" IDEAS

(Inquiry Data Entry
T Access System)
| ‘User Manual

L]

IDEAS
(Inquiry Data Entry
Access System)
User Manual

® Wang Laboratorles, inc. 1980

LABORATORIES, INC.

(u. N ANG) LOWELL, MASSACHUSETTS 01861, TEL. (817) 469-8000, TWX 710 343-6769, TELEX 04-7421

ok

@ CHAPTER 1

@f&

1'1
1.2

1.3

1'1‘

CHAPTER 2

CHAPTER 3

3.1

3.2

3.3

TABLE OF CONTENTS

OVERVIEW

Introduction « ¢ ¢ ¢« o ¢ ¢ 4 ¢ o o o 0 o o o o o o
Functional OvervieWw .« « o o ¢ o ¢ o o o o o o o o
l.2.1 File Management . . ¢ ¢« ¢ ¢ ¢ ¢ o ¢ o o o &
1.2.2 Data File Utilities .« « o« o o ¢ o ¢ o o o o
1.2.3 Application Initialization ("START")
Program Generation =« « ¢ ¢ o o o s o o o

1.2.4 Application Menu Program Utility . « « « . &
1.2.5 Screen Mask Utilities ¢ ¢ ¢ o o o ¢ o o o &
1.2.6 Data Entry/Inquiry/Update Program Generation
1.2.7 Report/Form Printing Utilities . « « ¢« « « &
1.2.8 System Resident Macros « « « « o o o o o o @
Start-up Procedures « « o« o ¢ o o o o o ¢ o o o o
1.3.1 Storage Considerations « « ¢« ¢ ¢ ¢ ¢ o ¢ o &
1.3.2 The IDEAS Diskettes .« o ¢« ¢ ¢ ¢ ¢ ¢ o o o
103'3IDMOVEouo-ooo-oooooooooo
The Master EXample « o« o « o o o o ¢ o o o o o o o

DAILY SYSTEM INITIALIZATION

loading IDEAS « ¢ o o ¢ o o o o ¢ s o o o o o o &
The System Utilities Disk Address Selection Module
Overview of the Application Device Selection Module
2.3.1 The Application Device Selection Module . .
System Date Module Operating Instructions

DATA FILE UTILITIES

Overview of the Data File Utilities .« . ¢« « ¢ «
3.1.1 New Data File Creation - Overview . . « « &

3.1.2 Existing Data File Revision/Reinitialization

- 0verview . ¢ ¢ ¢ ¢ ¢ o o o o o o s o

1.3 Data File Documentation - Overview . . « . .

rimary Data File Creation Instructions
2.1 Utility Entry and File Name Specification .

2.2 Primary Address/File Type Selection Screen .

.2.3 Data Record Field Definition Screen

.2.4 Key Field Selection Screen . « « « « o o o« &

2.5 Data File Performance Option Selection Screen

2.6 Data File Initialization Module . « « o« o« &

ternate Key File Creation Instructions

3.1 Utility Entry and Alternate Key File

.3

.3

.3

3.

Alternate Key File Address/Type Specification

2

3 Key Field Specification for Alternate Key Files
4 Key File Performance Option Selection Screen . .
5 Alternate Key File Initialization . « « ¢« ¢« «

Name Specification .« « ¢ ¢ ¢ ¢ ¢ o o ¢ o o @

e o o o

owwoONOoONMITUMITUI N &= & sFw -

[

11
11
12
12
12

14
14

14
15
15
15
16
17
19
20
23
24

24
24
25
25
26

CHAPTER

CHAPTER

CHAPTER

CHAPTER

3.4

3.5

4.1

5.1

(o) e) (o))
L]

7.1

T.2

Data File Revision/Reinitialization Instructions
3.4.1 Revision of Address/Type Parameters . « ¢« « o o o o @
3.4.2 Revision of Fields in Data Records

(Primary FilesS ONlY) « ¢ ¢ o ¢ o o o o o o o s o o
3.4.3 Revision of Key Field Selections « « o « o « ¢ o o o &
3.4.4 File Performance Option Revision . « « ¢ o« o« ¢« ¢ o « &
3.4.5 Initializing Revised FileS ¢« o ¢« o ¢ o o o o « o o o &
Data File Documentation Instructions « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o &
3.5.1 Data File Documentation -~ Screen One . « « « o o 0 o «
3.5.2 Editing of pata File Parameters During Documentation .

APPLICATION INITIALIZATION ("START" MODULE) PROGRAM GENERATION

Overview of the -Application Initialization

Program Generation Utility . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o & &
4.1.1 The Application Initialization Program
' Generation Utility .« & ¢ ¢ ¢ o ¢ o o o o o o o o

MENU PROGRAM UTILITY

Overview of the Menu Program Utility . « « ¢ ¢ « o o ¢ o o @
5.1.1 The Menu Program Utility-

SCREEN MASK UTILITIES « o ¢ o o o o o o o o o o o o o « o 4

Overview of the Screen Mask Utilities . ¢« ¢« ¢ ¢ ¢ ¢ &« ¢ & &
Screen Mask Creation ¢ o o« o o o o o o o o o o o o o o o o o
6.2.1 Screen Mask Definition File Name . « « ¢ o o o o ¢ o &
6.2.2 Associated Data File Name .« ¢ « o« o o o o o o o o o o
6.2.3 Screen Mask Creation « « « ¢ « o o o o o o o o o o o o
6.2.4 Data Field Definition . « ¢ o o ¢ o o o o o o o o o @
6.2.5 Saving the Screen Mask on DisSK « « ¢ « ¢ o ¢ o o o o o
Screen Mask Documentation . « ¢« ¢ o ¢ ¢ ¢ o ¢ o ¢ o o o o o
Screen Mask Revision « ¢« o o ¢ ¢ o ¢ ¢ ¢ o o o @
Special Considerations for Inserting and Deleting

Fields When Default Fields are Used . « « ¢ o ¢ « o o o o
Special Considerations for Combining Fields from

Several Files in the Display . « o o ¢ o o ¢ o o o o o &

DATA ENTRY/INQUIRY/UPDATE PROGRAM GENERATION UTILITY

Overview of the Data Entry/Inquiry/Update

Program Generation Utility . ¢ ¢ ¢ o ¢ ¢ o o ¢ o o o o &
7.1.1 The Data Entry/Inquiry/Update Program

Generation UL1ility .« o ¢ o o o ¢ o o o o o o o o o

Overview of Data Entry/Inquiry/Update

Program Modifications « « « o o o o o o o o o ¢ o o o o o
7.2.1 Example 1: Modification of a:Type 1 Program . . « . .
T.2.2 Example 2: Modification of a Type 2 Program
7.2.3 Example 3: Modification of a Type 3 Program

26
26

27
27
27
28
28
28
29

30
30

34

36

36
37
37
37
38
38
42
43
43

43
u5

17
48

4.
50
53
61

CHAPTER 8 REPORT/FORM PRINTING UTILITIES

8.1 Overview of the Report/Form Printing Utilities . .
8.1.1 Definition of Terms used in the

Report/Form Printing Utilities . v v v ¢ o o &« « « 65

8.2 Report/Form Printing Utilities: Creation/Revision 67

8.3 Report Creation/ReVISiON « o v « v o o o o o o o o o o o o . 68

8.)4 Repor‘t MaSk Definition ° L] o .] L[] [] . L[] L[] L[] o L[] . L] L] . . 71
CHAPTER 9 IDEAS SUPPLEMENTARY DATA FILE UTILITIES

E R 0 - o2 73

9.1.1 IDEAS Supplementary Data File Utilities Menu Module . 73
9.1.2 Check F1le StAtUS v & v v 4 4 o o o o o o o o o o o o Th
9.1.3 Protect all Records in a File .« 4 « o o o o « o o =« » 15
9.1.4 Release all Records in a File . ¢ o o o o o o o o o« o 76
9.1.5 Convert IDEAS File to Wang Telecommunications

File Format . & v & ¢ 6 o v 6 o o o e o o o o o o « T7
9.1.6 Convert Wang Telecommunications File to IDEAS
File Format . & ¢« ¢ o o ¢ ¢ ¢ ¢ o o o o o o

9.2 IDEAS Supplementary Data File Utilities
Installation Procedures « . o« ¢« & o o . .
9.2.1 2200T Installation Procedures .« « o o « « o o o o o o 81

9.2.2 2200MVP and VP Installation Procedures

APPENDICES
Appendix A System Resident Macros o« « o o o ¢« « « o ¢ o o o o o o o« o » 83
Appendix B Data Record Definition FileS . o o« v ¢ ¢ o« o o o« o o o« « « o 108
Appendix C Partial Variable LiSting « « « o ¢ o ¢ o o o o« o o » o o « o 11U
Appendix D IDEAS System UtilitieS o « ¢ o o o ¢ o o o o o ¢ ¢« o o o & o 115
Appendix E IDEAS Run-Time Utilities & ¢ ¢ ¢ o o ¢ o o« o ¢ ¢ ¢ o o o o o 117
. Appendix F Prime Numbers
List of Figures
1-1 IDEAS Primary Program Selection MENU v o v v o o o o o o o o o o o 3
2-1 The System Utilities Disk Address Selection Screen . « « o o« o o 11
2=2 The Application Device Selection SCreen . o « o o o o o o o o o 12
3=1 Data File Creation - Name Specification Screen . « « o o o o o o . 15
3-2 Data File Creation - Address/File Type SCreen . « « o o o o o o o 16
3-3 Data File Creation - Data Record Definition Screen . « « « o o o . 17
3-4 Data File Definition - Key Field Selection Screen . . « &« &« ¢« « . 19
3-5 Data File Creation - File Performance Option Screen . . « « o o 20
3-6 Data File Creation - File Initialization Screen . . « « o o o o & 23
3-7 Data File Documentation - First Sereen « « « « o o o o o o o o o o 29
4.1 First "START" Program Creation/Revision Screen . « « « o o o o o o 31
4.2 Second "START" Program Creation/Revision Screen . « o « o o o o & 31
5-1 The Menu Program Utility Screen . ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o 34
5=2 Menu Program Utility Documentation on MENUOOO2 ¢ « ¢ o o o o o o o 35
6-1 Inquiry Screen Mask Created with Mask Editor « e e o o 38
6-2 Field Parameter Screen for First Field ("Discount Amount")

in Inquiry Screen Mask o« o ¢« o o o ¢ o o o o o o o o o o

(o]

=

(o))
!

= o Ul

O33N
L L
N = Zwh

L]

Screen Field Documentation Showing Default Fields
Before Field Insertion .
Screen Field Documentation Showing Default Fields
After Field Insertion
Work Buffer with Two Records

The Data Entry/Inquiry/Update Program Generation
INQPRO62 Data Entry Program Creation Screen
INVOPROG Data Entry Program Creation Screen
WHRSPROG Data Entry Program Creation Screen
The Report Program Module Screens
The Herman Melville Co. Warehouse Report . .

L]

Screen

L]

4y

4y
45
48
50
54
61
68
75

CHAPTER 1
OVERVIEW

1.1 INTRODUCTION

IDEAS (Inquiry Data Entry Access System) is a program development tool
designed to facilitate the creation of data entry packages and reports with a
minimum amount of programming effort. IDEAS can be used to create and
maintain data files, generate sophisticated screen formats, generate menus
with or without password protection, solicit and validate operator-entered
data, and produce complex reports. Utilization of IDEAS can greatly reduce
the programming effort required to produce versatile and comprehensive systems.

IDEAS may be used for different purposes, depending upon the amount of
technical knowledge possessed by the user. For the user with some data
processing knowledge and a slight familiarity with the concepts of data files,
simple applications can be developed and run as produced by IDEAS =-- no
additional user programming is necessary. For the user with some BASIC
programming skills, an understanding of data files, disk I/O and storage, and
some knowledge of system design, IDEAS may be used to oreate skeleton
application programs which can be easily modified through the use of the
system resident macros. Modification is not difficult because the BASIC code
generated by IDEAS is modularized to facilitate use of the maoros. IDEAS is
designed, however, primarily for the experienced applications programmer or
software vendor, The skeleton applications programs generated by IDEAS
provides the experienced user with a solid base which can be easily developed
into a comprehensive and sophisticated system of application programs through
the use of the system resident macros, and additional BASIC programming. This
manual primarily addresses the concerns of experienced users and users with
some programming experience.

In order to benefit fully from this manual, the following should be read
before proceeding: Wang BASIC-2 Disk Reference Manual, Chapters 1 and 2,
which discuss accessing a disk drive and the disk catalog; Wang BASIC-2
Language Reference Manual, Chapter 7, which discusses device addresses; the
appropriate introductory manual; and the appropriate printer manual.

IDEAS can be used to develop simple applications. However, IDEAS is not
designed to generate all or even most applications without programmer
intervention. Most applications will require some modification, specifically
use of the system resident macros. Complex application systems generally
require additional user programming as well, IDEAS should be viewed primarily
as a powerful tool which simplifies and expedites programming, and not as a
system whioch produces complete applications programs.

1.2 FUNCTIONAL OVERVIEW

IDEAS consists of two functional parts. The first is the IDEAS System ~ﬁm§
Utilities. The system utilities are used to create data files, screen masks,
menus, data entry programs, reports, and START modules. The second part is a
set of application files (program and data files) needed to run IDEAS- -
generated systems. These application files must reside on a disk in the
system when an IDEAS-based application is run.

The system utilities are used to create skeleton or simple stand-alone »
application systems. The user should, before sitting down in front of the
terminal, decide what is required of the application to be developed. Fields
should be determined, as well as the primary and alternate keys. Since the
present version of IDEAS does not have a SORT, special care should be given to]
the selection of alternate keys. Information can be accessed from the records
in different ways using different alternate keys. The user should also decide

such things as:

Are single or multiple volume files to be used?

What type of primary key is most desirable?

What types of alternate keys are most desirable?

What kinds of reports are needed? B

Should the password protection option be used on selected
menus? (Or on all menus?) '

How should the data files be organized? Would one large data
file be more efficient, or would it be better.to have several
smaller related data files?

W N B He

To appreciate the impact of the above decisions, it is strongly recommended éT%
that the user read this manual in its entirety prior to beginning his or her
first application.

Record lengths should be determined before definition. Each data file
may contain up to 128 fields, and each field may be up to 64 bytes long.
However, the total record length may not exceed 1008 bytes. The system may
allow a record to be defined as more than 1008 bytes; it is assumed that the
user is familiar with good data processing procedures, and will plan
accordingly. Tt is recommended that the system utilities be used in the

following order:

1. Data File Utilities
2. Application Initialization ("START") Program Generation

3. Application Menu Program Utilities

4., Screen Mask Utilities
5. Data Entry/Inquiry/Update Program Generation b
6. Report/Form Printing Utilities

| @
)

IDEAS is a menu-driven system, which employs a hierarchy of menus. All
functions associated with FN'05 to FN'll remain constant throughout all
menus. In other words, it is not necessary to return to the main menu to
. access other system utilities. IDEAS is screen-oriented in that the user is
required to enter information, or select options from screens throughout the
system. The primary program selection menu is pictured below. All other
IDEAS menus follow this format, and are variations of this menu. ‘m§

IDEAS System Utilities - Primary program selection menu module

'00 - System date module

------------ Other IDEAS System Utilities —eemeeceeeen
'05 - Data file utilities
'06 - Screen mask utilities
'07 - Report / Form printing utilities
'08 - Application initialization ("START") program generation
'09 - Application menu program utilities

'l0 - Data entry / inquiry / upaate program generation
'11 - Applicaticn module execution

'3l - Application peripheral device address selection module

Please touch the special function key corresponding to the desireda operation

Figure 1-1. IDEAS Primary Program Selection Menu.

All of the fields on the system utilities screens terminate (cursor
moves to next field) automatically when full. If the EXEC key is pressed to
terminate a screen which is full, the system assumes the EXEC pertains to the
next field, which is then terminated. This automatic termination of full
fields is incorporated into IDEAS to increase programmer productivity by
decreasing the necessary number of keystrokes. It may take some getting used
to, but in the long run is much more efficient. Automatic termination of full

fields is available through the screen mask utilities for all IDEAS-based
systems.

l.2.1 File~Mana§ement

As part of its run time components, IDEAS provides its own access
method, called HIKAM (Hashed 1Index Keyed Access Method). HIKAM is a
comprehensive file management system which combines hashing and indexing
access techniques in a way that handles insertions and deletions easily,
optimizes data storage and retrieval, minimizes overflow situations, and is
significantly faster than indexing. HIKAM performs well in both sequential

and random access environments. All disk I/0, and storage is handled
automatically by HIKAM.

IDEAS supports both single and multiple volume data files, thus the
maximum file size on an IDEAS-developed system is virtually unlimited. A
logical file may span up to eight platters on line. The maximum file size is
therefore limited only by available memory and disk space., An evaluation of
available memory and disk space should be made before deciding whether a
multiple or single volume file is desired. Systems vary, and it is not
difficult to modify a standard IDEAS-based application system for single or

multiple volume files, depending upon the individual requirements of different
2200 configurations.

Each data file must have one primary key; in addition, up to sixteen
alternate keys may be associated with each primary data files. Primary keys
are stored in the data file itself, while alternate keys are placed in
separate filec. These alternate key files contain the keys and pointers
necessary to manipulate the data in the primary data file for reporting, data
entry, inquiry, or medification. Duplicate primary and alternate keys are
allowed. Two types of duplicate alternate keys are allowed -- one which
optimizes sequential processing, and one which increases efficiency in a
random access environment. A1l key file maintenance is performed
automatically by the system.

1.2.2 Data File Utilities

Data file definitions may be created, revised, .and documented through
the Data File Utilities. The data file definitions contain the attributes of
each field in the data file. FEach data file must have one primary key
associated with it. Up tc sixteen alternate key files may be associated with
each primary data file., Primary data files and alternate key files are
created on disk after the data file definition is completed. To build a file
on disk, the user must use the data file utilities to initialize the file.

All fields created with the IDEAS data file utilities are given a unique
name and all subsequent references use the field name rather than a variable
name., For example, ¥CUSTNO¥ would be used in the IDEAS utilities rather than
"A$(1)", The BASIC code generated by IDEAS uses variable names. The system
resident macros offer subroutines for use with field names and variable names.

Several options are available to the user when creating data file
definitions which allow for the most efficient method of disk storage in both
random and sequential access modes. Once again, planning is important, since
the choices made in these options have a definite effect on file performance,
memory requirements, and disk storage allocation. The system automatically
computes all relevant information and displays it, allowing the user to select
the options which will maximize efficiency in specific applications. When
designing a system, the type of processing (random or sequential) most likely
to be used in data manipulation should be determined for each primary and
alternate key. Then, when the data file utilities are used to create record
definitions for primary and alternate key files, the user may intelligently
chose the options best suited for his or her individual system.

