTS AND COMMANDS
DEFFN
DEFFN alnum-var) = exp
Where:
a = identifies the fcn (digit or uppercase letter)

Defines a fcn of one var within a program.

DEFFN’ Keyboard Text Entry Definition
DEFFN’ int lit [;lit]...
Defines literal to be supplied for text entry when SF key is used.

DEFFN’ Subroutine Entry Point
DEFFN' int [(var Lvar]..)]
Marks a subroutine that can be called by an SF key or a GOSUB".

.

STATEMENTS AND COMMANDS
DEFFN @PART

alpha-var
DEFFN @PART |literal [FOR terminal# [, terminal#] ..]

Defines the current partition as “‘global,” enabling the program text and global vars in the current
partition to be shared with other partitions.

DIM
DIM dim-elt [,dim-elt]...
Where:
num-var
dim-elt = 4 Num-array-name dim1 [.dim2])

alpha-array-name (dim1 [,dim2]})[length]
alpha-var [length]

Reserves space for noncommon vars.

END
END
Indicates the end of a BASIC program’s job flow.
19

STATEMENTS AND COMMANDS
ERROR
ERROR statement [:statement]...
Allows the programmer to respond to recoverable errors.

FOR..TO
FOR num-var = exp-1 TO exp-2 [STEP exp]
Initiates a loop ending with a NEXT statement.

GOSUB
GOSUB line-number
Transfers program execution to a subroutine.

GOSUB’

literal literal
GOSUB’ int {alpha—var , § alpha-varg| ...
num-exp num-exp

Transfers program execution to a marked subroutine and passes values.

STATEMENTS AND COMMANDS
GOTO
GOTO line-number
Transfers program execution to a designated line.
HEXPACK
HEXPACK alpha-var-1 FROM alpha-var-2
Converts an ASCIl char str of hex digits into the binary equivalent.
HEXUNPACK
HEXUNPACK alpha-var-1 TO alpha-var-2

Converts the binary val of alpha-var-1 to a str of ASCII hex chars which represent that val.

20

21

22

STATEMENTS AND COMMANDS

IF.. THEN
line-number
IF condition THEN) statement [:ELSE statement]
Where:
condition = one or more relations separated by logical operators AND, OR, or XOR.
<
< =
relation = operand = { operand
> =
>
<>

num-exp
operand = { alpha-var}
literal

Executes the statement or branches to the specified line if the condition is true; executes the ELSE
statement or goes to the following statement with no action if the condition is false.

- -
& -

STATEMENTS AND COMMANDS
IF END THEN

line-number
IF END THEN) statement [:ELSE statement]

Tests for an eof record.

Image (%)
%l[char str] [fmt-spec] ...

Where:
fmt-spec = [+] [$] [#LL IO #00010110 [+

++

Used with PRINTUSING to provide a fmt-spec for output.

INPUT
INPUT [iit [,]] var [, var ...
Allows the operator to supply data during program execution.

23

STATEMENTS AND COMMANDS

KEYIN
1. KEYIN device-address,] alpha-var [, line-number]
file-number,
2. KEYIN device-address, | alpha-var line-number,line-number
file-number,
Where:

file-number = #n, where n = an int or num-var.

1. Waits to receive a single char from an input device.
2. Gets a character from an input device if one is available.

LET

[LET] num-var [,num-var..]= exp
or
[LET] alpha-var [,alpha-var...|= alpha-exp

Assigns the val of the right hand exp to the var(s) on the left.
LINPUT
LINPUT [literal []] [?] [-] alpha-var

Allows input and concurrect editing of an alpha-var directly from the keyboard.

- -9

STATEMENTS AND COMMANDS
MAT =
MAT c =a
Replaces each elt of ¢ with the corresponding elt of a.
MAT"
MATc=a"'b
Multiplies mat a by mat b.
MAT()"
MAT ¢ = (exp) * a
Multiplies each elt of array a by the val of exp.
MAT -
MATc=a-b

Subtracts array b from array a.

24

25

26

STATEMENTS AND COMMANDS
MAT CON
MAT ¢ = CON [(dim1 [,dim2])]
Sets all elts of array equal to 1 and can redim the array.