1.2.3 Application Initialization ("START®) Program-Generation

"START" modules for IDEAS-based sysetems are created from user inputs in

the Application Initialization Program Generation Module. The created START

module initializes system addresses and operating parameters, and opens user-
specified files. It then loads a user specified program which is typically a
"Main Menu" which controls the flow of the application.

1.2.4 Application Menu Program Utility

Menu displays can be dquickly created through the Application Menu
Program Utilities. Up to thirteen programs or sub-menus can be called per
menu. A password security system is available through the menu utilities.
Passwords may be assigned to menus during menu creation. Menus with assigned
passwords are displayed, but will not allow loading of subsequent programs
until the correct password is supplied. All functions within a system

y

requiring security should be accessed through menus with password protection.
In this way, unauthorized personnel may not tamper with certain data files,
nor print out reports containing econfidential information.

1.2.5 Screen Mask Utilities

The Screen Mask Utilities provide the user with an easy-to-use tool for
developing the screens necessary for interactive application systems. All the
BASIC code necessary to save and reproduce a user-defined screen display
format is generated automatically by these utilities, One data file may be
specified as a "companion" file for each screen. This companion file is then
associated with the creation of the screen display, and certain important
field parameters are automatically entered by the system. Other files may be
accessed by the screen as well; however, the above mentioned parameters must
be entered by the user. The system resident macros are used when accessing
information from a data file not specified as a companion file. Information
accessed from non-companion files can be caused to appear automatically on
the screen, both to reduce data entry effort, and as a means of verification.
For example, assume that a payroll system, with employee number as the primary
key, 1s to be developed using IDEAS. The user may choose to have the operator
enter an employee number to call certain information, such as the employee's
name and address, from another data file. This technique saves the operator
time (this information need not be typed in), and allows the operator to check
the information to be entered with the information on the screen.

1.2.6 Data Entry/Inquiry/Update Program Generation

Data entry, inquiry, and update programs are generated through the Data
Entry/Inquiry/Update Module. These data entry programs allow data
manipulation on files created through the Data File Utilities. Programs
generated are based on the type of data entry program desired, and the screen
and file definitions. Eight different types of data entry programs cam be
generated, each with a different set of data entry operations. The BASIC code
generated by this utility is highly modularized to facilitate additional user
programming and the use of the system resident macros. To create a data entry
program, the user need only enter the name of the program to be created, the
screen format and data file to be used, and specify the type of data entry
program desired.

l.2.7 Regort/?orm»Printing Utilities

The report writer provided by IDEAS allows the user to create report
definition files which define the content and format of reports. Each report
may access data from up to four data files. The report definition contains
specifications for both report format and content. The format specifications
include the definition of of the report title and page header, as well as
field sequence and spacing between fields. The content specifications allows
the designation of new fields for reporting purposes, and includes which data
file fields are to be printed, the "sequence" file to be used for the sort
order, and whether to set control breaks, and total numeric fields. Since the
report definition file is permanently saved, it may be reviewed and revised as
reporting needs change.

1.2.8 System Resident Macros

All application programs generated by IDEAS use a subset of the system-
resident macros. These macros are a set of 59 powerful subroutine calls
designed to minimize programming effort in all phases of IDEAS-developed
applications. For example, all file access, key file maintenance, data
packing and unpacking, and actual disk operations is performed automatically
through the use of one of two system resident macros. For more information on
the system resident macros, refer to Appendix A, System Resident Macros.

1.3 START-UP PROCEDURES

IDEAS is delivered on three diskettes: two IDEAS system utilities
diskette (one 2270A compatible, the other 2270 compatible), and the IDEAS
application utilities diskette. The system utilities diskette contains all
the development programs needed to create systems. The system utilities
diskette also contains a transfer program, ID-MOVE, to transfer all programs
on the diskette to hard disks. ID-MOVE is not: 2200T compatible. The IDEAS
application utilities diskette contains all. the run-time programs needed to
run an application and supplementary data file utilities which allow the user
to check file status (percent full, etc.), release or protect all records in a
file, reconstruct the key files, and convert to or from Wang standard
telecommunications file format. ID-MOVE can be used with the application
diskette. A backup of both IDEAS diskettes should be made immediately upon
receipt. ,

1.3.1 Hardware Requirements

IDEAS may be used with a 2200T, VP, or MVP system. The minimum memory,
disk, and CRT requirements are specified in the chart below:

Category Requirement
CRT an 80"X2U" CRT screen is required to run IDEAS
Disk minimally, a dual diskette system is required to run IDEAS. A

model 2270A-2 Diskette Drive is strongly recommended.

Memory 2200T -- 32K memory is required to run IDEAS.
2200VP -- 32K memory is required to run IDEAS.

2200MVP -- 32K memory. A 30K partition is required to run the
development utilities, a 17.5K global partition is
required to run the run-time utilities (individual
terminals may be run on less memory) .

1.3.2 Storage Considerations

The programmer should determine the disk configuration before starting.
If the developed application is to be run from diskette, it is important to
store all generated programs on the IDEAS application utilities diskette.
(The system utilities diskette does not have room to store any additional
files.) Use of a floppy diskette to store an application places an immediate
restriction on the size of the application -- the floppy diskette does not
provide room to store large systems. If a hard disk is available, the
application utilities should be moved to the disk. If possible, the system
utilities should also reside on the hard disk as this substantially increases
the speed of IDEAS.

An IDEAS-based system makes roughly twice as many entries to a disk
catalog index than do non-IDEAS systems. This is because, for most data or
program files generated, IDEAS creates a companion file containing IDEAS
system control information called a "definition" file. Thus, most IDEAS
utilities write two index entries to the catalog for each program or data file
created. The following chart 1lists the types of files created by each
utility, the number of sectors contained within files, and the number of

Type of File Definition File Program or Data File # of Index Entries
START N sector N sector program 2

Menu 14 sector 4 sector program 2 each menu

Data Entry None N sector program 1 each data

Screen None 18 sector data 1 each screen

Primary Data 9 sector ¥N sector data 2 each data fil
File

Alternate Key 3 sector *N sector data 2 each alternate
File key file

Report 36 sector 4 sector program 2 each report

The definition files are automatically named by IDEAS. The name provided is a
lowercase version of the name entered in the utility. Thus, all file names
entered must have at least one uppercase letter to distinguish it from the
definiton file.

% Number of sectors used displayed during data file creation. See Chapter 3,
Section 2.2.5.

The following chart provides a partial list of the contents of each
defintion file. For more information on the definition file contents, refer
to Appendix B, Data Record Definition Files.

File Type Contents of Definition File

START The definition file contains the names of all data files to be
opened, and the device addresses to be used by the system.

Data File The definiton file contains information on the keys, character
compression, field names, and the disk address.

Report The definition file contains information 'on the report format as
specified by the user.

Menu The definition file contains the program names to the called by

The size of the disk catalog in an IDEAS-based system is an issue which
the programmer should seriously consider before beginning. If a system is
developed with insufficient catalog sectors, problems will crop up months, or
even years, after the system is up and running. ID-MOVE is provided to copy
the system and applications programs to scratched disks (with sufficient
catalogs), and to make backups from one 2270A diskette to another. A general
rule-of-thumb formula for determining the size of disk catalogs is: '

standard catalog size + application disk catalog size
+ system disk catalog size
+ 2 sectors per major data file + 10 sectors

All 2200 disk catalogs use a hashing alogrithm to store file names and
starting sectors. There are several rules pertaining to calalog size which,
if followed, optimize the speed of the catalog hashing algorithm. These are:

1. Catalog index sizes ‘which are multiples of three should be ‘avoided;
the nature ~of -the hashing algorithm makes catalogs of such sizes

extremely inefficient;

2. Even numbers should be avoided; the nature of hashing causes
clusters at even sectors.

3. When possible, prime numbers should be used for the catalog size;
the hashing algorithm works with remainders, and prime numbers yield
non-repetitive remainders. Repetitive remainders tend to produce
clustering.

1.3.3 The IDEAS Diskettes

The IDEAS run-time utilities are delivered on two diskettes, one which
is 2270 compatible, and one which is 2270A compatible. The 2270A compatible
system utility diskette contains, in addition to the development utilities,
the run-time utilities (without the supplementary data file utilities). The
2270 compatible system wutilities diskette contains only the development
utilities. The reason for the difference in the contents of the two diskettes
is a result of a difference in the amount of sectors accessible to the
diskette drives. The Model 2270 Diskette Drive cannot read files beyond
sector 1023, while the Model 2270A may read files up to sector 1232. The
development utilities plus the run-time utilities occupy space on the diskette
up to sector 1231; the programs up to sector 981 are those needed to run the
system utilities, the sectors beyond 981 are the run-time utilities. Since a
2270 diskette drive cannot read beyond sector 1023, all programs occupying
sectors 1023 - 1232 are inaccessible on a 2270 drive. On a 2270-based system,
these programs must be accessed from the application utilities diskette. Thus
the 2270A compatible system utilties diskette should not be used on a Model
2270 Diskette Drive. 1In: particular, ID-MOVE should not be 'used to ‘transfer
files from a 22704 system-diskette to a 2270 diskette.

1.3.4 ID-MOVE

The system utilities diskette contains a transfer program, ID-MOVE, to
transfer all programs on the diskette to hard disks. ID-MOVE is not 2200T
compatible. ID-MOVE can be wused with the application diskette. ID-MOQVE
selects disks 310 and B1l0 for backup from one diskette to another. If ID-MOVE
is to be used to copy the contents of the system and application utilities
diskettes to a hard disk, the appropriate output address must be substituted
for B10. ID-MOVE should-not be used to transfer files from a 22702 system
diskette to a 2270 diskette.

Before ID-MOVE can be used, the programmer must substitute the desired

output address in line 20 of the program. (A listing of ID-MOVE is provided
below.)

0010 DIM B$(32)8

0020 SELECT #1 310, #2 B1l0O

0030 FOR 1=0 TO 5

0040 DATA LOAD BA T #1, (I, J)B$()

0050 FOR J=2 TO 32 STEP 2

0060 IF VAL (B$(J)) = O THEN 90

0070 PRINT "MOVING FILE "; HEX(22); STR(B$(J),1,8):
HEX(2200)

0080 MOVE T #1, B$(J) TO T #2

0090 NEXT J: NEXT I

To run ID-MOVE, enter "RUN ID-MOVE". A message will appear on the screen
which informs the programmer which file is being moved at any given time.

If IDEAS is to be used on a 2200T, ID-MOVE cannot be used because it is
written in BASIC-2, which is not entirely T-compatible. The programmer should
read the sections on MOVE and COPY in the Wang BASIC: Language Disk Memory
Reference Manual before backing up the IDEAS diskettes. Either MOVE or COPY
may be used to transfer IDEAS programs to hard disks.

1.4 THE MASTER EXAMPLE

An example referred to as the master example is used throughout this
manual to illustrate the discussion of IDEAS. All screens shown in the
chapters discussing the development utilities contain information used in
developing this example. This section outlines the master example in an
attempt to make the discussions throughout the manual clearer to the reader.

Let us assume that The H. Melville Company is a distributor with
warehouses in several locations and a large number of customers from a variety
of locations. Let us further assume that H. Melville desired a system which
would keep track of their products, warehouses, customers, and customer
invoices. Thus, the master example contains four primary data files, the
warehouse master file (WHRSMSTR), the product master file, (PRODMSTR), the
customer master file (CUSTMSTR), and the invoice master file (INVOMSTR).
Using IDEAS these files can be created and used in an effective system which
meets the needs of The H. Melville Company.

The chapters documenting the development utilities use this example to
illustrate all aspects of system creation. However, it is important to
realize that the planning ‘stages are perhaps the most vital factors in
creating software systems. . When trying to envision a software system which
fits the needs of a particular company or application, it is important to
obtain all information needed to produce a good system specification. IDEAS
is a program development tool which substantially decreases programming time;
it in no way plans applications. Thus, in order to utilize IDEAS to the
fullest potential, first know IDEAS and what is required of the application,
and then plan the application.

10

CHAPTER 2
DAILY SYSTEM INITIALIZATION PROCEDURES

2.1 LOADING IDEAS

To load IDEAS type in "LOAD RUN 'IDEAS'." A screen appears with the
valid disk addresses for the IDEAS Utilities displayed.

2.2 THE SYSTEM UTILITIES DISK ADDRESS SELECTION MODULE

The System Utilities Disk Address Selection Module screen is pictured
below with values entered from the master example.

I.D.E.A.S. System Utilities Disk Address Selection Module Release 1.0

Note: This module allows the selection of the disk address for the
drive containing the I.D.E.A.S. System Utility Modules. The
aisk addresses shown below represent the possible disk aadresses
that may be supported by the I.D.E.A.S. System. However, not
all of the possible addresses are available on all system
configurations, It is important that you choose only from those
aisk addresses available to you on your particular system.

Allowable disk addresses: 210 20 30 50 360 370
Bl0 B20 B=0 B50 B60 BT70
D15 D50 D51 D52 D53 DS54 D55

Ay
o
-
=

D10 D11 Dl2 Dil:
D25 D60 D61 D62 D6* D64 D65

[
o
n
=

Dz0 D21 De2 Dz
D35 D70 D71 D72 D73 D74 D75

()]
(=]
(V3]
=

D0 D3l D32 D:
[[[Please enter the I.D.E.A.S. System Utilities' aisk aadress. D20]]]
Figure 2-1. The System Utilities Disk Address
Selection Screen

If the default address shown in the bottom right corner of the screen 1is the
correct address, touch RETURN. If not, enter the appropriate disk address,
from those listed on the screeen, and then touch RETURN. If an error message
is encountered, check to see that the disk is loaded at the address entered.

11

2.3 OVERVIEW OF THE APPLICATION DEVICE SELECTION MODULE

The Application Device Selection Module screen allows the user to set
the disk addresses for each of the items listed on the screen. The addresses
set in this module will be those used in creating data files, screens, report
masks and programs, menus, "START" modules, .and data entry programs., These
addresses are the default addresses for any "START" modules generated.

2.3.1 The Application Device Selection Module

The Application Device Selection Module screen is pictured below with
values entered from the master example. These values may not be available on
the user's system. This screen will be referred to throughout the discussion
of the Application Device Selection Module.

J.D.E.A.S. System Utility - Application Device Selection Module Release 1.0
Device # 01 / 204 - Printer address (204 211 212 213 214 z15 216)
Device # 0z / D20 - Disk aadress for I.D.E.A.S. System Utilities

Device # 03 / D20 - Disk adaress for application screen or report mask files
Device # 04 / D20 Disk address for application program files

Device # 05 / D20 - Disk address for data record definition files

Device # 06 / D20 Disk aadress for application data files

Note: Application data file disk addresses below are for 2200 VP & MVP only.

Device

07 / 350 - Disk Device # 10 / 350 - Disk Device # 13 / 350 - Disk
Device # 08 / =50 - Disk Device # 11 / 350 - Disk Device # 14 / 350 - Disk
Device # 06 / 350 - Disk Device # 12 / %50 - Disk Device # 15 / 350 - Disk

Allowable disk addresses: (Not all addresses may be available on all systems.)
(2200 T, VP, & MVP) 3210 =20 =30 350 360 370
‘B10 . B20 B=0 B50 B60 B70" :
(2200 VP & MVP only) D10 D11 D12 D1: D14 D15 D50 D51 D52 D55 D54 D55
. D20 D21 D2z D2: D24 D25 D60 D61 D6z D6= D64 D65
'D30 D31 D=2 D33 D34 D35 D70 D71 D72 D73 D74 D75

EEE E E E E F F F F R R T T T b
e e N st s P T P T P P T P T T o

Touch EXEC to accept as is, or SF Key corresponding to device # to be changed. #

Figure 2-2. The Application Device Selection Screen.

If all of the addresses shown on the screen are correct, touch RETURN to
continue to the next module. If you wish to change any of the addresses
shown, touch the FUNCTION KEY corresponding to the device number address to be
changed. (The cursor moves to the first position in the address for the
specified device. Enter the desired device address (three characters are
required). DO NOT END WITH "RETURN™ AFTER KEYING IN 3 ‘CHARACTERS! This will

be construed as acceptance of all the addresses, and the next module will be
loaded.

2.4 SYSTEM DATE MODULE OPERATING INSTRUCTIONS

When the IDEAS system is loaded, there will be no date input. The
cursor appears at the beginning of the six-character date field in the center
of the screen. Enter a six-digit date in MMDDYY format.

12

If the date is valid, the system accepts it, and asks if the date is
correct. Touch RETURN to accept the date or EDIT to change the date. If the
date is invalid (Ex. 022979 - 1979 is not a leap year and February cannot have
29 days), an error message will appear on the bottom line of the screen. The
cursor will return to the date field, and the date must be input again.

If the System Date Module is selected from the primary system menu,
RETURN to accept the date, or EDIT to change the date.

NOTE:

If a valid date is not entered in the system date module,

fatal errors will occur in program and data file generation
modules later.

13

CHAPTER 3
DATA FILE UTILITIES

3.1 OVERVIEW OF THE DATA FILE UTILITIES

The IDEAS Data File Utilities are used to define, initialize and
document all primary data files and alternate key files used by the system.
They may also be used to alter parameters of these files and reinitialize them
after changes have been made. There are three separate menu selections within

the Data File Utilities: New Data File Creation Module, Existing Data File

Revision/Reinitialization Module, and Data File Documentation Module.

3.1.1 New Data File Creation - Qverview

The file creation module allows the user to specify the name of a new
primary data or alternate key file, and instruct the system as to the file's
parameters. The user is taken through the module on a screen by screen basis,
providing requested information to the system at each screen, When the record
has been described, the keys selected, and the file's construction and
location decided upon, the user may initialize the file. This initialization
procedure performs the basic setup of each data file by creating the file on
disk, constructing gross and fine index sectors and pointers to data areas
(all of which comprise a "pucket"), and creating a control file on disk which
corresponds to the data file. Once a file is initialized, it may be utilized
in other IDEAS system modules.

3.1.2 Existing Data File Revision/Reinitialization - Overview

The revision/reinitialization utilities function to help redefine a file
which was created with some errors using the creation utilities. Essentially,
these procedures display all screens seen in the creation utilities, but with
the information pertaining to the file displayed on them. At each screen, the
user has the choice of accepting the information as it appears, or of editing
the screen by stepping through each entry and changing those which are

incorrect.

It must be realized that if an initialized primary or alternate key file
is altered using these utilities, all involved files must be reinitialized.
Failure to do this will result in improper control information and probable
loss of data when subsequently entered. It should also be noted that
following the revision/reinitialization procedures properly will destroy all
data currently stored in a file. Therefore, these utilities should only be
used prior to data entry.