MAT COPY
MAT COPY I[-] source-alpha-var TO [-] output-alpha-var
Transfers an alpha val to an alpha-receiver one byte at a time.

MAT IDN
MAT ¢ = IDN [(dim1,dim2)]
Causes the array to assume the form of the identity mat.

MAT INPUT
MAT INPUT array-name [{dim1[,dim2]) [lengthl] [,...]
Allows the user to supply vals for array during program execution.

- P

STATEMENTS AND COMMANDS
MAT INV

MAT ¢ = INV(a) [,[d][,n]]
Where:

d = a num-var with val of the determinant of a.
n = a num-var with val of the normalized determinant of a.

Causes mat c to be replaced by the inverse of mat a.

MAT MERGE
MAT MERGE merge-array[(x[,y])] TO control-var, work-var, loc-array
Where:
merge-array = 2-dimensional alpha-array. x,y define a field within each elt of the merge-
array: :
x = exp which specifies the starting position of field within each elt.
y = exp which specifies length of field in bytes. If exp omitted, field
assumed to occupy remainder of elt.
control-var = alpha-var used to store merge status information.
work-var = alpha-var used by the system as work space.
loc-array = locator-array, alpha-array with two-byte elts to store subscripts.

Merges two or more sorted input files into a single sorted output file.
27

28
STATEMENTS AND COMMANDS

MAT MOVE
MAT MOVE move-array [,locator-array] [,n] TO receiver-array
Where:
_ move-alpha-array-desig [(x[,v])]}
move-array - {move-num-array-desig

{ Iocator—array-desig}

-arr
locator-array locator-array-elt

receiver-alpha-array-elt [(x[,y])]
receiver-num-array-elt
receiver-num-array-desig
receiver-alpha-array-desig [{x[,y])]

receiver-array

n = a num-var with the maximum number of elts to be moved.
(x,y) = optional field-designators defining a field within each alpha-array-elt
such that:
X exp specifying the starting position of the field.

y = expspecifying the number of chars in the field (assumes
remainder of elt if not specified). i

Transfers data elt by elt from one array to another.

A e —

STATEMENTS AND COMMANDS
MAT PRINT

MAT PRINT array-name [{} array—name] .l ;']
Prints arrays in the order given.
MAT READ

MAT READ array-name [({dim1 [,dim2]) [length]] [....]
Assigns vals contained in DATA statements to array-vars.
MAT REDIM

MAT REDIM array-name (dim1 [,dim2])[length] [,...]
Redims the specified arrays.

29

30

STATEMENTS AND COMMANDS
MAT SEARCH

{alpha-var} TO pointer-var [STEP s]

literal

MAT SEARCH falpha-var
literal

AVVIEAA
[

>
Where:
s =num-exp 0 < =s < 65536

Searches first alpha value for strings of the same length as second alpha value which satisfy the
given relation. Starting positions of substrings placed in the pointer-var.

STATEMENTS AND COMMANDS

MAT SORT
MAT SORT sort-array TO work-var, locator-array
Where:
sort-array = sort-array-desig[(x[,y])]
sort-array-desig = alpha-array-designator {e.g., A$()) with data for sorting.
(x,y) = optional field-designators which define a field within each elt of the
sort-array; x and y are exps such that:
1. x specifies the starting position of the field.
2. vy specifies the number of chars in the field {or remainder
of elt if y not specified).
work-var alpha-var for temporary storage area.

locator-array alpha-array with elts of length 2 used to contain subscripts of elts in

the sort-array in sorted sequence.

Creates a locator-array containing subscripts arranged according to the ascending order of data
vals in the sort-array.

MAT TRN
MAT c = TRN(a)

Causes mat c to be replaced by the transpose of a.
31

32

STATEMENTS AND COMMANDS
MAT ZER
MAT c = ZER [{dim1 [,dim2])]
Sets all elts of the array equal to zero with optional redim.

NEXT
NEXT counter-var [counter-var]
Where:
counter-var = num-var used as counter in companion FOR statement.
Marks the end of a loop initiated by FOR.