14

3.1.3 Data File Documentation - Overview

The data file documentation utilities provide necessary information
about the contents and structure of data files which is later used in the
creation of applications with the data file. For each specified file, three
screens appear containing information about aspects of the file. (It is
possible with the first screen to revise certain file parameters as well as
observe the documentation.) After each of these screens is viewed, the user
may optionally print out a descriptive page which combines the most valuable
information from the previous screens, including a listing of fields in the
data record in both alphabetical and positional order. Documentation 1is
available for both primary data files as well as alternate key files.

3.2 PRIMARY DATA FILE CREATION INSTRUCTIONS

This and the following sections illustrate how to operate the various
parts of the IDEAS Data File Utilities. In this section, the primary data
file containing customer records (CUSTMSTR) will be used as an example; it is
fairly typical of the primary files used in the master example. For
background information on the master example, refer to Chapter 1, Section 1.4.

3.2.1 Utility Entry and File Name Specification

The Data File Utilities menu is reached from the main IDEAS system menu
by depressing Special Function Key '05 (SF'05). The Data File Utilities menu
has three options for data files; the New Data File Creation module is reached
from this menu by depressing SF'00. :

IDEAS Data File Revision/Re-initialization Module Release 1.0

Enter file name for data file to be revised or re-initialized
FN'31 will load IDEAS Data File Utilities

File Name = CUSTMSTR

Figure 3-1. Data File Creation - Name Specification Screen.

The first screen which appears identifies the module and requests the
name of the file being created. The user must enter the file name in the
eight blocks under which the cursor is located. The file name may be from one
to eight characters in length, with the restriction that at ‘least one of the
characters be an uppercase letter. (This is necessary because the system

15

creates a companion control file with the same name as the data file, except
that all letters in the name are lowercase. The uppercase letter serves to
distinguish the data file from its control file.) If the file name is less
than eight characters, the user must enter a RETURN when the name is complete
in order to complete this entry; if the name is a full eight characters, entry
is automatically terminated on the eighth character. 1If the file name already
exists, an error message is displayed and the user has the option to give a
different file name (EDIT), revise the specified existing file (RETURN), or
abort the current procedure (SF'3l). If revision is chosen, the Data File

Revision/Reinitialization module is loaded; if the procedure is aborted, the

system returns to the Data File Utilities Menu.

In the example, the user would enter "CUSTMSTR" in the blocks. Since
this is an eight-character file name, entry is terminated and the next screen
appears.

NOTE:

The use of "IDEAS", "IDEA", "ID-%, or similar strings as a
file name or part of a file name should be avoided, since
| most system files incorporate these strings in part for
their own names.

3.2.2 Primary Address/File Type Selection Screen

When a primary file name has been specified, the subsequent screen
requests two pieces of. information; the address of the volume where it will
primarily be located and the file type. The primary volume will serve as the
sole volume if the file does not span more than one disk; in the case of
multi-volume files, the primary volume serves as the base location of the
file. The address specified must be one of those chosen as devices #6 through
#15 in the disk selection module at the beginning of system operation (refer
to Chapter 3, Section 2.), otherwise an error message will be displayed. 1In
the example, the user would enter "D20" and proceed to define the file type.

IDEAS Data File Creation/Re-initialization mogule . Release 1.0

File name = "CUSTMSTR" Disk adaress for this file = D20 File type (1-6) = 1

Associated primary file name (altcrnate key or key/data files only) = "CUSTMSTR"

Available file types: Allow Allow
Duplicate Alternate

Type Description Data record location Keys ? Keys ?

1. Primary key/aata file Data segment in file No Yes.

2. Primary key/data file Data segment in file Yes (aajacent) Yes

4. Alternate key file Type 1 or 2 data segment No No

5. Alternate key file Type 1 or 2 data segment Yes (adjacent) No

6. Alternate key file Type 1 or 2 data segment Yes (scatterea) No

Attention Touch EXEC to accept as is, EDIT to moaify ¢

Figure 3-2. Data File Creation - Address/File Type Screen.

16

-)

The file type parameter is a single digit keyed to an accompanying table
which determines whether the file is primary or alternate, and whether
alternate or duplicate keys are allowed. For primary files, there are only
two allowable types, "1" and "2". A type 1 primary file does not allow
duplicate keys within that file; a type 2 file allows duplicate keys. Both
types allow alternate key files to be created which will access primary file
information. In the example, type 1 is appropriate and would be keyed in.
The system would then respond with the message,

Touch EXEC to accept as'is, EDIT to modify #

and wait for user entry. Pressing EDIT would position the cursor under the
address field and allow a change to be made. The address may be altered by
entering a new address, or bypassed by pressing RETURN. The file type may
then be altered in the same fashion. Pressing RETURN instead of EDIT causes
the parameters to be accepted and the Record Field Definition module to be
loaded.

3.2.3 Data Record Field Definition Screen

Once file name, type, and location have been specified, the user must
enter the names, lengths, and types of all fields in the data record. Each
field name may be from one to eight characters long, and must be unique within
the file. They may be specified in any order desired, but will not
necessarily be stored in the same order as supplied. Fields are stored in the
record in the following order:

First: All numeric type, in alphabetical order, packed 2:l.
Second: All uppercase alphabetic type, in alphabetical order, packed u4:3.
Third: All "any character" type, in alphabetical order, not packed.

As naming of fields progresses, the screen displays all entered fields in
alphabetical order without regard to type. This display is for reference
purposes only. The screen also keeps a running count of the number of fields,
record length, and the number of bytes packed for both numeric and uppercase
alphabetic types.

IDEAS Data File Record Fiela Definition Module Release 1.0

ECOCCECOEEECEE S CC N EER00S0 AR CESEE NS E S UCECSCRS S REEREC2ERRE2222023832E

File name "CUSTMSTR" Disk adaress = D20

No. of fielas = 8 Length = 105 ¢ @ 2:1 = 12 ¢ @ 4:3c 16 Packed = 96
-==Fiela Namese==

ADDRESS1 '

ADDRESS2
CITY

CUSTNAM

CUSTNO

DISC$ -
STATE

2IP

Field name =z " " Length (1-64) = Type (lshum 22UC a/n 3zany a/n) =
Attention Touch EXEC to accept as is, EDIT to moaify

Figure 3-3. Data File Creation - Data Record Definition Screen.

17

Further restrictions on fields pertain to size of the record, number and
size of fields, and size of the key. A maximum record size of 1008 bytes is
permitted. While a record longer than 1008 bytes will be accepted at this
time, exceeding the maximum length will cause fatal errors at a later point.
A maximum of 128 individual fields is allowed, and additional ones will not be
accepted. Also, while individual fields are subject to a 6l-character length
restriction, special attention must be paid to those fields intended to be
used as keys. Each key may consist of a maximum three fields with a total
length of no more than 58 bytes. Therefore, the key fields must be of such a
length that together they will not exceed the maximum key length. For more
details on keys, refer to the next subsection.

NOTE:

If multiple files are to be processed during reporting, the
total byte count for all records must not exceed 1008.
Additionally, no more than 128 field names total may be
processed. For programmer-modified, multiple-file data
entry programs, the work required is considerably reduced
if the total byte count from all files to be used
concurrently is less than 1008.

Each field is entered in the following manner. The system prompts the
user to enter the field name in the bottom left corner of the screen. A
default field name is displayed and may be used if desired by pressing
RETURN. Pressing any other printing key will place that character in the
first space of the field name and replace all other positions with blocks.
For example, the first default field is "FIELDOO1l". That name may be used by
keying RETURN. In the CUSTMSTR example, however, the first field to be
entered would be the customer number, "CUSTNO". Therefore, the user would
press "C" and the other seven positions would be filled by blocks. When the
entire name CUSTNO is entered, RETURN must be keyed to proceed. (If the name
is a full eight characters long, e.g., "ADDRESS1," the program proceeds
automatically.) Name specified, the system then prompts for field length, an
integer from one to 64, In the example, for CUSTNO, a length of 5 would be
entered. Finally, the field type must be specified: "1" for numeric, "2" for
uppercase alphabetic, and "3" for any character. When the appropriate key (in
this case "1") is touched, the system prompts

EXEC=New field, EDIT=Revise, FN'09=Delete, FN'20=Exit field edit mode

and waits for user response. Keying RETURN allows another new field to be
added to the list; it is the normal choice unless the previous field was the
final one in the record. The other choices will effect certain optional
actions by IDEAS. 1In the example, fields would continue to be entered by

supplying the name, length, and type and pressing RETURN.

Touching EDIT permits a previously entered field to be redefined. When
it is keyed, the user must supply the name of the desired field and then may
alter either the field length, its type, or both as if the field was being
entered for the first time. If an entry is to be deleted, touching SF'09 will

18

2

permit the user to specify the field name to be removed, verify the action,
and delete it from the record.

Pressing SF'20 indicates the end of data field definition and causes the
system to verify the choice and load the Data File Performance Option Module.
In the example, after all fields have been entered and detailed, SF'20 would
be pressed.

3.2.4 Key Field Selection Screen

When the user has defined all fields for a record, the key must be
defined. The key is ocomposed of one, two, or three fields within the data
record. These fields need not be contiguous, but may total no more than 58
bytes in length. (Again, as in the case of record definition, the user may
specify a key that totals more than 58 bytes without system interference.
However, this will cause fatal errors later.) The screen displays all fields
in alphabetical order, and the oursor 1is positioned under the blocks
corresponding to the name of the first key field. The user would enter the
name of that field, and then enter a "+" character if that field is to be used
in ascending sort order, or a "-" character .if it is to be used in descending
sort order. The sort order characters determine in which order keys will be
placed in the fine index sectors of each bucket, thereby determining the order
in which records will be returned during a sequential scan of the file., If
the additional key fields will not be used, pressing RETURN in a blank field
will cause the aoccept/edit prompt to be displayed. This prompt is also
displayed after the entry of the sort order for the third key field. Touching
RETURN will cause the system to accept the key field selections; pressing EDIT
will position the cursor under the first field name and allow alteration of
any field name or sort parameter. To edit later entries and leave earlier
entries intact, RETURN may be pressed to step through the display until the
desired entry is reached.

IDEAS Data file creation/re-initialization moaule Release 1.0
CC3SCEECERRECCCOC R RS E RO EC B E RSB EERECECRERESOEEERCORRESRRRREDREER
File name "CUSTMSTR" Disk acaress = Dz0

Fielas which oompose key: "CUSTNO "(+) " LIGp I "() Length = §
Fiela Names: (Key FN'Z:l to oancel operation)
ADDRESS1

ADDRESSZ

CI1Y

CUSTNAM

CUSTNO

DISCS

STATE

ZI1P

Attention Touch EXEC to acoopt as is, EDIT to moaify ¢

Figure 3-4, Data File Definition - Key Field Selection Soreen.

19

In the case of the CUSTMSTR example, the field CUSTNO is the only key
field. The name CUSTNO would be typed in, followed by a RETURN (to reach the
sort order specification), and finally a "+", indicating a sequential scan of
the file will proceed from low customer number to high. RETURN would be keyed
again to display the accept/edit prompt, and a second time to exit to the
performance option.

3.2.5 Data ‘File Performance Option Selection Screen

After the data record has been defined, but before the file is
initialized, the user has the opportunity to "customize" the file. A user
must select from several options which will block the records and set wup
"puckets" according to the primary use of the file. The number of records to
be contained in the file, the number of volumes it is to span, and the number
of sectors to be allocated on each volume are also specified at this time.
This information is then used to create the data definition file which serves
as a companion to the main data file. All the described choices are indicated
by the user on one screen, which is by nature crowded. The user must
carefully note the progression of choices presented by IDEAS. For easier
comprehension, these selections will be discussed in detail in the order they
will be presented by the system.

IDEAS Data File Performance Option Selection Module Release 1.0
File Name = "CUSTMSTR" Type 1 (Primary) No. of recoras (specified) =
Record Length 105 # of vols. = 1 Opt#l = = Opt#2 = 4 ' (actual) =
Packea numeric 12 \Vol/aars 1/D20 2/ 3/ 4/ 5/ 6/ 7 8/
Packed alpha 16 Available 133

Packea length 96 Requirea 1:3

nooonunn

Key length 5 Desirea 13z
Option ¢ 1 (Recora blocking) Rec / Sec XtraFad Xtalen @Waste Time
1. Fastest access time 2/1 2 - 128 25.000 150
2. Best time/aisk compromise 2/1 32 128 25.000 150
3. Most efficient aisk use 8/3 0 96 0.000 156
Option # 2 ~=~RANDOM--- ~cccomeece SEQENTIAL-~~=eeeee- <-DISK-
File structure ins/ael rtv 1st J=K First Next Memory Sectors
adjustment option (ms) (ms) -(sec)- -(sec)- (ms) (bytes) Needed
1. Fastest random access 156 156 0.7z2 0.447 106 132 146
2 m e e e e e e - 223 156 0.218 0.168 106 33 135
e e e e~ 306 156 0.162 0.137 106 a2 123
by o c o e e e e - == 306 156 0.162 0.137 106 22 133
By e e e e e e~ 306 156 0.162 0.137 106 2z 133
be =~ = = = o e - - - - - 206 156 0.162 0.137 106 2z 133
7. Optimum sequential 306 156 0.162 0.137 106 ze 132
Attention Touch EXEC to accept as is & initialize file, EDIT to moaify ¢

Figure 3-5. Data File Creation - File Performance Option Screen.

Initially, the screen displays certain file information in its upper
left corner, and then waits at the upper right corner for the user to specify
the number of records that will be placed in this file. The number supplied
should be the maximum number the file is expected to contain. The system will
automatically calculate an expansion factor of at least 5% and no more than 9%
and display the calculation below the user-specified number. This calculation
is intended not to increase the number of records to be held in the file
(although this is possible), but rather to minimize overflow conditions when
the file reaches stated capacity. If the bucket to which the record is hashed
is full the data overflows and will be stored in the next available bucket.
This necessitates extra disk reads and possibly seeks to later obtain the
record. Overflows degrade response time and therefore are to be avoided, and
exaggeration of file size is a major factor in minimizing them. The system
will base all further file calculations on the expanded number of records.

20

<\

NOTE:

It 1is strongly recommended that the user put no more
records than the number specified into any file. Since
related alternate key files may be expanded at a different
percentage, based on key size, each may offer a differing
number of records when initialized. If there are fewer
available records in an alternate key file than in the
primary file, it will be impossible to recall any records
for which a key could not be placed in the alternate file.

For purposes of the example, a file size of 300 records is adequate for
CUSTMSTR. The user would enter 300 and key RETURN. The system calculates a
total of 315 records, including a 5% overhead, and displays the result. The
cursor would then move to the next entry area.

The user must now specify the number of disk volumes which the file is
to span. This may be any integer from one to eight, limited by the number of
available volumes on the system. (All specified volumes must be on-line any
time the file is used.) A file which spans more than one volume obviously has
the potential of being much larger than a single volume file, but there is an
additional advantage. It is possible using a multi-volume file to separate
index sectors, and therefore keys, from data sectors. If the index sectors
should be damaged for any reason, it would be possible to reconstruct that
portion of the file from the data stored elsewhere. Of course, a backup of
both index sectors and data sectors is strongly urged. The CUSTMSTR file
requires only one volume; the user would enter "1" and automatically proceed.

, The next portion of the display now provides the user with information
on record blocking and asks that a selection be made from among three
choices. Option 1 provides a blocking formula which gives the fastest access
time. Option 3 blocks for most efficient disk usage, while option 2 attempts
to compromise between the two. Sometimes two or even all three options are
the same, depending on the structure of the file. Basically, it is a choice
between blocking for a minimum number of disk accesses to read or write all
potential records in the file, which will probably cause some disk space to be
wasted; and blocking for least wasted space, which will cause some records to
span two sectors and therefore require extra disk reads to access. For each
option, the system will display the number of records and sectors per block
(R/S), the number of extra characters added to pad each record so they will
fill the allocated sectors, the record length including pads, the percentage
of wasted disk space, and the estimated time, in milliseconds, it would take
to retrieve a random record. The timing calculation is based on a
single-station 2200VP type CPU equipped with a 2260-type hard disk drive.

The choice made here should reflect the intended use of a file. A small
file, or a larger one used extensively for on-line inquiry, should probably
make use of option 1. Files which are large should probably use option 3,
since even a small percentage of wasted space in each block rapidly becomes a
problem as it is multiplied. For files which cross onto both sides of the
problem, option 2 may be the answer. In the case of the CUSTMSTR file, the
consideration is space and option 3 would be selected by pressing "3"; the
system would then automatically proceed.

21

When the blocking option is chosen, the system calculates and displays
seven file structure adjustment options. Each option is based on the number
of fine index sectors in each "bucket" in the file. Option 1 here is based on
a single fine index sector per bucket, and option 7 on the maximum number of
fine index sectors for each. The other five choices represent compromises
between the two extreme options. Since the ratio of fine index sectors to
buckets is not of immediate value to the user in determining file performance,
that data is not displayed; rather, system time calculations are shown to
enable the user to select the proper option. The use of a single fine index
sector in a bucket will provide the fastest random access to the file; using
option 7, on the other hand, provides for fastest sequential handling. The
display shows calculated times for a random insertion or deletion of a key
assuming the file is 75% full, and random retrieval of a record. It also
displays sequential timing information for several parameters. The first
value is the time calculated to access the first record with a key greater
than or equal to that given and build a corresponding MAT MERGE array for
sorting. Following that are times for access of the record with the lowest (or
highest) key and building of the corresponding merge array; access of the next
physical record once the merge array has been built; and the memory size in
bytes required for the MAT MERGE array. (The timing information given here is
based on the same type of system as those time calculations given in the
record blocking option.) Additionally, the number of required disk sectors
for each particular option is shown. From this information the user must
select the proper option for the data file.

As in the case of record blocking, several of the options may be the
same. However, there will always be at least two possible choices. 1In most
cases, one of the compromises is adequate, unless a file is intended for
exclusive random or sequential use. Options 4 and 5 are recommended for most
files. In the case of CUSTMSTR, option U4 would be chosen and entered by

keying i,

The system automatically proceeds to display the available amount of
disk space for each selected volume on which the file is to reside. Beginning
with the primary volume specified in the second screen, the address is
displayed along with the number of available sectors and the number required
by the file. The user must now enter the number of sectors to be allocated to
the file on this platter. In the case of multi-volume files, the "required"
parameter for the first volume is only sufficient to store keys rather than

all data.

For each subsequent volume to be used by the file, the volume address as
well as the number of sectors to be allocated may be specified. Providing
more space than requested allows for future reinitialization of the file to
add more fields to the record. While a file may span up to eight volumes, in
the CUSTMSTR example only one volume is required. 1In this case the required
number of sectors, 133, would be entered.

Upon entry of the number of sectors in the final volume, the system
displays the accept/edit prompt. Keying EDIT allows respecification of any
parameter on this screen. Pressing RETURN accepts the screen as shown and
proceeds to the Data File Initialization Module.

22

w)

3.2.6 Data File Initialization Module

The final step in creation of a data file is initialization.
Initialization is the process of actually setting aside the disk space
specified for a file and creating empty "buckets" and fine index sectors with
corresponding pointers using the information in the data definition file as a
guide. A single screen is involved in this module, but several files may be
initialized at a time. When the screen first appears, the default file name
is the one which was specified when the creation module was first entered.
Any associated files (alternate key files for the primary file) which have
been defined will also be displayed and may be initialized along with the
default file. Any of the associated files whose names appear on the screen
may also be initialized singly.

JEAS Data File Utilities - Data File Initialization Moaule Release 1.0
:====:=:a::s==::::::a=====an====:==a:=:s==:a::::::::c:================z=====:==
ste: Initializing file will cestroy all aata ana/or keys currently in the file.
.ouch EXEC to initialize file "CUSTMSTR", EDIT for another file, FN' 3l to cancel
EXEC: Primary file, FN'0 - FN'15: Alternate key file, FN'16: All files shown. [)

Now Initializing file " " Initialization is $ complete

Number of buckets in the file = Now processing bucket number

Number of inaex sectors/bucket = Now processing inaex seoctor ¢
EBSBB!!IBSEBSIllB8SEEBISEEBBBttﬂﬂllBEQBIBIBESBRGIBBBIBB:BIIH”'B 133
EXEC = Primary cata file "CUSTMSTR" FN'08 = Alternate key file " "
FN'00 = Alternate key file "MAILMSTR® FN'09 = Alternate key file " "
FN'0l = Alternate key file "DISCMSTR" FN'10 = Alternate key file " "
FN'02 » Alternate key file "INQUIRY * FN'11 = Alternate key file " "
FN'0Z = Alternate key file " " FN'1Z = Alternate key file " "

FN'O4 o Alternate key file " " FN'13 = Alternate key file " "
FN'05 = Alternate key file " " FN'14 = Alternate key file " "
FN'06 = Alternate key file " L FN'15 = Alternate key file " L
FN'07 = Alternate key file " " FN'16 = Primary & all alternate files

Figure 3-6. Data File Creation - File Initialization Screen.

It is recommended that all related files (primary data file and
associated alternate key files) be initialized at the same time. This saves
time and ensures that an alternate key file is not inadvertently left
uninitialized. Therefore, it is recommended that all alternate key files be
defined before initialization occurs. (Alternate key files cannot be defined
before the associated primary file has been defined.)

CAUTION!

Initializing any IDEAS data file will cause the destruction
of all information contained in that file!

To avoid the ocurrent operation, SF'3l1 should be pressed. This returns
the user to the Data File Utilities Menu. To initialize files, there are two
choices: RETURN and EDIT. Pressing RETURN at this time will cause only the
default file to be initialized. Pressing EDIT allows the user to then key
RETURN to 4initialize the primary file, SF'00 through SF'l5 to initialize

23

individual associated files, or SF'16 to initialize all files. When the
choice of files has been made, the system permits the user to proceed by
keying RETURN, to change the file selection be keying EDIT, or to abort the
procedure by pressing SF'3l. Abortion of the file initialization module
causes the.user to return to the Data File Utilities Menu.

In the case of the CUSTMSTR example, assuming all alternate key files
have also been specified, the user would key EDIT to move to the
initialization options, then press SF'l16 to indicate that all files will be
operated on, and finally touch RETURN to begin the process. When
initialization of all files is complete (verified by the status display in the
screen center), the user is returned to the Data File Utilities Menu.

3.3 ALTERNATE KEY -FILE CREATION -INSTRUCTIONS

This and the following sections explain how to create an alternate key
file associated with an IDEAS primary data file., An alternate key file may
only be created after the creation of its corresponding primary data file,
For example purposes, the file DISGMSTR, an alternate key file associated with
the primary file CUSTMSTR, will be considered. Details on this file and the
remainder of the master example can be found in Chapter 1.

Alternate key files are created in much the same way as primary fiies,
from the same menu and with the same screens. However, some differences do
exist. These will be noted as the discussion progresses. Frequent references

will be made to the previous section on creation of primary files to avoid
unnecessary duplication of instructions.

3.3.1 Utility Entry and Alternate Key File Name Specification

Alternate key files are created using the same utilities as primary
files. Therefore, the user would begin by entering the utility as described
in Section 3.2.1, and then specifying a name in the preseribed manner. In the

example, DISOMSTR would be entered in the blocks and the system would proceed
to the next screen.

3.3.2 Alternate»Key-File'Address/Type-Specification

The next screen is identical td thét describéd in Section 3.2.2, with
the exception that when an alternate key file type is specified, the name of
the associated primary file must also be provided.

File types for alternate key files are -"4n, w5n_ apd wew. The various
attributes of each type are detailed below:

. Type 4 - No duplicate keys permitted
. Type 5 - Adjacent duplicate keys allowed
. Type 6 - Scattered duplicate keys allowed

24

¥y

Adjacent duplicate keys are used in the case of a file which is to be
accessed randomly; scattered duplicate keys are used only with files to be
processed sequentially. When duplicate keys are used, they will all hash to
the same home bucket unless some change is made to the algorithm. This will
cause the overflow percentage to rise dramatically, thereby increasing access
time, especially for sequential files. To alleviate this problem, an
alternate key file can be made to "scatter" the duplicate keys within the file
by hashing on both the alternate key and the pointer to the record (type 6).
This avoidance of overflow aids response time for sequential files. The use
of scattered duplicate keys for random access, however, will fail since the
system may not find the desired key upon hashing. 1Instead, it may find one
duplicate and will not be able to randomly locate the rest of the duplicate
keys. In this case, overflows must be tolerated by using adjacent duplicate
keys (type 5). Thus, while the first key found may not be the desired one,
issuing a "Get Next Physical" macro instruction will eventually locate the
desired key.

In the DISCMSTR example, no duplicate keys will exist, since part of the
key will be the unique customer number.: Therefore, the user would first enter
"D20" as the primary file location, "i4" as the file type, and then enter
"CUSTMSTR" as the name of the associated primary file. The system will prompt
with the accept/edit message, and the user would press RETURN to enter the
file description, or EDIT to alter the parameters.

3.3.3 Key ‘Field -Specification for Alternate Key Files

"The procedure for alternate key file creation bypasses the data record
definition screen, since the record has already been described in the primary
file. The screen which appears after the file type has been assigned is the
key field selection screen, described in Section 3.2.4. Procedures are
identical to those described in that section.

In the example, the user would enter "DISC#" as the first key field,
followed by a RETURN to bring the cursor to the file type. This field is to
be used in descending sort order, so a "=" character would be entered. Then,
"CUSTNO" would be entered for the second field, followed by a RETURN and a "+"
character would be entered for ascending sort order on this field. Another
RETURN, keyed in the empty third field, would call the accept/edit prompt.

3.3.4 Key File Performance Option Selection Screen

With two exceptions, the performance option module operates similarly
for both primary and alternate key files. The procedure described in Section
3.2.5 1s essentially correct, except that an alternate key file may not span
multiple volumes and no record blocking is used. Therefore, if any value
other than "1" is entered for the number of volumes, an error message will be
displayed. The system will also display "n/a" in the record blocking option
area of the screen, and bypass that portion of the module.

The DISCMSTR file will be specified to contain 300 records, as 1is
specified for the CUSTMSTR file. (Alternate key files should always request
the same number of records as the primary file, to ensure compatibility.) The
user would therefore enter "300" followed by a RETURN. A default value of "1"
will appear in the "# of volumes" area; it cannot be changed and RETURN would

25

be entered to proceed. The system then bypasses the record blocking option
and displays data in the file structure adjustment area. As in tbe case of
the primary file, the option which best suits the file should be chosen. For
DISCMSTR, which will be used sequentially, option 7 would be selected. The
volume address appears next, and may be altered to any device address
specified as devices #6 through #15 in the device selection module; RETURN
then displays available sectors and required sectors. The user would enter
n17" to give the required number of sectors and then key RETURN in response to
the accept/edit prompt.

3.3.5 Alternate Key File Initialization

Alternate key files may be initialized using the same screen as in
Section 3.2.6. However, they should not be initialized separately, but
together with their associated primary file and other related alternate key
files. Procedures for initialization are given in the referenced section.

3.4 - DATA FILE REVISION/REINITIALIZATION INSTRUCTIONS

After a data file has been defined it may be revised using the Existing
data file revision/re-initialization module. This module is reached by
pressing SF'0l1 from the Data File Utilities menu. In general, the module
proceeds from screen to screen’ exactly as if the file were being created.
However, instead of facing an empty screen, the system displays each screen
with file information already filled in. The user may then elect to either
accept each screen as displayed or edit the screen. When editing a screen,
the user may either be stepped through each entry to verify it, or may be
asked specifically which item is to be altered. Therefore, each subsequent
subsection will refer to the screen involved and explain which editing method
is used and what considerations are involved in changing items there.

If a file that is to be revised has been initialized, it must be
reinitialized when revision is complete. In the case of a primary data file,
all associated alternate key files must also be reinitialized. If the
revision is of a file which has not been initialized, it may be treated in the
same way as if it had just been created.

When the module is initially entered, the name of the file to be revised
is entered. The name is not subject to revision. When it has been entered,
the revision of the file's parameters may begin.

3.4.1 Revision of Address/Type Parameters

The screen which follows name specification is that described in Section
3.2.2. When this screen appears, the prompt

Touch EXEC to accept as is, EDIT to modify
is displayed. The user may bypass any alterations to this screen and proceed

to the next by pressing RETURN. If any parameters are to be changed here,
though, the user should key EDIT.

26

IDEAS Data File Specification Recoro Layout Documentation Review Release 1.0

SCECCCECEEBSORESS S oSS CC R OO CC SRR C RS S CEErZECEEOSCECNPCEECESENEEECEEREEED

Logical File Name = "CUSTMSTR" Number of fielas
" Physical File Name = "CUSTMSTR" Recora length 105
Primary File Name = "CUSTMSTR" # packed numeric 1z
File Type = 1 # packea alpha 16
Packed length $6
Number of volumes = 1 Last revision aate 012580
Volume ¢ 1 Disk Aadress = D20
Volume ¢ 2 Disk Address = Option 4 1 (recora blocking)s Z
Volume ¢ : Disk Aaaress =
Volume ¢ 4 Disk Adaress = Option ¢ Z (performance) sk
Volume ¢ 5 Disk Aaaress =
JVolume # 6 Disk Aaaress = Associatea Alternate Key Files:

JVolume ¢ 7 Disk Adaress =
Volume ¢ 8 Disk Aaaress = "MAILMSTR" 9, " "
"DISCMSTR" 10, " "

Total key length = 5 Key 1 Key 2 Key 2 "INQUIRY " 1ll. " "

1.

&

3.
Field name CUSTNO L LI "
Order + 5, ¥ L S "
Position 001 6. " LI TP "
Length 05 7. " noo1g, ® "
Type 1 - nool6. " "
Attention Touch EXEC to continue to next screen or FN':l to cancel ¢

Figure 3-7. Data File Documentation - First Screen.

3.5.2 Editing of Data File Parameters During Documentation

‘ In addition to documentation, some parameters of the file may be edited
by pressing EDIT while the first screen is displayed. The two parameters
which can be edited are the logical file name (while documenting either
primary data files or alternate key files) and the list of related alternate
key files (while documenting primary files only). Keying EDIT places the
cursor at the beginning of the screen and allows the user to step through some
of the displayed parameters.

The logical file name for each file defaults to the physical name of the
file as stored on disk. However, if it is desired to logically group several
files together, this name may be changed to any user-specified value. 1In the
case of the file CUSTMSTR, the default logical name is CUSTMSTR. However, in
this application the user may wish to connect all files to one name, to avoid
confusion with another application which may be present., Therefore, the user

would enter some name of up to eight characters which would identify the
application uniquely.

Using RETURN to step through the screen, the user will eventually arrive
at the list of alternate key file names. If the user is documenting a primary
data file, any or all alternate key files may be removed from association with
the primary file. The user would enter a blank when the cursor is positioned
at the desired name, and then press RETURN to effect the change. Pressing
RETURN without previously entering a blank Jjust steps through the names
without making any changes. For example, if,it is desired to remove the
alternate key file DISOMSTR from association with CUSTMSTR, the user would
first locate the cursor under the name DISCMSTR in the list of alternate key
files. Then, the user would press the space bar and then RETURN. The name
would be removed from the list and from association with CUSTMSTR.

29

CHAPTER U
APPLICATION INITIALIZATION ("START" MODULE) PROGRAM GENERATION

4,1 OVERVIEW OF THE APPLICATION INITIALIZATION PROGRAM GENERATION UTILITY

The Application Initialization Program Generation Utility creates and
revises an application initialization module. The created module dimensions
all of the necessary common variables to the appropriate size for the
specified files, sets certain flags, opens the specified data files, loads the
system subroutine module (T and VP), loads the System Date Module, and then
loads the specified application module (normally, but not necessarily, a menu
module) .

4.1.1 The ‘Application Initialization Program Generation Utility

Using the Application Initialization Program Generation Utility is quite
simple. The user provides the file name for the start module, the name of the
file to be loaded, the device address, and the names of all primary data files
to be used by the system. A loading message must be entered, the CANCEL key
is specified and the following keys or traps are turned off or on: the skip
ahead keys flag, the skip back key flag, the system error message flag, the

error message trap, and the function key trap.

) The screens from the Application Initialization Program Generation
Utility are pictured below with values entered from the master example. These
screens will be referred to throughout the discussion of the Application
Initialization Program Generation Utility.

30

IDEAS System Utilities - "START" Program Creation/Revision Module - Release 1.0

Lt it i e R P R T R R F I Y Y R R R R L]

Program Name: "STARTDEM" Last revision aate: 011180 (JAN 11 80)
Loaa Program: "MENUOOOO®
Loaa Message: "Herman Melville Co. Data Entry System "
Peripheral Device Aadaresses: Available Options:
Printer % 0l / 204
IDEAS Utility Disk eeeeeee--- ¢ 0Z / D20 1. VCANCEL" FN Key number 3
Screen/Report Mask Disk ee=e- ¢ 05 / Dz0
Application Program Disk ---- ¢ O4 / D20 2., Skip aheaa keys on (Y/N) Y
Data File Description Disk -- ¢ 05 / D20 (FN'4, FN'11, FN'l2)
Application Data File Disk -- ¢ 06 / D20
Application Data File Disk -- ¢ 07 / 350 3, Skip back keys on (Y/N) ¥
Application Data File Disk -- ¢ 08 / 350 (FN'7, FN'13, FN'14)
® Application Data Filé Disk -~ ¢ 09 / 350
* Application Data File Disk -- # 10 / 350 4, System error messages (Y/N) Y
Application Data File Disk == ¢ 11 / 350
Application Data File Disk -- & 12 / 350 5. System error msg trap (Y/N) N
ppplication Data File Disk -- ¢ 1% / 350 (DEFFN '99)
Application Data File Disk -~ ¢ 14 / 350
® Application Data File Disk -- ¢ 15 / 350 6, Function key trap (Y/N) N
Devices #07-¢15 not for use on 2200T CPU (DEFFN '98)

) Attention Touch EXEC to accept as is, EDIT to moaify [}

Figure 4-1. First "START" Program Cr-eation/
Revision Screen.

IDEAS System Utility - "START" Program Creation/Revision Module Release 1.0

R e e T R P R I I PR L P T T P T P Y T T P T Y T - Y ¥-1

Program name: "STARTDEM"
[Application aata files to be openea]

CUSTMSTR
MAILMSTR
DISCMSTR
INQUIRY

PRODMSTR
WHRSMSTR
LOCATOR

INVOMSTR
SALEFILE
ALTSALE

INVOICES
ALTSALEL

Mumber of
open data
files 12

Attention EXEC to accept as ia, EDIT to moaify, FN'0O for previous soreen ¢

Figure 4-2. Second "START" Program Creation/
Revision Screen

The first display presented by the Application Initialization ("START")
Program Generation Utility requests the name of the data file which will
contain the START module. After the START module is defined, it will be saved
in this file. The file name must contain at least one uppercase letter. The
file name for this start module is STARTDEM. The name of the application
program (or menu) module to be loaded must be entered. STARTDEM will load
MENU 0000, the main menu of the master example. A loading message (up to 64

31

characters) to be displayed on the screen is entered at this point. Do not
enter "loading" as the system displays "Loading ..." and the specified load
message. STARTDEM will display tne following message: "Loading Herman
Melville Company Data Entry System".

The device address to be used by the system must now be entered. The
default values may be accepted by touching return. The "CANCEL" function key
number is specified next. The default value is FN'31. The CANCEL key should
NOT be FN'0-14, as these keys are used for other functions in the
IDEAS-generated application modules. The CANCEL key may be used in a data
entry module to return the user to a menu.

The "SKIP AHEAD" key flag must be turned on or off. The skip ahead keys
are: .

FN'O4 Go to the end of the screen.
FN'11 Skip 5 fields.
FN'12 Skip 1 field.

These are set to default value of "N" (or "off") so that an operator in a data
entry module may not skip a required field. If the user desires, this default
value may be changed to yes. -Turn the "SKIP BACK" keys on or off. The skip
back keys are: : S

FN'07 Skip back to the first field.
FN'12 Skip 1 field.
FN'13 Skip 5 fields.

The system error message flag must be turned on or off. If this is off,
no error message will be displayed. It is recommended that the system error
message flag is turned on; however, it may be turned off and replaced with the
user's own error message routines. The error message trap must be turned on
or off. This option should be exercised only by ‘the 'sophisticated user. When
the error message flag is turned on, IDEAS assumes that there is a subroutine
labeled "DEFFN'99" in each application program. Whenever a system error is
encountered, the program will branch to this routine. If DEFFN'99 does not
exist, a fatal error will result. .

The function key trap must be turned on or off. This option should also
be exercised only by the sophisticated user. When the function key trap is
turned on, IDEAS assumes that each application program contains a subroutine
labeled "DEFFN'98". Whenever a function key is touched, the program will
branch to this routine. If DEFFN'98 does not exist, a fatal error occurs.

When all of the above data has been entered correctly, touch RETURN to
proceed to the next screen, or touch EDIT to modify any of the fields above.
(If EDIT is touched, use the RETURN key to position the cursor at the desired
field.) The second Application Initialization Program Generation Utility
screen appears upon copletion of the above data. All the names of all PRIMARY
data files to be used in the application must be entered in this screen. Any
alternate key files which pertain to the primary files will be automatically
determined. In the case of a multi-volume file, enter the primary file name

once. It will be repeated by the system for as many volumes as have been
specified.