ON GOTO
ON GOSuUB

alpha-var GOSuB
ON \exp GOTO [,lline-num]]...line-num [:ELSE statement]
Computed GOTO or GOSUB statement. Branches depending on the value of the exp or alpha-var.

STATEMENTS AND COMMANDS

ON/SELECT

ON fexp SELECT select-list [; [select-list]]
alpha-var

Where:
select-list = select-par [,select-par...]
SELECT statement where select-par assignment(s) made depend on the val of an exp or alpha-var.

PACK
num-array
PACK (image) alpha-var FROM 1 exp
Where:

image = [+] [#]... [1 [#].. [1111] or alpha-var containing image

Packs num vals into an alpha-var-or array.

33

STATEMENTS AND COMMANDS
PRINT

PRINT [print-elt] [{} [print-elt]]...
Where:

exp
alpha-var
literal
print-elt = < AT()
BOX{)
HEXOF()
TAB()

Sends output to the printer or CRT, as chosen by a SELECT statement.

PRINTUSING

PRINTUSING image-spec [{} print-elt] e
Sends formatted output to the printer or CRT.

STATEMENTS AND COMMANDS
PRINTUSING TO

PRINTUSING TO alpha-var, image-spec [{} print-elt] =Ll
Stores formatted print output in alpha-var.

READ
READ var [,var]...
Assigns elts listed in DATA statement to vars.

REM

REM [%] [] text string
Where:

text string = any chars except colon
Denotes comment to be ignored by system.

34

35

36
STATEMENTS AND COMMANDS

RESTORE
[LINE line-num [exp]
RESTORE | exp
Where:

1 < =exp < 65536
Resets pointer in DATA statement back to specified data value to allow reuse by READ statement.

RETURN
RETURN
Indicates end of subroutine and causes execution to resume following last-executed GOSUB or
GOSUB'.
RETURN CLEAR
RETURN CLEAR [ALL]

Used in subroutines to clear subroutine return address information from memory.
Execution continues with following statement.

STATEMENTS AND COMMANDS
ROTATE
ROTATE [C] (alpha-var, exp)
Where:
-8 < =exp< 9
Rotates the val of the alpha-var or of each char the specified number of bits.
SELECT
This statement contains a number of parts, described separately below.

R
SELECT { D}
G

Select radian, degree, or grad measure for trig functions.

SELECT ERROR [> error codel
Selects which math error causes program termination.

SELECT P [digit]

Select pause after console output.
37

38

STATEMENTS AND COMMANDS
SELECT LINE exp
Selects number of lines on the CRT.

Cl device-address 1
INPUT device-address

CO device-address [(width)]
PRINT device-address [(width)]
SELECTX LIST device-address [(width)]
PLOT device-address

TAPE device-address

DISK device-address
file-number device-address

v

Selects devices.

ON CLEAR
OFF [device-address [GOSUB line-number]]

Controls interrupts.

ON [device-address [GOSUB line-number]]
SELECT

STATEMENTS AND COMMANDS
SELECT @PART
SELECT [...] @PART partition-name [...]

Where: Ioh
. _ Jalpha-var
partition-name = {Iiteral } (1-8 bytes in length)

Specifies a global partition whose text and/or global vars are to be referenced by the partition in
which SELECT @PART is executed (the “‘calling” partition).
STOP
STOP [literal] [#)
Halts program execution until CONTINUE or HALT/STEP is keyed or a DEFFN’ subroutine is
invoked through an SF key being pressed.
UNPACK
UNPACK (image) alpha-var TO num-var [,num-var]...
Where:
image = [+] [#..] [.] [#..] [1111] or alpha-var containing image

Unpacks num data packed by a PACK statement.
39

40

COMMANDS AND KEYS
CLEAR

P [line-number] [,liine-number]]
CLEAR|V
N

Clears all program text and vars. With P clears only program text. With V clears only vars. With N
clears only non-com vars.

CONTINUE Key

CONTINUE
Continues program execution after a program has been halted by a STOP statement or by keying
HALT/STEP.

HALT/STEP Key
HALT/STEP Key

HALTs program execution or a listing operation or STEPs through program execution statement
by statement.