32

Wy

NOTE:

A maximum of 124 files may be open at one time,

After all primary file.names have been entered, RETURN to enter all
information, or EDIT to modify. '

33

CHAPTER 5
MENU PROGRAM UTILITY

5.1 OVERVIEW OF THE MENU PROGRAM UTILITY

The Menu Program Utilities create, revise, and document menus. Up to
thirteen sub-menus or programs can be called per menu. A password security
system is available through the Menu Program Utilities; passwords may be
assigned to menus during menu creation. Menus with assigned passwords are
displayed, but will not allow loading of subsequent programs until the correct
password is supplied. All functions within a system requiring security should
be accessed through menus with password protection. In this way, unauthorized
personnel are denied access to sensitive information.

5.1.1 The Menu Program Utility

Using the Menu Program Utility is very easy. The user enters the name
of the menu to be created, the load message to be displayed as the menu is
loaded, and the program file names of all menu entries, as well as menu
entries. .

- The menu utility screen is pictured below, with values taken from the
master example. A copy of the menu documentation generated for this menu is
pictured later in this chapter. Both will be referred to throughout the
discussion of te Menu Program Utilities.

I.D.E.A.S. System Utility - Menu Generation/Revision Module Release 1.0

Program Name* MENU0002
Load message* Herman Melville Co. Master File Maintenance System

Key Program Description on menu / load message

'XI, MENU0O00O Herman Melville Co. Data Entry System
100 CUSTPROG Customer Master File Maintenance
101 WHRSPROG Warehouse Master File Maintenance
102 PRODPROG Product Master File Maintenance
103 INVOPROG Invoice Master File Maintenance
'04

'05

106

07

‘08

'09

'10

‘11

password (if any) to be required at run time for use of this menus "MNTNANCE"
Attention Touch EXEC to accept as is, EDIT to modify 2

Figure 5-1. The Menu Program Utility Screen.

34

Py

The menu used in this example 1is taken from the master example.
MENUOOO2 contains entries for all data file maintenance programs in the Herman
Melville Data Entry System. Since the data file maintenance functions
contained in MENUO002 should be performed by authorized personnel only,
MENU000O2 is password protected. ‘

The user is first requested to enter the name of the data file which
will contain the menu definition. After the menu is defined, it is saved in
this file. After the file name for the menu to be created is entered, the
load message must be entered. '"Herman Melville Co. Master File Maintenance
System" will be displayed as MENU0OO2 is loaded.

The file names of the programs to be called from the menu must be
entered next. A load message must accompany each program file name. Note
that the function key numbers are placed next to the file names in the coreated
menu. The function key number next to each entered file name becomes that by
which the program is accessed. FN'XL is the CANCEL key. The CANCEL function
key is assigned during Application Initialization Program Generation. For
more information, refer to Chapter 4, Section 4.1.1 The Application Program

Generation Utility. All unused fields must be .stepped through by using the
RETURN key to maneuver the cursor.

Once all file names and load messages are entered, touch RETURN to
position the cursor at the password section at the bottom of the screen.
Enter the desired password if the menu is to be password protected. If a
password is not desired, touch RETURN.

Once all fields have been entered, touch RETURN to accept the menu. The
menu documentation is printed automatically at this point. If documentation
of menus is desired at a later date, select the menu documentation module
(from the Menu Utility menu), enter the name of the menu to be documented and
RETURN. The documentation will be printed.

The documentation for MENU0002 is provided below.

MNenu KENUCCO2® JAN 31 80 Poge 3ot

last revision date JAN 11 00 Password: TIOTIANCE®
1 1 L) 4) ¢ 7 -

OlNerman Melville Co. Master Pile Mainterance System

0

2sgg2s8s8e

' Cperation

60 = Customer Ksster Pile Maintenance

'OI = warshouse Mester File Ksintenaace

‘01 - neﬂuﬂ Naster Pile Maintenance

‘Ol = Invoice Naster Pile Kaintensnoe

‘5L = Bersan Nelville Co. Data Entry Sysiea

Please touch the special funotion key to the desired

eo
Ces i e sbncesuana

2EREBSSLISTLLES

.
1

1) 3 ‘ L [? L}

Progrea
Ney to load Program description & loading message
......
100 COSTFROG Customer Master Pile Kaintenance
N 'Ilm Warehouse Kaster Pile Naintenance
‘o1 Produot Kaster Pile Kaintensnoe
‘03 xm Invoioe Master Pile Kaintensnce
‘04 ee= NOL UBKd ===

0 et ut uuﬂ Lt

0 Latd m um =
0 . o= ROS UERd ==
N wee NOY UBRd ==
e === nOR

u wes POL USEd =en
'L NENUOO00 Herman Melville Co. Dats Entry Systes

wote: Il. In“uul the speaial funotion key specified as the CANCEL
n the spplicstion initializavion module.

Figure 5-2. Menu Program Utility
Documentation on MENU0OO2.

35

CHAPTER 6
SCREEN MASK UTILITIES

6.1 OVERVIEW OF THE SCREEN MASK UTILITIES

The IDEAS Screen Mask Utilities are used to define a formatted screen
display (a "mask") which will solicit operator input for the purpose of
creating or updating a data file. A screen mask may contain operator
instructions, headings, and data field descriptions - any information, in
fact, which will help the operator understand what is required and enter the
correct data. The screen mask (or masks) created with these utilities will be
displayed by an IDEAS-generated data entry program (see Chapter 7) to solicit
operator entered data which will be posted to an IDEAS-created'data file (see
Chapter 14).

The ‘set of Screen Mask Utilities consists of three modules: a screen
mask definition module, a screen mask revision module, and a screen mask
documentation module. Detailed operating instructions for each module are
listed below. For screen mask definition, the program displays a blank screen
into which the user 'simply types any text which is to appear in the display,
positioning it at any desired location on the screen. Next, the field
attributes must be defined for each data entry field in the display. Field
attribute options include such items as field length and type, whether the
field is required or optional, whether it is to be left or right justified and
zero or space filled, etc. (The complete set of field attribute options is
listed and explained in Section 6.2). When all desired text has been entered
and all fields have been defined, the screen mask is saved on disk for
subsequent use by a data entry program. For each screen mask defined by the
user, IDEAS creates a screen mask definition file containing all information
required to reconstruct the display and define all data fields. This
definition file is used by an IDEAS-generated data entry program to recall the
display for data entry purposes.

The screen mask revision module permits the user to recall and modify an
existing screen mask. Note, however, that IDEAS does not provide, as a
standard feature, the capability to make a copy of an existing screen mask
definition which can then be modified to create a new mask.

The screen mask documentation module permits the user to print a copy of

the screen mask just created along with a listing of field attributes for each
data field in the display.

36

s

6.2 SCREEN MASK CREATION

To invoke the Soreen Mask Utilitles, depress FN from the IDEAS Master
Menu. Then use FN'0 to run the soreen mask creation module.

6.2.1 Soreen Mask Definition File Name

The firat display presented by screen mask creation requests the name of
the data file which will contain the screen mask definition, After the mask
is defined, it will be saved in this file; subsequently, it is this file name
whioh must be supplied to the Data Entry Program Generation Utility in order
to associate this screen mask with a data entry program. The file name may be
1.8 characters in length.

The mask which will be oreated as part of our example is a rather simple
inquiry screen which allows the program user to inspect a customer file on the
basis of oustomer discounts. (The example screen mask itself is shown in
Figure 6-1). The name we assign to this screen mask is "INQSCRN" and this is
the name which should be entered opposite File Name. Since the name is not a
full eight characters long, the user must key RETURN to enter the data.

6.2.2 Associated Data File Name

Next, the user is requested to enter the name of a data file which will
be associated with this scoreen mask when the data entry. If a data file name
is entered at this time, IDEAS will extract field parameters from the
definition file associated with this data file and provide them as default
values for ocorresponding fields in the scoreen mask. The user is thereby
spared the task of redefining fields in the display which have already been
defined for the data file. Although it is not striotly necessary to specify a
companion data file at this time, good design practice dictates that data file
formats be defined prior to screen formats. It 1is therefore strongly
recommended that the data file to be associated with this soreen be defined
firat (see Chapter 5) and specified as the companion file when the screen is
created. :

NOTE:

If a comparison data file is specified for a screen mask,
the data file (and, more importantly, its associated
definition file) must already have been created through the
Data File Definition Utilities. Otherwise, IDEAS will
signal an error when it attempts to open the definition
file in order to obtain field parameter information for the
soreen mask.,

37

IDEAS itself permits only one data file to be associated with each
screen; it is, however, possible to combine fields from several files on one
screen with some customization of the data entry module. This procedure
requires special attention to parameter definition for the fields taken from a
second and subsequent data files. Refer to Section 6.6 for a complete
discussion of this problem.

For the present example, the comparison data file is named "INQUIRY".
(If this file has not already been created as part of two sample exercise,
leave this field blank.)

6.2.3 Screen Mask Creation

The utility now displays the Mask Editor screen. If a new screen mask
is to be defined, this screen is blank. The programmer may enter any text
which is to appear in the formatted display, including headings, operator
instructions, and field descriptions. All edit keys are operational.

Text can be located at any position on the screen simply by positioning
the cursor to the desired location and typing the desired text. The current
cursor position is always shown at the bottom left corner of the screen.

Customer inquiry by aiscount

Discount Amount #¢

CQustomer Number #¢#4#
Name #44#44444¢448440044 404004
Aadress 1 #44044444304¢4R44R4084 844
Address 2 4444444444444 4 004 G HH0004
City/State/Zip ##4444#0¢4044444¢ 44 44444

Row 1 Col 1 FN'O=Define fiela FN'Z0=Save screen FN'Zl=Cancel

Figure 6-1. Inquiry Screen Mask Created with Mask Editor

6.2.4 Data Field Definition

Each field in the display must be defined by specifying appropriate
field parameters for that field in the Field Parameter Selection Screen. To
define a new field, position the cursor to the screen location which will be
the starting position of the field and depress FN'0 to exit from the Mask
Editor and invoke the Field Parameter Selection screen.

To modify the field parameters for an existing field, position the
cursor any place within the field and depress FN'O.

38

23

~

The Field Parameter Selection screen is now displayed. Figure 6-2 shows
efm a parameter selection screen with field parameters defined for the first field
\ in the example screen mask in Figure 6-1 ("Discount Amount").

I.D.E.A.S. System Utility - Create ; Revise Soreen "INQSCRN " Release 1,0
IBB!IIISBIIBEBBEIB!BEIHBEIBIHHEEEIIl!B:SEHSBIEBBEEEBH=I:EEEEEBI!IBBSBIEIIlIBEEBI
'FN Field parameter
'00 Field NBMEe ? seeerecccnvnnnsssssncnnns vDISCE: " Nalia Character List
"0l ROW ON BOP€EN 7 ssssassssesnsnassssssoastssnse 5 1 Digits only
102 Column ON 8Ore6N 7 sovsseesssssnssnssssosans 17 2 Digits & decimal pt
105 Position 1n RECOrd ? seeessersasassasssnsasss 6 3 Digits & signs
'04 Default £1€1Q ? seevsasavennnn No aefault fiela 4 Digits, signs, & aec
'05 Fleld length ? svesesrsscsnsnnnsscsonrsssssne 2 5 Upper case letters
® '06 Valld oharacters 7 «esesessvcescses Digits only 6 UC alpha & aigits
'07 Allow keyboard entry ? seesessscccccssesses Yes 7 UC, aigits, & punct
'08 Allow G48PlAY ? seeersnsccscircnscnsansnans Yes & Any character
109 Required or optional ? seeeesses Requirea fiela 9 FN Keys, EDIT & EXEC
'10 Full if present ? sssssceans Neea not be fillea
4 '11 Left or right Justified ? Right Justified
112 Zero‘or space fill ? seeesseesenss Space fillea
'12 Number of decimal Places 7 teseesssssessnenss 0

'14 Termination Full/EXEC ? ... Terminate when full
'15 Save fiela parameters

'25 Delete ourrent fiela '3l Cancel to mask eaitor
'26 Insert ourrent fiela EDIT Display soreen mask

Touch the FUNCTION KEY corresponding to the desirea operation.

Figure 6-2. Field Parameter Screen For First Field
("Discount Amount") in Inquiry Screen Mask.

The available field parameter options are discussed in detail below:

FN'00 Field Name - This name identifies the display field for

. purposes of transporting data between the display and an

@”“ associated data file. The name may any combination of up to

. eight characters (embedded spaces are allowed). The utility

automatically supplies a default name (starting with "Fld

#001") which may be ochanged by the programmer. If a

companion data file was specified for this screen mask and a

field name is entered which corresponds to the name of a

field in the data file, certain parameters for that field are

taken from the companion file and displayed as default values

here. The parameters displayed as defaults include field

length, position in record, and most general valid character

set. Note that in this case, the length and position cannot

be changed. The valid character set may be changed, but only

to a character set which is less general than the defualt

v (i.e., new character type must be less than or equal to the
default type: see FN'06 - valid characters).

FN'0l Row on Soreen - This is the default value from the ocurrent
cursor position on the soreen for a new field, or from the
starting position on the screen for a field being edited.
This value may be changed.

FN'02 Column on Screen - See FN'01

39

FN'03

FN'0O4

"FN'05

FN'06

FN'07

1l
2
3
4
5
6
7
8

9

Position in Record - The starting position of this field
within the record buffer. If this field corresponds to one
from a companion data file, the positon is defaulted from the
data file and cannot be changed. If there 1is no
corresponding companion data file field, this parameter
defaults to the next available position in the record
buffer. Note that great care must be exercised in
determining field position when fields from several files are
to be used for this screen; refer to Section 6.6 for a
duscussion of this problem.

Default Field - This name of a field which is to supply a
default value for the current field. Another field
previously defined on this screen or the current field itself
may be specified as the default field. If another field is
specified, the value entered for that field is moved at run
time to the current field. If the current field itself is
specified as the default, the previous contents of the field
are redisplayed (i.e., the default is taken from the current
field in the previous record.)

 Field Length - The length of the field in bytes; must Dbe

greater than zero and less tha 65. For numeric fields, the
length should not exceed 13 (13 is the maximum number of
digits for a numeric value). Numeric values containing more
than 13 digits will be truncated.

Valid Characters - The character set from which characters
will be accepted as legal entries for this field. There are

nine possible character sets from which to choose, identified
by the numbers 1-9:

- Digits only

- Digits and decimal point

- Digits and signs

- Digits, signs, and decimal point
~ Uppercase letters only

- Uppercase letters and digits

- Uppercase letters, digits, and punctuation characters

- Any character

- FN keys, EDIT, and EXEC only

Allow Keyboard Entry? - A value of "Y" for this parameter means
that the operator may enter values for this field from the
keyboard (and thereby, presumably, modify the contents of this
field in the data file). A value of "N" indicates that the
field is non-modifiable by the operator.

40

[7Y

I

d

FN'08

FN'09

FN'10

FN'11

FN'12

FN'13

Allow Display? - A value of "Y" means that the field will be
displayed on the screen at run time; "N" means that it will not
be displayed. Nondisplayed, or "hidden," fields are useful for
containing information which must be posted to the data file but
which is not of interest to the operator. For example, fields
from several data files which provide default values for fields
on the screen should be hidden since their presence in the
display would only serve to confuse the operator. See Section
9.5 for a further discussion of this issue.

NOTE:

If a nondisplayed field is to be required,
specify required (FN'09) before specifying no
display.

Required or Optional? - A value (other than all blanks) may
be required or not for this field. If a default field is
specified, the default value can satisfy the requirement
without operator input. s

Full if Present? - For both required and non-required fields
the programmer may specify that the field must either be
filled completely (exluding blanks) or left all blank. For
example, Social Security Number might be an optional field,
but if anything is entered, the complete 9-digit number must
be entered.

Left or Right Justified - A field may be either left or right
Justified.

Zero or Space Filled - A numeriec field which is right
Justified, may be padded on the left with either zeros or
spaces if completely filled.

Number of Decimal Places - A number of decimal places may be
specified for a numeric field. At run time, the number
entered by the operator is the rounded to the specified
number of places if it contains a decimal. If a decimal
point is not entered, the implied decimal point is assumed to
be N places to the left of the last digit entered, where N is
the number of specified decimal places.

The exception to the above is when there are 0 decimal places
specified. Then the number entered is not adjusted.

If the field is a designation field for a computed result, 0

decimal places causes the number to be rounded to the nearest
integer value.

41

FN'14 Termination FULL/EXEC - A field may be terminated
automatically when full, or EXEC may be required.

FN'15 Save Field Parameters - Depressing this FN key will cause the
current field parameters to be entered into the field
parameter array and control will be returned to the screen
mask editor. The fields are NOT yet saved on disk, however;
that does not occur until the screen is saved (FN'20 from the
Screen Mask Editor display).

FN'25 Delete Current Field - Depressing this key will give the user
the option to delete the current field from the screen; care
must be. taken in that any default field values concerning
this field or subsequent fields must be manually adjusted by
the user. (See Section 6.5 for a discussion of this
problem.) (The programs provide an opportunity to recover if
this key is touched inadvertantly.)

FN'26 Insert Current Field - Depressing this key gives the user the
option to insert a new field between existing fields. Care
must be taken to manually adjust any subsequent default
fields. (See Section 6.5 for a discussion of this problem.)

FN'31 Cancel To Mask Editor - Depressing this key cancels the
current field definition operation ‘and returns to the screen
mask editor. :

EDIT Depressing this key displays the screen mask without losing
any of the current parameters that may already have been
entered for a new field. The current field is displayed
using diamonds instead of boxes for ease of identification
(if length is non-zero). Touching any key causes a return to
the field definition module. ‘

6.2.5 Saving the Screen Mask on Disk

Wwhen the screen mask is completed and all fields have been defined, use
FN'20 from the Mask Editor to save the defined screen. A screen mask
definition file will be created and given the name specified for this screen.

Alternatively, FN'31 can be used to cancel the screen definition/
revision module without saving any of the screen information just entered.

Before the screen is actually saved, the utility displays a message
requesting the run-time display option to be used when the defined screen is
displayed by a data entry program. The available options are:

0 - Display each field at entry only. In this case, each field in the
screen is displayed only after the preceding field has been entered.

1 - Display all fields when screen is loaded. In this case, the entire

screen, including all fields, is displayed when the screen is called
up by the data entry module at run time. ‘

42

Ay

2 - Resume screen edit. The soreen is not saved, the utility returns to
the Mask Editor, and the user may continue editing the screen mask.

After the screen is saved, the Screen Mask Doocumentation Module is
automatically loaded.
6.3 SCREEN MASK DOCUMENTATION

The Screen Mask Documentation Module can be used to produce a hard copy
of the defined screen mask along with a listing of field parameters for all

fields defined on that soreen. There are two options:

EXEC - Dooument. the soreen mask. (A printer must be available and
(RETURN) selected.)

FN'3l - Return to Screen Mask Definition Utility Menu without
producing screen documentation.