COMMANDS AND KEYS
LIST

LIST [S] [title] [D] [start line-number] [,[end line-numberl]]
Where:

fitle = {Iiteral }
alpha-var
Lists the specified portion of a program.

LIST#
LIST [S] [title] # [line-number] [, [line-number]]
Where:

title = {Ilteral }
alpha-var

Produces cross-ref listing of all refs to the specified line-numbers within the current program.

41

COMMANDS AND KEYS
usT
LIST [S] [title] * [int]
Where:
e = { G
Creates a cross-ref listing for specified DEFFN’ subroutines in the current program.

LIST DT
LIST [S] [title] DT
Where:

title = {Iuteral }
alpha-var

Displays the contents of the Device Table in hex.

COMMANDS AND KEYS
usT I

LIST [S] [title] |
Where:

title = literal
alpha-var
Lists the current contents of the Interrupt Table.
LISTT
LIST [S] ltitle] T {
Where:
title = {Iiteral }
alpha-var

Generates a cross-ref listing of all program lines that contain a specified str.

literal Jliteral
alpha-var{ | ,alpha-var

44
COMMANDS AND KEYS
LIST V
LIST [S] [title] V [var-name] [,[var-name]]
Where: letter [digit] for num-scalars
letter [digit]$ for alpha-scalars

letter [digit](for num-arrays
letter [digit]$(for alpha-arrays

o alpha-var
title = {Iiteral }

Produces cross-ref listing of the variables given for the current program.

var-name =

RENUMBER
RENUMBER [L#1] [-L#2] [TO L#3] [STEP s]
Where:
L#1 = first line-number to be renumbered
L#2 = last line-number to be renumbered
L#3 = new starting line-number
s = STEP val

Renumbers a program in memory.

COMMANDS AND KEYS

RESET Key
RESET

Immediately stops program listing or execution, clears CRT screen, resets |/0 devices, and returns
control to the keyboard.

RUN
RUN [line-number [,statement-number]]
Resolves and initiates execution of the user’s program.

Special Function Key

Special Function Key

Provides access from the keyboard to program subroutines or text entry definitions, and edit mode
commands.

TRACE
TRACE [OFF]
Produces a trace of execution of a program.

45

46
DISK STATEMENTS AND COMMANDS
$FORMAT DISK

file #
$FORMAT DISK platter{disk-address}
Formats given disk platter.

Ccopy
file#, [file#,]
COPY platter | addr, | [[(start,] end)] TO platter |addr, | [(sector)]
Where:
start = The address of the first sector to be copied.
end = The address of the last sector to be copied.
sector = The starting sector address on the destination platter.

Copies information from one platter to another.

DISK STATEMENTS AND COMMANDS
DATALOAD BA

file#,
DATALOAD BA platter address,] (sectorl, [var]l}alpha-array
Where:
sector = Exp or alpha-var to specify the sector address of record to be read.
var = Return var which is set to the address of the next sequential sector.

Used to load one sector of unformatted data from the disk.

DATALOAD DA

file#,
DATALOAD DA platter addr,] (sector[,[var]])arg-list
Where:
sector = Exp or alpha-var to specify starting sector address of record to be loaded.
var = Return var set to the address of the next available sector.

st = ver , f var
arg-list =9 array array (| ...

Reads one or more logical records from disk.
47

48

DISK STATEMENTS AND COMMANDS

DATALOAD DC
DATALOAD DC [file#,] arg-list
Where:

list = var var
arg-lis array array

Reads records from a cataloged disk file and assigns vals read to arg-list.

DATALOAD DC OPEN

file-name
DATALOAD DC OPEN platter [file#] | TEMP/ Istart, end
Where:
TEMP = A temporary work file which is to be reopened.
stat = Exp whose truncated val is the start sector address of TEMP.
end = Exp whose truncated val is the end sector address of TEMP.

Used to open previously cataloged files.

DISK STATEMENTS AND COMMANDS
DATASAVE BA

file#, lit
DATASAVE BA platter [$] |addr,] (sectorl,[varl]) {alpha-var}
Where:
sector = Exp or alpha var whose truncated val specifies the sector address at which the
record is to be saved.
var = Return var set to the address of the next sequential sector.
$ = Perform verification test.