6.4 SCREEN MASK REVISION

The Soreen Mask Revision Module (FN' from the master menu) can be used
to revise an existing soreen mask. Enter the name of the screen to be revised
and its companion data file, if any. The screen mask is then loaded from disk
and displayed. All editing and field parameter definition options operate as
described in Seoction 6.2.

6.5 SPECIAL CONSIDERATIONS FOR INSERTING AND DELETING FIELDS WHEN DEFAULT

When one or more default fields are specified on a screen, inserting or
deleting fields on that soreen ocan cause problems which require special
attention from the programmer. The problem arises because default fields are
identified internally by field number rather than field name. When a new
field is inserted or an existing field is deleted, the field numbers of all
fields after the affected field are changed. In this ocase, IDEAS
automatically adjusts each default field reference to point to the field whose
field number is the same as the field number of the originally specified
default field. If the default field has aocquired a new field number as the
result of an insertion or deletion, it will no longer appear as the default
field for the current field. The programmer can correct this problem only by
manually changing default field references to the correct field names for each
field which references a default.

An example may help to make the problem, and its solution, somewhat
clearer. Consider Figures 6.4 and 6.5, Figure 6-4 is a portion of the screen
documentation for a screen with four fields, named Fld #001 through Fld #004.
Notice that Fld #003 specifies Fld #002, the second field in the record, as a
default field. Fld #004 specifies itself as a default. Figure 6-5 shows the
dooumentation for the same screen after a new field, Fld #005, has been
inserted at the beginning of the record. Since Fld #005 is now the first
field in the record, the field numbers of all other fields are inecreased by
one (that is, Fld #001 now becomes the second field in the record, eto.)

43

Cioreer TSOREERN S NOWV =2 =3 rrage &£ ofF &2

Field pareameters:s ($ield mmumber order?
Nawme No K ¢ L Pos Valid Characters Req Ful J F Term Kbd Dis D Dup Field

s e = m- m- mme—— mem———-e-o—osososoSoss TS e v e emem s e emem mm - . o

Fld #001 001 0% 21 05 0021 uU/C alpha & numerics No No L Full Yes Yes -

Fld #002 002 0& 21 05 0006 LW/C alpha & numerics No No L Full Yes Yes -

Eld #003 003 07 21 05 0011 W/C alpha & numerics No No L Full Yes Yes - F1ld #002
L -

I I |

Fld #004 004 08 21 05 0016 U/C alpha & numerics No No Full Yes Yes #1d #004
Figure 6-U4. Screen Field Documentation Showing
Default Fields Before Field Insertion.

Scocreen USCREENL™ NOW 2 33 Fage & of &
Field parameters: ‘ (¥#ield mumber order?

Name No K € L Pos Valid Characters Req Ful J F Term Kbd Dis D Dup Field
Fld #005 001 09 &1 05 Qo026 U/C alpha & numerics’ No Ne L - Full Yes Yes -

Eld #001 002 0% 21 05 0021 W/C alpha & numerics No No L - Full Yes Yes -

Fld #00& 003 08 21 05 0006 U/C alpha & numerics No No L - Full Yes Yes -

Fld #003 004 07 21 05 0011 U/C alpha & numerics No No L - Full Yes Yes - Fld #001
Fld #004 005 08 21 05 0016 U/C alpha & numerics No No L - Full Yes Yes - #F1ld #003

Figure 6-5. Screen Field Documentation Showing
Default Fields After Field Insertion.

Notice what has happened to the default field names in Figure 6-5. Fld
#003, which previously defaulted to Fld #002, now defaults instead to Fld
#001. That is because Fld #001, not Fld #002, is now the second field in the
record. (Originally, Fld #002 was the second field.) Similarly, Fld #004
which previously defaulted to itself, now defaults to Fld #003 fér the sam;
reason - Fld #003, not Fld #004, is now the fourth field in the record.

To rgmedy this situation, it is necessary to invoke the Field Parameters
Specification screen for F1d #003 and Fl1d #004 and change the default field

names manually. This change should be made immediately after all
insertions or deletions have been completed. y 2. necessary

4y

*)

[

J 8

6.6 SPECIAL CONSIDERATIONS FOR COMBINING FIELDS FROM SEVERAL FILES IN THE
DISPLAY

IDEAS allows only one file to be associated with each screen. In many
cases, however, it may be useful to combine fields from two or more files on
one screen. In our master example, for instance, information from two files
(a customer master file and a warehouse master file) is combined with some
operator input to produce records for an invoice file. This situation
requires special programming in the data entry module (see Chapter 8 for a
discussion of the changes required) and special care in defining fields for
the screen mask. ‘

It is necessary to understand first that when several files are to be
used by one screen, a complete record from each input file must be loaded into
the work buffer. IDEAS will automatically load the record from the specified
companion data file for this screen; records from any other files to be used
must be loaded by a user-written subroutine (Chapter 8 discusses the procedure
for coding such a routine.) The point is that the total length of all records
from all files to be used as input cannot exceed the length of the work buffer
(1008 bytes).

The second point to be emphasized is that the programmer must know the
positions in the work buffer of all fields used on the screen which belong to
files other than the companion file. Since the companion file record is the
first to be loaded into the buffer and all other records will be concatenated
to it, the position of a field in the second record loaded is computed by
adding its position within its own record to the total record length of the
first record in the buffer. The value thus obtained is the position which
must be specified when the field parameters for that field are defined.

For example, suppose that a screen is to be defined which references two
files - CUSTMSTR and WHSMSTR. CUSTMSTR is specified as the companion file for
this screen; CUSTMSTR has records containing four fields with a total record
length of 100 bytes. WHSMSTR has records containing 10 fields with a total
record length of 200 bytes. All of the fields from CUSTMSTR records will be
posted to the output file, but only two fields from WHSMSTR will be used,
PROD. NO. and PROD. DESC. (See Figure 6-6).

Since CUSTMSTR is the specified companion file, its record is the first
to be loaded into the buffer. The WHSMSTR record must be loaded into the
buffer immediately following the CUSTMSTR record, by a user-written routine,
Once both records have been loaded, the buffer looks like this:

Byte
1 P . . loo B 101 . o PO .. . lu 8
CUST. DISCOUNT PROD. RE-ORDER PROD.
NO. 'NAME - ADDRESS % NO. LOCATION QTY LEVEL DESC.
CUSTMSTR Record WHSMSTR Record

Figure 6-6. Work Buffer with Two Records.

45

Notice that PROD. NO. begins at position 101 in the buffer, while PROD.
DESC. begins at 148. When the field parameters are defined for these fields,
101 and 148 must be entered as the field positions for PROD. NO. and PROD.
DESC, respectively.

It can be seen from this example that the user must design all record
formats for all files before attempting to create a screen mask which utilizes
such records, since the positions of any fields other than those of the
companion file must be known at the time the screen mask is created. Note,
too, that if more than two files are used by a screen, the order in which
records are loaded into the buffer will determine the positions of individual
fields in the buffer.

46

ap

»

[

CHAPTER 7
DATA ENTRY/INQUIRY/UPDATE PROGRAM GENERATION UTILITY

7.1 OVERVIEW OF THE DATA ENTRY/INQUIRY/UPDATE PROGRAM GENERATION UTILITY

Data entry, inquiry, and update programs are generated through the Data
Entry/Inquiry/Update Program Generation Utility. These data entry programs
allow data manipulation on files created through the Data Entry Utilities.
The Data Entry/Inquiry/Update Program Generation Utility generates highly
modularized code to facilitate user modification.

Eight different types of data entry programs can be generated, each with
a different set of data entry operations. The user selects the desired type
of data entry program. The available data entry programs are:

1. 1Inquiry only

2. Add a new record to the file

3. Add a new record or modify an existing one

4. Add a new record or delete an existing one

5. Add a new record or modify or delete an existing one
6. Modify an existing record

7. Delete an existing record

8. Modify or delete and existing record.

An inquiry only program displays information but does not allow modification.

A data entry, inquiry, or update program must be created for each data
entry function desired, typically for each menu entry other than reports and
the CANCEL key. The available data entry program options are divided into
eight categories to allow the user to separate the data entry functions.
Thus, certain data entry operations, such as modification or deletion of
records, can be isolated from normal data entry routines. These "special"
data entry operations may then be placed in a password-protected menu,
eliminating tampering from unauthorized personnel. For example, it 1is
reasonable to assume that certain payroll or personnel information should not
be readily accessible for modification, deletion, or inquiry by unauthorized
personnel. Sensitive information contained within a data record can be
protected from unauthorized access by the use of different screen formats and
data entry programs. These "sensitive" data entry programs should then be
placed within password protected menus.

47

Data entry programs which access one data file typically will not need
additional user modification. Conversely, data entry programs which access
more than one data file will need additional user modification. The
modification consists mainly of the addition of one or more system resident
macros at a position indicated in the generated code. Some data entry
programs will need modification to the generated code. Modification of data
entry programs will be explained and exemplified later in this chapter. If
modification will be required on data entry programs, it is important to
specify the number of additional disk sectors needed for additonal application
code when creating data entry programs. The Data Entry/Inquiry/Update Program

Generation Utility then saves the program with the additional sectors

specified.

7.1.1 The Data Entry/Inquiry/Update Program Generation Utility

Using the Data Entry/Inquiry/Update Program Generation Utility to create
programs is very easy; the programs created are based on the type of data
entry program required, and the specified screen and data file definitions.
The user provides the file name for the program to be generated, the file name
for the screen mask to be used, the file name for the data file to be
accessed, selects the desired type of data entry program, specifies the number
of fields required on the screen to establish the key, and specifies the
number of disk sectors to be reserved if modification is anticipated.

The Data Entry/Inquiry/Update Program Generation Utility screen is
pictured below with values entered from the master example. This screen will

be referred to throughout this discussion of the Data Entry/ Inquiry/Update
Program Generation Utility.

IDEAS System - Data Entry/Inquiry /Upaate Program Generation Utility Release 1.0

-----=-=:=_::===============================:====:====:======:=======:==========

Create/revise aate: JAN 24 80

File name for program to be generated: "INQPROG2"
File name for screen mask to be usea: "INQSCRN1"
File name for aata file to bé accessed: "LOCATOR *

Functions to be provided in this program (choose one from the 1ist below): 1

\ .

=] Inquiry only
Add a new recora to the file
Add a new record or modify an existing one
Add a new record or delete an existing one
Add a new record or modify or aelete an existing one
Moaify an existing recora
Delete an existing recora
Moaify or delete an existing recora

=0V £+
e o o o o o o

Number of fields required on screen to establish the key to the data file: 1

Mumber of extra disk sectors to be provided for aaditional application code: 5%

Figure 7-1. The Data Entry/ Inquiry/Update
Program Generation Screen.

48

o

A

Vo T

«

The file name for the data entry program used in this example is
INQPROG2. The screen and data file to be used are INQSCRN1 and LOCATOR
respectively. LOCATOR is an alternate key file associated with the Warehouse
Master File. This is a type 1 program (inquiry only), and will display the
specified information, but will not allow ‘keyboard entry other than the key.
The key, product number, will be entered by the operator. The information
specified on INQSCRN1 will be displayed. This information may not be modified
through this program. The number of fields needed on the screen to establish
the key is 1.

This data entry program will perform an inquiry on the Warehouse Master
File by product number. The Warehouse Master File contains information on the
product number, location, and quantity only. To enhance the effectiveness of
this inquiry, the data entry program will be modified to display certain
important product information from the Product Master File. One additional
sector 1s reserved on disk to allow modification of the program to display the
product description and unit cost from the Product Master File. This
modification will be discussed later in this chapter.

After all the fields in the screen have been entered as desired, RETURN
to create the data entry program. To revise the data entry program, touch the
edit key and use the RETURN key‘to skip to the field to be modified.

To revise a data entry program which was created previously, select the
Data Entry/Inquiry/Update Program Generation Utility from the IDEAS menu, and
enter. the name of the data entry program to be revised. The system defaults
to all the values previously entered. Touch the edit key and use the RETURN
key to skip to the field(s) to be modified.

NOTE:

When the Data Entry/Inquiry/Update Program Generation
Utility is used to revise a data entry program which was
previously created, the data entry program is completely
regenerated and all modifications made to the program are
lost.

7.2 QVERVIEW OF DATA ENTRY/INQUIRY/UPDATE PROGRAM MODIFICATIONS

Modifications to created data entry programs are generally quite simple,
consisting mainly of the addition of one or more system resident macros, or
some minor modifications to the generated code. (A logical test, such as the
value must be a multiple of five, is an example of a minor modification which
must be made within the generated code.) The most common modifications to
data entry programs are generally to allow access to more than one data file,
or to use more than one screen per data entry program. Data entry programs
which access one data file typically will not need additional user
modification.

49

There are basically three different categories of data entry programs to
be concerned with in modification: type 1 programs (inquiry only), type 2
programs (add a record only), and type 3-8 programs (add, delete, or modify --
in various combinations). To modify a type 1 program to accommodate use of
additional data files or screens, the modifications are made in line 3980
(specified CODE). To modify a type 2 program to accommodate use of additional
data files or screens, the modifications are made in the correct REM
statements. For types 3-8, the modifications are made in the REM statements
and in the specified CODE area(s).

Three modifications of data entry programs taken from the master example
are explained in this section. The first example is the modification of a
type 1 program to allow.access to a second data file. The second example is
the modification of a type 2 program to allow access to two additional data
files. The third example is the modification of a type 5 program to allow
access to a second data file.

7.2.1 Example-l: -Modification of a Type 1 Program

This example uses INQPROG2 discussed earlier in this chapter. INQPROG2
is a type 1 program (displays the specified information, but does not allow
keyboard entry other than the key). The key, product number, is entered by
the operator. INQPROG2 performs an inquiry on the Warehouse Master File
(WHRSMSTR) by product number. The Warehouse Master File contains information
on the product number, location, and quantity only. To enhance the
effectiveness of this inquiry, the data entry program is modified to display
certain important product information from the Product Master File (PRODMSTR).

Since INQPROG2 is a type 1 program, the modifications occur in the area
after line 3980 (specified CODE in the unmodified program). The screen used
in creating INQPROG2 is provided below. A listing of the modified INQPROG2
follows the screen. The modifications of INQPROG2 are highlighted by
brackets. This listing will be referred to throughout the discussion of the

modification of INQPROG2.

Create/revise aate: JAN 24 80
File name for program to be generated: "INQPROGZ"
File name for screen mask to be used: "INQSCRN1"
File name for aata file to be accessed: "LOCATOR "

Functions to be provided in this program (choose one from the list below): 1

=] Inquiry only
Add a new recora to the file
Add a new record or modify an existing one
Add a new record or delete an existing one
Add a new record or modify or delete an existing one
Moaify an existing record
Delete an existing record
Moaify or delete an existing record

o= &y N -
e o & o o o o o

Number of fielas requirea on screen to establish the key to the adata file: 1

Number of extra disk sectors to be providea for additional application code: 5#

Figure 7-2. INQPROG2 Data Entry Program
Creation Screen.
50

1]

O1 /2L S BO INGPROGS PAGE
PROGRAM LISTING

@i\ 1000 REM "INGPROG2" JAN 14 80 TYPE!
1010 IF OO%(9)<>"M" THEN 1020
:LOAD DC T#2, ® IDGLBSEL."1010,1010

1020 COM VO,FOs8
:FO$="LOCATOR *
1030 GOSUB ’32(* INGSCRN1*®)
s 1040 REM Defaults
1400 GOTD 2000

V 1600 DEFFN‘98 ,
- tRETURN : REM FNKey Trap

1800 DEFFN‘99
tRETURN : REM Error Trap

2000 F=0

2010 F=F+1

2020 IF F>FO THEN 4000

2030 GOBUS ‘34(F)

2050 ON FGOTO 2110,2120,2130,2140,2150, 2160,2170
2110 REM "PRODND * - 001

:GOTO 3900
2120 REM "PRODDESC® - 002
@ :GOTO 2010
2130 REM "PRICE * ~- 003
:GOTO 2010
2140 REM "WHSLOC * - 004
:GOTO 2010
2150 REM "BAYLOC * - 005
:GOTO 2010
2160 REM "BAYPOB * - 006
:GOTO 2010
2170 REM "QUANTITY"* - 007
:GOTO 2010

A

3300 GOSUB ‘B2(F0%)

3930 GOs5LB ‘B6(-V)

3960 GOSUB ‘141(FOS,K$(1),~1)
3970 IF G<1 THEN 2030

3980 REM %

51

O 1l /28 B30 INGPROGE PaGE =
PROGRAM LISTING ‘

CODE

: GOSUB '141(‘PRCDMSTR“,K$,-101)]
3990 GOSUB ‘36
4000 GOSUB ‘S3("Touch EXEC for next inquiry, or CANCEL")
4040 GOSUB ‘34(129)
4070 IF Q<>32 THEN 4000
4170 GOTO 1030

52

The modification of INQPROG2 consists of the insertion of DEFFN'lUl at
line 3980. DEFFN'l41 GETs and unpacks a record from a gpecified file. The
general format of DEFFN'lUl is:

DEFFN'141 (N$,K$,TO)
The following variables are used in this subroutine:

NS The file name of the primary or alternate key file to be
accessed by the data entry program,

K$ The key associated with the desired reoord.

TO The record protect flag (- for non-protected records, + for
protected records), and the position within the work buffer.

The position within the work buffer is the starting position for the field (to
be accessed from the other data file) as listed in the soreen dooumentation
used in the data entry program. In this example, the position within the work
buffer is 101, as is listed in the screen doocumentation for INQSCRNl. If a
field which does not exist in any data file (such as a TOTALS field) is to be
added to the screen, the position within the work buffer must be calculated by
the user. The position within the work buffer must start after the final
position of the last field in the associated screen, For gxample, if a soreen
contains fields up to byte 420, the position within the work buffer for a
field which does not exist in any data file must begin at byte U21.

_ Refer to Appendix A System Resident Maorog f{or more information on
DEFFN'14l. ‘ =

7.2.2 Example 2: Modification of a Type 2 Program

This example uses the data entry program INVOPROG. INVOPROG is a type 2
program (allows new records to be added to the files, but does not allow
modification or deletion of other reqords contained in the file). INVOPROG
allows records to be added to the Invoice Master File (INVOMSTR) using
INVOSCRN. The invoice number is the key associated with the Invoice Master
File. The Invoice Master File contains informatiop on the invoice number,
customer number, ship to address, product number, desggription, and cost.

The Invoice Master File contains some fileldg found in the Product Master
File (PRODMSTR) and the Customer Master File (CUSTMSTR). When INVOPROG is
run, information is called in from the Product Master File and the Customer
Master File, and this information is used to build the Invoice Master File.
The information is called into the hidden fields in INVOSCRN, and then
defaulted to fields within the Invoice Master File. ZINVOPROG, as created by
IDEAS, must be modified to allow access of records from the Product Master
File and the Customer Master File.

Since INVOPROG is a type 2 program, the medifications ocour after the
correct REM statements. The screen used in oreating INVOPROG appears on the
next page. A listing of the modified INVOPROS follows the screen. The
modifications to INVOPROG are highlighted by bragkets. This listing will be
referred to throughout the discussion of the modifisation of INVOPROG.

53

IDEAS System - Data Entry/Inquiiy/Upaate Program Generation Utility Release 1.0

.......
-:::-::::::::---------—------—--:::::::::::::::::::::::::::::::::-:::-::---:::::

Create/revise date: JAN 24 80
File name for program to be generated: "INVOPROG"
File name for screen mask to be used: "INVOSCRN"
File name for data file to be accessed: "INVOMSTR"

Functions to be provided in this program (choose one from the list below): 2

1. Inquiry only
2. ==] Add a new record to the file
z. Add a new record or modify an existing one
y, Add a new record or delete an existing one
5. Ada a new recorda or modify or delete an existing one
6. Modify an existing recora
7. Delete an existing record
8. Modify or delete an existing record
Number of fields required on screen to establish the key to the data file: 1

Mumber of extra disk sectors to be provided for additional application code: 5#

Figure 7-3. INVOPROG Data Entry Program
Creation Screen.

54

B

Ol 724 /B0 INVOPROG PaGE 1
PROGRAM LISTING

1000 REM "INVOPROG® JAN 14 80 TYPE2
@\ 1010 IF 00%(9)<>"M* THEN 1020
:LOAD DC T#2, * IDGLBEEL"1010,1010

1020 COM VO,FOs8
1FO%=" TNVOMSTR®
1030 GOBUB ’32("* INVOSCRN®)
1040 PRINT AT(4,3);BOX(4,26);AT(4,42);B0X(4,26)
. 1400 GOTO 2000

1600 DEFFN‘98
SRETURN : REM FNKey Trap

1800 DEFFN‘99
:RETURN : REM Error Trap

2000 F=0
2010 FaF+1
2020 IF F>FO THEN 4000
2030 GOSBUB ’34(F) ;
2050 ON FGOTO 2110, 2120, 2130, 2140,2150, 2160, 2170, 2180, 2190, 2200, 2210, 2220,
2230 ,2840 ,2250 ,2260 ,2270 ,2280 ,2290 ,2300 ,2310 ,2320 ,&330 ,2340
, 2350 ,2360 ,2370 ,2380 ,2390 ,2400 ,2410 ,2420 ,2430 ,2440 ,2450 ,2460
, 2470 ,248B0 ,2490 ,2500 ,2510 ,2520 ,2530 ,2540 ,2550 ,2560 ,2570 ,
2580 ,2550 ,2600 ,2610 ,2620 ,2630 ,2640
2110 REM ®INVOICE#* - 001
o :GOBUB /56(D%,1)
‘ 1GOBUB ‘46(2,D%$(4))
tF=2
:GOTD 2010

2120 REM "DATE " - 002
:GOTO 2010

2130 REM "CUSTNO " - 003 i
:6OBLB ‘141(°"CUSTMETR" ,K$, ~344) |
¢ IF G=0 THEN 2030

$:GOTO 2010 .
3 2140 REM "CUSTNAM " - 004
:GOTO 2010
, 2150 REM "ADDRESS1" - 005
7 260TO 2010
2160 REM "ADDREBS2" - 006

:GOTO 2010

2170 REM "CITY " - 007
:GOTO 2010

@ 2180 REM "STATE " - 008

!

55

O 1 /248 S BO
PROGRAM LISTING

INVOFPROG

:GOTO 2010

2190 REM ®ZIP ~ - 009
: GOTO 2010

2000 REM "DISCZL * - 010
= GOTO 2010

2210 REM "SHPNAME ® - 011
:GOTO 2010

2020 REM "SHPADDR1® - 012
:GOTO 2010

2930 REM "SHPADDR2" - 013
:GOTO 2010

2240 REM *SHPCITY " - 014
:GOTO 2010 .

2050 REM "SHPSTATE* - 015
2GOTO 2010 :

2960 REM "SHPZIP * - 016
:GOTO 2010 |

2270 REM "GUANSL ° - 017
: X=Q
2GOTO 2010

2280 REM °"PROD#1 " - 018
tGOSUB 141 (*PRODMSTR
s IF @=0 THEN 2030

" K$,-474)

-

:GOTO 2010

2290 REM °"PRODESC1® - 019
:GOTO 2010

2300 REM "DESC#1 * - 020
:GOTO 2010

2310 REM "UNIT1 * - O21
:6OTO 2010)

2320 REM °PRICE#1 * - 022
2X1=X*Q
:GOSUB_’56(23,X1)
:GOTO 2010

2330 REM °COST1 * - 023
2GOTO 2010

56

PaGE

=

0

ey

¢

Ol /24 /780

PROGRAM LISTING

2340 REM "QUAN#2 " - OR4
:IF @=0 THEN 2610
: X=Q
:GOTO 2010

2350 REM °"PROD#2 * - 025

tIF G=0 THEN 2030

I NVORROC

«GOBUB ‘141 ("PRODMSTR" ,K$, -531)

:cOTO 2010

2360 REM "PRODESCR* - 026
:6OTO 2010

2370 REM "DESC#2 * - 027
:GOTO 2010

2380 REM "UNITE2 * - O28B
:GOTO 2010

2390 REM "PRICE#2 ® ~ 029
tX1=X1+X*Q
$GOBUB ‘55(30, X*Q)
:6OTO 2010

2400 REM *CO8ST2 " - 030
*GOTO 2010

2410 REM “GUAN#3 * - 031
:IF Q=0 THEN 2610
1 X=Q -
:6OTO 2010

2420 REM "PRODN3 " - 032

:GOBUB 141 (“PRODMSTR", K¢, ~-588)

:IF Q=0 THEN 2030

$COTO 2010

24230 REM "PRODESC3" - 033
:GOTO 2010

2440 REM "DESC#3 * - 034
:60TO 2010

2450 REM "UNIT3 " - 035
:GOTO 2010

2460 REM °PRICE#3 " - 036
Xi=X1+X*Q
tGOBUB ‘S55(37, X*Q)
:6O0TO 2010

2470 REM °COST3 * - 037

517

PaGE

Ol /24 BO INVORPROG

PROGRAM LISTING
:GOTO 2010

2480 REM "QUAN#4 *° - 03B
tIF @G=0 THEN 2610
: X=Q
:GOTO 2010

2490 REM °PROD#4 *© - 039
tGOSUB ‘141 ("PRODMSTR",K$, -645)
tIF @=0 THEN 2030 '

:GOTO 2010

2500 REM °"PRODESC4® - 040
6070 2010

2510 REM °DESC#4 " woggy v
:GOTO 2010

2520 REM °“UNIT4 " - 042

' :GAaT0 2010

2530 REM "PRICE#4 ° - 043
SXi=X14+X¥#Q
cGOSUB ‘55(44, X#Q)
:GOTO 2010

2540 REM °“COS5T4 ? - 044
:GOTO 2010

28550 REM "GUANSS * - 045
2IF @=0 THEN 2610
tX=@

:COTO 2010

2560 REM "PROD#5S " - 046
:GOBUB ‘141 ("PRODMSTR" ,K$, -702)
¢IF @=0 THEN 2030 '

:GOTO 2010

2570 REM °"PRODESCS® - 047
:GOTO 2010

2580 REM °"DESC#5 " - 04B
:6GOTO 2010

2530 REM “UNITS " - 049
:GOTO 2010

2600 REM *PRICE#S5 " - 050
tXi=X1+X¥%Q
tGOSLB ‘55(51, X#Q)
:GOTO 2010

56

FoadcE

2

T

“y

¢

OVl /24 /80

INVORPROG

PROGRAM LISTING
2610 REM "CDSTS * - 05

:GOBUB ’S5(
sF=51
$6GOTO 2010

52, X1)

2620 REM *SUBTOT * - Og2

t60BUB ‘45(
:6OSUB ‘55¢(
:6OTO 2010

10)
53, X1#G*,01)

2630 REM "DISCOUNT* - 053"

tGOSUB ‘45¢(
GOBUB ‘55¢(
:6GOTO 2010

10)
54, X1-X1#G#, 01)

2640 REM *TOTAL * - 054

$6GOTO 2010

4000 GOSUB ‘53¢
4040 GOSUB ’34¢(

"Touch EXEC to accept, EDIT to modify")
129) o

- 4050 IF Q=240 THEN 2000
4070 IF G<>32 THEN 4000
40BO GOSUB ’142(F08,1)
4090 IF G<>0 THEN 1030

4100 INIT(O9)E$
4110 STR(ES, 35)

="EDIT to modify, or CANCEL®

4120 GOBUB ’35(E%)

4130 GOTO 4040

59

PaGeE

5

The modification of INVOPROG consists of six insertions of DEFFN'lil
(occuring at lines 2130, 2280, 2350, 2420, 2490, and 2560) and five insertions
of DEFFN'S55 (occuring at lines 2320, 2390, 2460, 2530, and 2600. DEFFN'141
allows access of records in another data file, and DEFFN'55 computes the cost
of a line item in the invoice and places this value in a specified field.

DEFFN'141 GETs and unpacks a record from a specified file. The general
format of DEFFN'1M41 is:

DEFFN'141 (N$,K$,TO)
The following variables are used in this subroutine:

N$ The file name of the primary or alternate key file to be
accessed by the data entry program.

K$ The key associated with the desired record.

TO The record protect flag (- for non-protected records, + for
protected records), and the position within the work buffer.

The position within the work buffer is the starting position for the field (to
be accessed from the other data file) as listed in the screen documentation
used in the data entry program. See the explanation in Example 1 for a more
detailed discussion of the position within the work buffer.

Refer to Appendix A System Resident ‘Macros for more information on
DEFFN'141.

DEFFN'55 puts a specified value into the specified field. The general
format of DEFFN'55 is:

DEFFN*55 (A, EO)
where A is the field number and EO is the value to be placed in field A.

Refer to Appendix A System Resident Macros for more information on
DEFFN'55, '

In the first modification, DEFFN'1Y41 is added at line 2130. The fields
in lines 2140 through 2200 are the fields to be read from the Customer Master
File. The fields in 1lines 2210 through 2270 are the fields in INVOSCRN to
which the fields from the Customer Master File are defaulted.

In the second modification, DEFFN'141 is added at line 2280. The fields
in lines 2290 and 2320 are those to be read from the Product Master File,
The fields in lines 2300 and 2320 are the fields in INVOSCRN to which the
fields from the Customer Master File are defaulted. DEFFN'55 is added in line
2320 (in the second modification) to compute the cost of product # one. This
value is then placed in field 23, COST1l, at line 2330. Modifications three
through six follow the same form and logic as the second modification. Since
INVOSCRN contains five lines for different products on the invoice, it is
necessary to repeat this modification for products one through five.

60

T.2.3 Example 3: Modificiation of a Type 5 Program

This example uses the data entry program WHRSPROG. WHRSPROG is a type 5
program (allows new records to be added to the files, and allows modification
and deletion of other records contained in the file). WHRSPROG allows data
manipulation on the records contained in the Warehouse Master File. The key
to the Warehouse Master File is Product Number. The Warehouse Master File
contains information on the product number, 1location, and quantity. To
enhance the effectiveness of this data entry program, the program is modified
to display certain important product information from the Product Master File
(PRODMSTR).

Since WHRSPROG is a type 5 program, the modifications occur both after
the correct REM statement and in the area after line 3980 (specified CODE in
the unmodified program). The screen used in creating WHRSPROG is provided
below. A listing of the modified WHRSPROG follows the screen. The
modifications to WHRSPROG are highlighted by brackets. This listing will be
referred to throughout the discussion of the modification of WHRSPROG.

IDEAS System - Data Entry/Inquiry/Update Program Generation Utility Release 1.0

Create/revise date: JAN 24 80 :
N) File name for program to be generated: "WHRSPROG"
File name for screen mask to be used: "WHRSSCRN"

File name for data file to be accessed: "WHRSMSTR"

Functions to be provided in this program (choose one from the list below): 5

1. Inquiry only
2. Add a new record to the file
2, Add a new record or modify an existing one
y, Add a new record or delete an existing one
5. ==] Add a new record or modify or delete an existing one
6. Modify an existing record '
Te Delete an existing record
8. Modify or delete an existing record
Number of fields requirea on screen to establish the key to the data file: :

Number of extra disk sectors to be provided for additional application code: 5#

Figure 7-4., WHRSPROG Data Entry Program
Creation Screen.

61

O 1 A2 80
PROCGRAM LISTING

WHR 'SP RO

1000 REM "WHRSPROG" JAN 14 BO TYPEL
1010 IF 00%(9)<>"M" THEN 1020 :
:L0AD DC T#2, " IDGLBSEL 1010, 1010

1020 COM VO,FOsB
SFO%="WHRSMSTR"

1030 GOSUB ‘32("WHRSSCRN")

1040 REM Defaults

1400 GOTO 2000

1600 DEFFN’98
sRETURN : REM FNKey Trap

1800 DEFFN’99
sRETURN 2 REM Error Trap

2000 F=0
2010 F=F+1

2020 IF F>FO THEN 4000 ' .

2030 GOBUB ' 34(F)
2050 ON FGOTO 2110,8120,2130,2140,2150,6160
2110 REM "WHBLOC = - 001

£GOTO 2010

2120 REM "BAYLOC * - 002
2GOTO 2010

2130 REM °“BAYPOS " - 003
2GOTO 3800

2140 REM °PRODNO " - 004
sGOSUB ‘141 (*PRODMSTR® ,K$, -101)
s IF @=0 THEN 2030
2GOTO 2010

2150 REM "PRODDESC® - 005
:GOTO 2010

2160 REM "QUANTITY" - 006
:GOTO 2010

3900 GOSUB ‘B2(FO%)
3910 V0=V
3920 IF FH(W<>® * THEN 2010
3930 GOSUB ‘B6(-V)
3040 COSUE ’SS8(ABS(V),0,K$(1),0)
3950 IF @=0 THEN 2010
3960 GOSUB ‘141 (FO%,K$(1),1)
3970 IF Q<1 THEN 2030 .
3980 GOSUB ‘45(4)
:GOSUB ‘141 ("PRODMSTR® ,K$,~101)]
3990 GOSUB *36

62

PG EE

1

w;

Ol /24 /20 WHRSPROG PaGE
PROGRAM LISTING

@ 4000 E$="Touch EXEC to accept, EDIT to modify®"
4010 IF F$(VO)=" * THEN 4030
4020 STR(ES,37)=", FN’9 to delete"
4030 GOBUB ‘S3(E%)
4040 GOBUB ‘34(129)
4050 IF Q=240 THEN 2000
: 4060 IF Q=9 THEN 4140
- 4070 IF Q<>32 THEN 4000
4080 GOSUB ‘142(FO0%,1)
4090 IF G<>0 THEN 1030
4100 INIT(O9)ES® :
4110 STR(ES,35)="EDIT to modify, or CANCEL®
4120 COBUB ‘35(E$)
4130 GOTO 4040

4140 IF F#(VO)=" * THEN 4000

4150 INIT(20)Z%()

4160 GOBUB '142(FO0%,0) ' N
4170 GOTO 1030

Y

63

The modification of WHRSPROG consists‘of tvwo insertions'of DEFFN'141:
one at line 2140, the other at line 3980. DEFFN'l41 GETs and unpacks a record
from a specified file. The general format of DEFFN'141 is:

DEFFN'141 (N$,K$,TO)

The following variables are used in this subroutine:

N$ The file name of the primary or alternate key. file to be
accessed by the data entry program.

K$ The key associated with the desired record. !

TO The record protect flag (- for non-protected records, <+ for

protected records), and the position within the work buffer.

The position within the work buffer is the starting position for the field (to
be accessed from the other data file) as listed in the screen documentation

used in the data entry program. See the explanation in Example 1 for a more
detailed discussion of the position within the work buffer.

6U

©

CHAPTER 8
REPORT/FORM PRINTING UTILITIES

8.1 OVERVIEW OF THE REPORT/FORM PRINTING UTILITIES

The Report/Form Printing Utilities are used to define a formatted report
including several levels of headings and footers, control breaks, mathematical
operations, and record selection criteria. Information required to define the
report is stored in a report definition file. In addition to this file, the
Report Utilities also generate BASIC code used to print the report using up to
four different data files.

The report definition file ocontains specifications for both report
format and report content. Format specifications incude the report title,
page headers, and page footers, as well as field sequence and spacing.
Content specifications include new fields (typically summation fields) for
created reporting purposes, test criteria used to determine which records will
appear on the report, a "sequence" file which will determine the sort order of
records appearing on the report, and specifications for setting control breaks
and totalling numeric fields.

The Report/Form Printing Utilities are provided to give the user the
option of generating reports through a utility. Thus, the programming time
needed to generate reports is eliminated. The sophisticated user may,
however, desire to code his or her own ocustomized reports. User-developed
reports can be tied into IDEAS-based systems with a minimum of difficulty.

8.1.1 Definition of Terms Used in the Report/Form Printing Utilities

A number of terms referring to specific aspects of report formatting are
used throughout this ochapter and the Report/Form Printing utilities.,
Definitions of these terms are provided below for the convenience of the user.

Page header: Is the report title specified by the user. The page header
appears at the top of each page of the report.

If line one of the report mask contains any data or text,
the system assumes this to be the page header, and if a
non-zero page length is specified, this line will be printed
at the top of each new page.

If the page header line contains the text MMDDYY or MMM DD
YY, the date will be printed in that format in its place.

If the page header line contains the text Page PPP, the page
number will be printed.

65

MMDDYY and Page PPP are automatically provided by default on
line one as well as the specified report title (page
header). These must be deleted from the report mask if not
desired.

Group header (optional): That set of line(s) which comprise a heading for a
particular group (can consits of text and/or fields). The
group header is printed once, and is printed again only
after'a'group'field”break'or'the'beginning‘of'a‘new'page'is
encountered. GCroup field breaks are inserted during report
mask definition.

Record header (optional): A range of lines on the report mask consisting of
text and/or fields that will be printed after the group
header, then only after a record break field has been
encountered. Record break fields are inserted during report
mask definition.

"Record item: A range of lines on ‘the report mask consisting of text
and/or fields that will be pninted for each valid record
found in processing the sequence key file and passing the
logical record mask tests.

Record footer (optional): A range of lines on the report mask consisting of
text and/or fields that will be printed when a record break
field is encountered. After printing, any math fields will
be set to zero (record level sub-totals). The record footer
follows the record header in report mask definition.

Group” footer (optional): A range of -lines on the report mask consisting of
text and/or fields which will be printed only when a group
break field is encountered. After printing, any math fields
in this range will be set to zero (group level sub-totals).