Used to save data onto disk with no control bytes.

49

50

DISK STATEMENTS AND COMMANDS
DATASAVE DA

file#, END
DATASAVE DA platter [$] |addr,| (sectorl[varl]) | arg-list
Where:
sector = Exp or alpha var to specify the starting sector address of the record to be saved.
var = Return var which is set to the address of the next available sector.
$ = Perform verification test.
var var
ra-list = lit . lit
arg-list = 9 exp exp
array array

Used to save data or trailer record {(END) onto disk in Absolute Sector Addressing Mode.

DISK STATEMENTS AND COMMANDS
DATASAVE DC

END
DATASAVE DC [$] [file #,] | arg-list

Where:
var var
arg-list = fit it
exp exp
array array
END = Write a data trailer (eof) record.
$ = Perform verification test.

Writes one logical record to disk.

DATASAVE DC CLOSE

[file#]
DATASAVE DC CLOSE | ALL
Where:

ALL = Ciose all currently open files.
Closes cataloged data files.

51

52

DISK STATEMENTS AND COMMANDS
DATASAVE DC OPEN

(oid-name) new-name
DATASAVE DC OPEN platter [$][file#,] < \ space
TEMP[,] start, end

Where:
old = Name of existing scratched program or data file cataloged on disk platter.
space = Exp with number of sectors to be reserved for new file.
TEMP = A temporary work file to be established.
start = Exp whose truncated val is the starting sector address of TEMP.
end = Exp whose truncated val is the ending sector address of TEMP.
$ = Perform verification test.

Reserves space for cataloged files in the Catalog Area (CA) or for temporary work files outside the
CA, and enters system information in Catalog Index. Also used to reuse CA space occupied by
scratched files.

DISK STATEMENTS AND COMMANDS

DBACKSPACE
. BEG
DBACKSPACE f{file#,] { exprlS]
Where:
BEG = Go to beginning of file.
expr = Exp truncated to equal number of records or sectors to be backspaced.
S = Backspace absolute number of sectors.
Used to backspace over logical records or sectors.
DSKIP
. END
DSKIP [fl|e #,] {expr[S]}
Where:
END = Skip to current eof.
expr = Exp truncated to equal number of records or sectors to be skipped.
S = Absolute number of sectors to be skipped.

Used to skip over logical records or sectors.
53

DISK STATEMENTS AND COMMANDS

LIMITS

Form 1: LIMITS platter [file#,] name, start, end, used [,status]
Form 2: LIMITS platter [file#,] start, end, current

Where:
name = File name.
start = Num var to receive the starting sector address.
end = Num var to receive the ending sector address.
used = Num var to receive the number of sectors used by the file.
current = Num var to receive the current sector address.
status = Num var to receive val indicating the status of the file.

Obtains the beginning, ending sector address, and current sector address or number of sectors
used, and determines file status for a cataloged file (Form 1) or for a currently open file (Form 2).

DISK STATEMENTS AND COMMANDS

LIST DC
file#]
LIST[S][title]DC platter | addr
Where:
S = Indicates the Disk Catalog Index is to be listed in steps.

. lit-str
tite = {alpha-var}
Displays or prints Catalog Index.

LOAD (Command)

[file#,]
LOAD [DC] platter | addr,] file name

Loads programs or program segments from disk.

54

55

56
DISK STATEMENTS AND COMMANDS
LOAD (Statement)

file#,] file name lline-1][,lline-2]1[BEG begin]
LOADIDClplatter | addr <exp>alpha-var
Where:
exp = Number of files to be loaded from disk.
alpha = Names of the files to be loaded. Names are 8 chars (padded with trailing spaces if
necessary), stored sequentially in the alpha-var. The alpha-var must be a common
var.
line 1 = Firstline to be deleted from the program currently in memory.
line 2 = Last line to be deleted.
begin = Line number of the program where execution is to begin.

Loads a program or program segment from disk and executes it.

DISK STATEMENTS AND COMMANDS
LOAD DA (Command)

file#,] (sector, [var]])
LOAD DA platter |addr,

Where:
sector = Exp or alpha-var which has address of the program header record and specifies
the starting sector address of program to be loaded.
var = Return var set to the address of the next available sector.

Loads programs or program segments from disk in Absolute Sector Addressing mode.

57

58
DISK STATEMENTS AND COMMANDS
LOAD DA (Statement)

file#,
LOAD DA platter addr,] (sector[,[var]])[line-11[,lline-2]1[BEG begin]
Where:

sector = Exp or alpha-var which has the address of the program header record and
specifies the starting sector address of the program to be loaded.

line-1 = First line to be deleted from program currently in memory before loading new
program. After loading, execution continues automatically starting at this line-
number unless a “begin’’ parm is specified. An error results if there is no line with
this number in the new program (and ‘’begin” is not specified).

line-2 = The number of the last text line to be deleted from the program currently in
memory.

begin = The line-number of the program where execution is to begin.

var = Return var set to address of the next available sector. Must be common.

Loads a program from a specified location on disk.

DISK STATEMENTS AND COMMANDS
LOAD RUN {Command)

file#,
LOAD RUN [platter] disk-addr,] [file-name]
Where:
F = The default platter.
name = Cataloged program file. The default is “START".

Loads a program from disk and executes it.

MOVE

Form 1: file#,] file#,]
MOVE platter| addr,| TO platter |addr,

Copies all active files to specified platter.

Form 2: file#,] addr,] [space]

MOVE platter |addr,] name TO platter |file#, name
Where:

space = Extra sectors to be reserved.

Copies one file to specified platter.
59

DISK STATEMENTS AND COMMANDS

MOVE END
file #]= exp
MOVE END platter | disk-address

Used to increase or decrease the size of the Catalog Area on a platter.

SAVE

[< s> file#,] [space [P]
SAVE[DC] |<SR>] platter [$] |addr, old 1] new I[start][,[end]]
Where:

<S> = Unnecessary spaces will be deleted.

<SR> = Both spaces and remarks will be deleted.

space = Extra sectors to reserve.

old = The name of a currently scratched file to be overwritten.

! = Protect (scramble) the file.

P = Set the protection bit on the file.

new = The name of the program.

start = The first line of program text to be saved.

end = The last line of program text to be saved.

$ = Performs verification test.

Causes a program or portion thereof to be stored on disk.

DISK STATEMENTS AND COMMANDS

SAVE DA

[<s> file#,][!]
SAVE DA |<SR>] nplatter [$] [addr,]IP] (sector[[varll)start][,[end]]

Where:

<S> = Delete unnecessary spaces.

<SR> = Delete spaces and REMs.

! = Protect (scramble).

P = Set the protection bit.

sector = Starting sector address of the program to be saved.

var = Return var which is set to the address of the next available sector.
start = The number of the first program line to be saved.

end = The number of the last program line to be saved.

$ = Performs verification test.

Used to save programs on disk beginning at a specified location.

60

61

62
DISK STATEMENTS AND COMMANDS

SCRATCH
file#,]
SCRATCH platter [addr,] name [,namel...
Where:
name = The file to be scratched from the catalog.

Sets status of named files to be scratched.

SCRATCH DISK

file#,
SCRATCH DISK platter addr,] [LS=exp-1,] END=exp-2
Where:
LS = The number of sectors for the Catalog Index.
exp-1 = Exp from 1 to 255. If the “LS" parm is not included, default is 24 sectors.
END = The last (highest) sector address in the Catalog Area.
exp-2 = Exp whose truncated val must be less than or equal to the last (highest) sector

address on the disk.
Initializes a disk platter, reserving space for the Catalog Index and Catalog Area.

DISK STATEMENTS AND COMMANDS

VERIFY
file#,
VERIFY platter |addr,] [(start, end)][num]
Where:
start = Address of the first sector to be verified.
end = Address of the last sector to be verified.
num = Num var which receives the address +1 of the first sector that did not verify

(equal to zero if no errors).
Reads and checks all sectors.

63

BASIC-2 ERROR CODES (SUMMARY)
Miscellaneous Errors

AO1 Memory Overflow (Text < —> Variable Table}
A02 Memory Overflow (Text < —> Value Stack)
A03 Memory Overflow (LISTDC, MOVE, COPY)
AO4 Stack Overflow (Operator Stack)

AO05 Program Line Too Long

AO6 Program Protected

AO7 lllegal Immediate Mode Statement

A0O8 Statement Not Legal Here

AO9 Program Not Resolved

Syntax Errors

S10 Missing Left Parenthesis
S11 Missing Right Parenthesis
S12 Missing Equal Sign

S$13 Missing Comma

S14 Missing Asterisk

S15 Missing > Character
S16 Missing Letter

S17 Missing Hex Digit

BASIC-2 ERROR CODES (SUMMARY)

S18 Missing Relational Operator
S19 Missing Required Word

S20 Expected End of Statement

S21 Missing Line-Number

S22 lliegal PLOT Argument

S$23 Invalid Literal String

S24 lllegal Expression or Missing Variable
S25 Missing Numeric-Scalar-Variable
S26 Missing Array-Variable

S27 Missing Numeric-Array

§28 Missing Alpha-Array

S$29 Missing Alpha-Variable

Program Errors

P32 Start > End

P33 Line-Number Conflict

P34 lllegal Value

P35 No Program in Memory

P36 Undefined Line-Number or CONTINUE lllegal
P37 Undefined Marked Subroutine

P38 Undefined FN Function

BASIC-2 ERROR CODES (SUMMARY)

P39
P40
P41

P42
P43
P44
P45
P46
P47
P48
P49
P50
P51

P52
P53
P54
P55
P56
P57
P58
P59

FN’s Nested Too Deep

No Corresponding FOR for NEXT Statemem
RETURN Without GOSUB

llegal Image

lllegal Matrix Operand

Matrix Not Square

Operand Dimensions Not Compatible
liegal Microcommand

Missing Buffer Variable

llegal Device Specification (Recoverable)
Interrupt Table Full

lllegal Array Dimensions or Variable Length
Variable or Value Too Short

Variable or Value Too Long

Noncommon Variables Already Defined
Common Variable Required

Undefined Variable (Program Not Resolved)
lllegal Subscripts

lilegal STR Arguments

llegal Field/Delimiter Specification

llegal Redimension

RECOVERABLE ERRORS
Computational Errors

Cc60
cé1
C62
C63
C64
C65
Cé66
c67
Cc68
C69

Underflow

Overflow

Division by Zero

Zero Divided by Zero or Zero | Zero
Zero Raised to Negative Power

Negative Number Raised to Noninteger Power

Square Root of Negative Value
LOG of Zero

LOG of Negative Value
Argument Too Large

Execution Errors

X70
X71
X72
X73
X74
X75
X76
X77

Insufficient Data

Value Exceeds Format
Singular Matrix

Ilegal INPUT Data

Wrong Variable Type
llegal Number

Buffer Exceeded

Invalid Partition Reference

66

67

RECOVERABLE ERRORS
Disk Errors

D80

D81

D82
D83
D84
D85
D86
D87
D88
D89

File Not Open

File Full

File Not in Catalog

File Already Cataloged

File Not Scratched

Index Full

Catalog End Error

No End-of-File

Wrong Record Type

Sector Address Beyond End-of-File

1/0 Errors

190
191
192
193
194
195
196
197
198
199

Disk Hardware Error

Disk Hardware Error

Timeout Error

Format Error

Format Key Engaged

Device Error

Data Error

Longitudinal Redundancy Check Error

lilegal Sector Address or Platter Not Mounted
Read-After-Write Error

NOTES

68

NOTES

i
i
+
4

. Tel.|6171 459-5000, TWX 710-343-6769, Telex 94- ?421"

i
e
g
L .““
A Far
2 g
TRt
& i
Ty
gy
L T
o R

'WANG)

WANG LABORATORIES, INC. '
One Industrial Avenue, Lowell, Massachusetts 01851

This document was set on e Wang 5ystem 48 Typesetier -

Printed in LS A T00-5292 11-3_13_,4_!'?1__

	Cover
	Table of Contents
	Numeric Functions
	Alpha Functions and Literals
	Alpha Operators
	Statements and Commands
	Commands and Keys
	Disk Statements and Commands
	BASIC-2 Error Codes (Summary)
	Recoverable Errors