Report footer (optional): A range of lines on the report mask consisting of
text and/or fields which will be printed at the end of the
report (report totals). The record footer is specified
during report mask definition.

Page"footer: If a non-zero page length is specified, and if any text
and/or fields are specified on the last two lines of the
report mask, these will be printed on the last two specified
lines of the page. Ex. - Assume a 132 col report (with a
report mask length of 40 lines) and a specified page length
of 60 lines. Lines 39 and 40 of the report mask will be
printed at lines 59 and 60 of each page. Note: Math fields
appearing -on these lines will be set to zero after printing
each page (page totals).

66

gf“

S

¢

LC)

Math operations

Constants:

Default key range:

Up to 32 math operations may be specified to be performed
for each record processed., Each operation may be of the
form:

N = (N2 + N3) + (N4 + N5) Dec = D

Where: N1 Field name
N2 to N5 = Field names or constants
"4+ Represents any math operator (+ - * /)
D = Decimal places

Up to 10 constants may be specified for math funetions - up
to 8 numeric characters (0 to 9 and +, =, and decimal point).

A defaut low and high key may be specified as limits on the
sequence file. These may be optionally modifiable by the
user at run time.

Logical record masks: Up to 4 fields may be tested for each record read. Only

those records which meet all, specified conditions will be
included in the report. For each test, specify:

a., Field Name
b. Test (= y ’ l. = '=, l)
¢. Test Value (up to 64 characters).

Both the logical record masks and the default field values
may be made optionally modifiable at run time, either
separately or combined.

8.2 REPORT/FORMS ' PRINTING UTILITIES: 'CREATION/REVISION

Report creation and revision follow the same format and use the same
screens, the only difference being that when a report is revised, the user
enters the report name, and the report screens appear wih all the values for
the report to be revised entered.

67

The report program module screen is pictured below with values entered
from the master example. This screen will be referred to throughout the

discussion of the Report/Forms Printing Utilities.

IDEAS System Utility - Report Program Module for "WREP0OOOO" Release 1.0

I i ittt

Report Title: "Herman Melville Co. Warelouse Report "
Sequence File: "WHRSMSTR" Page width (col) = 80 Length (rows) = 66 Date 012180
Adaitional files: File Name Key Fiela (onstants (CONSTNTO,etc) CO=1 -

"PRODMSTR"/"PRODNO " Cl=0 . Ce=0 C3=0
" nyn " C4=0 C5=0 c6=0
" nym " C7=0 €8=0 C9=0

n” L)

Default low key
Default high key N2 222"

Field Name Op Mask: Process only records which meet the following =, J,]=,L,[=,[]
LU " " L

" n n
" L L
" L "

Run time options: (O=none, l=zaefault key limits only, 2=masks only, 3=both) 3

Report Detail Group Recora Recora Record Group Report Break
(0=none E6=max) Header Header Item Footer Footer Footer Fielas
1st line 2 € 10 1z 16 20 Record "BAYLOC *
Last line 5 [*] 1z 15 19 z2 Group "WHSLOC "
Math Functions: Current function is # : of =2 , (Operators: + , - , & , /)

"TOTALZ " = ("IOTAL: " + "CONSTNTO") (" won

") Dec places: 0

NOTE: At any time - FN'l=Mask eait, FN'2 = Field names, FN'3 = Math, FN'20 = End

EDIT = modify, FN'l = mask, FN'2 = fielas, FN'3 = math, FN'20 = ena #

'Herman Melville Co. Warehouse Report MMM DD YY Page PPP
Warehouse Number ##
Bay Location ##

Bay Pos Product# Quantity Description Unit Cost

#4 HHH A4 #444 HGHHH 44 4G 444 4144 44 4Lt YU4Y

Total number of different products in this bay area ###

Total number of aifferent broaucts in this warehouse ###

Total number of different products ###

[Row 21 Col 035] FN'0 = Define/Edit field, FN'20 = Return to main module
Figure 8-1. The Report Program Module Screens.

The example used in Figure 8-1 is taken from the master example, This
report, WREP0OO0O, is a warehouse report generated for the Herman Melville Co.

which allows the company

to keep track of the warehouses.

8.3 REPORT CREATION/REVISION

Select the operation desired (creation/revision/documentation)

For creation/revision, follow the instructions to get to the appropriate
file. Note: the file name for the report program MUST contain at least one

uppercase letter.

68

o>

da

[

Enter the report title and the file name for the primary or alternate
key file which is to supply the "sort" order for the records in the report.
Then, enter the page width in columns (80-158). Note: not all printers will
support all possible page widths.

The maximum number of definable report mask lines will be displayed on
line 18 of the screen. This has no bearing on the possible number of lines to
be specified as the page length. It mereltells you how many different lines
may be used to define the various portions of the report.

At any time after the page width has been specified, the report mask may
be created and/or edited by touching FN'Ol. This will bring you to the report
mask editor. Touching FN'20 while in the report mask editor will return you
the current maodule at the same field as when FN'0l was touched.

Enter any additional files to be accessed by the report. Note: a
maximum of three additional files may be used. The system does NOT check to
be sure that the 128 field total has been reached, nor does it check to be
sure that the 1008 byte total buffer size has not been exceeded. That remains
the user's responsibility. This also pertains to fields which are created in
the report mask editor.

For each additional file, a default key field name is supplied. THIS
NAME IS PROBABLY NOT CORRECT! It is name of the key field as specified in the
file just named. What you want is the name of the field in the sequence file,
or a previously defined additional file which will supply the key to access
the current file. Often the field names will be different, although they may
be the same. '

If you do not remember the field names, and do not have the file
documentation handy, you may review the currently defined field names by
touching FN'02.

Enter any math constants desired for computations in the report module
(up to 10 constants may be entered). Next, enter the default values for the
lowest and highest keys to processed in the sequence file. (Default values
are supplied by the program which will cause the entire file to be processed.
Touch EXEC in both cases to accept the system-supplied default values.)

Enter up to four fields to be checked in each record processed., If a
field name is entered, a cmparison operator and a test value are required. If
any tests are specified, only those records which pass all of the specified
tests will be processed.

Specify the run-time options:

0 - Means there are no run-time options

1 - Means the default low and high sequence file keys default values may
be modified by the operator at run time. >

2 - Mean:ithe four field record tests may be modified by the operator at
run time.

3 - Means that either of the above may be modified by the operator at
run time.

Specify the starting and ending line numbers on the report mask which
define each of the following sections of the report to be used.

69

A.
B.
C.

D,
E.
F.

Group header
Record header
Record item

NOTE:

If "form filling" rather than "report" format is
to be used, record item is the only parameter to
be used, and must start at line 1 and end at line
N where N = the number of lines available for
definition in the report mask.

Record footer
Group footer
Report footer

NOTE:

A zero for the starting line number in each of the
above will cause a zero to be entered automatically
as the ending line number and that parameter will not
be used in the report.

The report mask should have been defined before the
above have been specified. The mask may be created
or editied at any time after the page width has been
input by touching FN'Ol.

Specify the record and group break fields, if any. The break field is a
field which causes the record and/or group footer to be printed when its value
changes in a new record. .

Define any desired math functions as follows:

Touch FN'03

Enter the number of the math function (1-32) . The math functions
must be in order starting with number 1.

Enter the destination field name (this must be a defined field. It
may have been previously defined in one of the data files used by
the report, or it may a field that has been newly defined in the
report mask editor.)

Enter the remaining field names (or constant names) and the desired
operators. A blank field name iwll complete the math operation if 4
operation fields are not input. To use one of constants defined
above, the "field name" is CONSTNTO - CONSTNT9.

70

({4

»y

(‘I

E. Enter the desired number of decimal places (this will be a default
value from the destination fileld parameter, and will cause the
result to be rounded to the specified number of decimal places.)

8.4 REPORT MASK DEFINITION

To define and/or edit the report mask, touch FN'0l at any time after the
page width has been entered. The first 1line on the report mask will
automatically have the report title starting at the left margin. It will have
the date specification (MMDDYY) and the page number specification (Page PPP)
ending at column 80.

If you do not want any of these items, delete them from the line. If
the "Page PPP" is left anywhere on the first line, and if the "form filling"
format is not used, and if there is a specified page length, the page number
will be printed on the first line of each new page in the report.

Similarly, the date will also be printed if the date specification is
left on the first line, and all of the other .conditions specified into the
previous paragraph are true. The date may be specified in either of 2 ways
(Ex. August 27, 1979):

1. MMDDYY formt (default format) 082779
2. MMM DD YY format AUG 27 79

The entering of text on the report mask is very similar to the entering
of text in the screen definition module (qv). ie., all of the EDITING keys
operate, etc. The primary differences in the text entry between the report
mask editor and the screen mask editor are that:

1. The screen scrolls to handle greater than 80 columns

2. The screen scrolls vertically to handle more than 24 lines

3. The "END" key, (FN'04) moves the cursor to row R, column C where R
is the maximum number of lines that may be defined and C i1s the page
width.

The definition of fields, however, varies significantly from thescreen
generation routines.,

To return to the report definition module from the report mask editor,
touch FN'20. If you have inadvertantly entered the field definition module,
edit a field then return to the mask editor and touch FN'20.

To define a field in a report:

1. Position the cursor at the row and column on the report mask where
you want the field to begin and touch FN'0 (only when in the report
mask editor) .

2. A 1list of all currently defined fields will be displayed in
row/column format. Those fields already used will be underscroed.
(a field may only be used once in a report)

71

3. To use an already defined field, enter the row and column (where the
field appears in the field 1list, NOT the row and column on the
report mask definition screen). This 1is necessary instead of
entering the field name because of the possibility if having several
fields with the same name from different files.)

NOTE:

It is important to remember the order in which the
files were specified if you are using more than one
file. The source files are not specified int the
list of field names, but the fields are listed in
alphabetic order by file with the files in the order
in which they were specified. Newly defined fields
appear at end of the 1list and may not be in
alphabetic order.

4, The field name, length, number of decimal places, and row & column
on the vreport mask will appear. EXEC through these fields
(modifying any that you desire). After this has been completed, the
system will automatically return to the report mask editor.

5. To review/revise a field already specified for the report, position
the cursor anywhere in the field and touch FN'0, then return to step
4 above.

6. To define a new field, execute step 1 above, then touch EXEC (or
enter "0") when the cursor is in the ROW field. This will cause the
next available position in the 1list to become the new field that is
deing defined. Step through the remaining parameters as in step Y
above, but entering a field name, length, and number of decimal
places. A numberic field should not exceed 13 bytes in length.

When you have completed the report mask editing and have returned to the
report difinition module, and it has been completed, touch FN'20 to end the
report definition. This will return you to the report menu, and vou may
document the report if you desire.

T2

3

L)

(&

The Herman Melville Co. Warehouse Report is pictured below with certain
salient points highlighted by additional text.

Ferman Melville Co. Warehouse Report JAN &4 80 ‘Page 001

Warehouse Nunter Cl
EISCSCEEREEZ2SEE3EC

Bay Location A}

Bay Fos Froauote Quantity Description Unit Cost
::EBSlHBSB:S:!II:::EBE:I:!:::l!==R==B:BEBEEEEEEIHBl=Il=¢l!!lIEGEHEIIBIHGIEEBEBHB
0l ccoocccl et Still life with pumpkin 9.95
10 0000000¢ 1C Folaing butcher block table 249,95

.

Total number ot aifferent proaucts in this bay area H

Bay Locatior BB

Bay Pos Proauct¢ Quantity Description Unit Cost
EIEEBEEHBﬂﬂlEElIlEBBBIB:GEIIESIBBEEEGESBEllﬂBIBSBBSSIEI:SBEII!H!!IIBUBISIIIG!HB!
0l 00000007 50 RKZ01l-1 "REDHEAD" :.%in high 23,95
0z 00000008 7% RKZ0z-T "BACK TO SCHOOL" 5.5in 3.95
03 00000009 : RKZ03=T "CARROLER" 5.5in high 24.95

Total number of aifferent proaucts in this bay area 3

Total number of aifferent proaucts in this warehouse 5

Warehouse Number 02
oEscssscoeesconEnEs

Bay Location AA

Bay Pos Produoté Quantity Description Unit Cost

llllllll!lllllﬂllllllﬂllBﬂllnlllllllllllllllllﬂtllllllllIllllﬂ!l!llllllﬂlllﬂl!ﬂl
o 00000003 50 Solia o, hurriolne'canulo hlar 15,95
02 00000004 1000 Six copper napkin rings 14,95
0% 00000005 2000 Fringea napkins $.95

Total number of aifferent products in this bey area K]

Total number of aifferent products in this warehouse :

Herman Melville Co. Warehouse Report JAN 24 80 Page 002

Waretiouse Number 0%
SEENEDEENDERECDGCER

Bay Location CC

Bay Pos Producty Quantity Deseription Unit Cost

o 00000006 50 Initialized wine glass 12.95
Total number of aifferent proaucts in this bay area 1

Total number of aifferent proaucts in this warehouse 1

Total number of aifferent products §

Figure 8-2. The Herman Melville Co. Warehouse Report.

73

CHAPTER 9
IDEAS SUPPLEMENTARY DATA FILE UTILITIES

9.1 OVERVIEW

The IDEAS Supplementary Data File Utilities are contained on the IDEAS
application utilities diskette. The IDEAS Supplementary Data File Utilities
are a group of utility programs provided with IDEAS designed to accent the
functionality of IDEAS generated applications. The utilities consist of a
menu module, which can be interfaced with any IDEAS generated applications
and, then, accessed from a menu created through the Application Menu Program
Utilities, and utility programs which provide specific user functions. These
functions include check file status (percent full, ect.), protect or release
all records in a file (2200MVP and 2200VP only), reconstruct the key files,
and convert to or from Wang standard telecommunications file format. The menu
module and utilities must be copied to specific device addresses selected by
the user in the "IDEAS System Utility - Application Device Selection Module",
These device numbers, and neccesary program and data files are identified in
Section 9.2, IDEAS SUPPLEMENTARY DATA FILE UTILITIES INSTALLATION PROCEDURES.

9.1.1 IDEAS Supplementary Data File Utilities Menu‘Module'

The Supplementary Data File Menu Module consists of one application
program, IDFU-3M0, and two data files, idfu-3m0 and idfu-3ml. The menu module
is hardware dependent and will display the proper menu for either 2200T or
2200MVP and 2200VP. Four utilities are available for the 2200T. These are:

Check File Status

Reconstruct key file(s)
Convert IDEAS data file to Wang Telecommunications file format

Convert Wang Telecommunications file to IDEAS data file format

Two additional utilities are available for the 2200VP and MVP. These
utilities are: .

Protect all records in a file
Release all records in a file

The Supplementary Data File Utilities menu display may be modified
through the Application Menu Program Utilities to include other user developed
utilities or password security. For a complete discussion of the Application
Menu Program Utilities see Chapter 6, Application Menu Program Utilities. For
these special menu modules it is not necessary for the user to associate a
program name or load message with the "Cancel" key. The function key (FN')

T4

B

LS

fﬁg

o)

€

defined by the user as the nCancel" key, in the Application Initialization
Utility Module, will automatically exit to the menu from which the

Supplementary Data File Utilities Menu Module was initially loaded.

NOTE

Before user modification of the 2200T menu module,
idfu-3ml, a dummy menu application program IDFU-3M1 must be
created. This can easily be accomplished by copying and
renameing the menu module application program IDFU-3MO.

9.1.2 Check File Status

The Check File Status utility was designed to provide IDEAS applications
users with an to easy to use inquiry application which provides important data
file status information. This utility can be accessed by depressing FN' 00 of
the Supplementary Data File Utility Menu Module. An input screen is displayed
and the user is prompted to enter a filé name for the data file to be
reviewed. If the file name is less. than eight characters, the user must enter
a RETURN when the name is complete in order to complete this entry; if the
name is a full eight characters, entry is automatically terminated on the
eighth character., If the file does not exist or has not been opened by the
nSTART" module, an error message is displayed and the user has the option to
enter a different file name, or exit from the utility (SF'31). If a valid
data file name has been entered a second utility screen then displays the
following information:

Number of records specified The number of records specified for the
data file in the IDEAS Data File
Performance Option Selection Module of
the Data File Utilities.

Number of records provided The number of records specified + n%
distributed free space. (nominally, n =
5%, however this may be different
dependent on key length)

Number of records now used The number of data records in the file.

Number of records available The number of records which can be added
to the file before 100% Full (actual)
occurs.

% Full (as specified) The percent full as based on the number

of records specified by the user during
file creation.

% Full (actual) The percent full based on the actual

number of records provided for during
file creation.

75

Number of overflow records The number of keys which have overflowed
from one bucket to another.

Overflow percentage A calculation based on, Number of
overflow records / Number of records now
used * .01

Maximum possible number of records/bucket: A calulation based on, Number
of records provided / Number of buckets.

Maximum actual current records/bucket: The largest amount of records
contained in any one bucket of the file.

Minimum actual current records/bucket: The smallest amount of records
contained in any one bucket of the file.

Average actual current records/bucket: A calculation based on,
bl+b2+b3+bn... / Number of buckets in
the file (Where b = The number or
records in each bucket),

When all the file status information has been displayed the user has the
option of returning to the Supplementary Data File Utilities Menu Module by
pressing RETURN or exiting to the menu from which the Supplementary Data File
Utilities Menu Module was loaded by fouching the FN key specified as the
"Cancel" key during the "START" program generation.

9.1.3 Protect All Records in a File (2200MVP & 2200VP)

The Protect all records in a file utility was designed to provide the
user with a way to protect all records in a file at the record level by the
"using" partition or CPU. This utility is extremely useful in that access of
existing records in a file can be limited to one partition, in 2200MVP
configurations , or one CPU in multiplexed 2200VP configurations. For
information concerning record protection see Chapter 4, Data File Utilities,

The utility can be accessed by pressing SF' 01 of the Supplementary Data
File Utilities Menu Module. An input screen is disgplayed and the user is
prompted to enter a file name for the records to be protected. If the file
name is less than eight characters, the user must enter a RETURN when the name
is complete in order to complete this entry; if the name is a full eight
characters, entry is automatically terminated on the eighth character, If the
file does not exist or has not been opened by the #START" module, an error
message is displayed and the user has the option to enter a different file
name, or exit from the utility by pressing the SF' key specified as the
"CANCEL" key in the "START" program generation module.

If a valid data file name has been entered the utility then displays the
number of records provided for in the file. The user may continue and protect
the records by keying RETURN, or cancel by touching the SF key specified as
the "Cancel™ key. Successful execution of this utility returns the user to
the Supplementary Data File Utilities Menu Module, cancellation will return

the user to the menu from which the Supplementary Data File Utilities Menu
Module was loaded.

76

[

1

2]

9.1.4 Release All Records in a File (2200MVP & 2200VP)

The Release all records in a file utility was designed as a counterpart
to the Protect all records in a file utility. The utility, when executed,
will "turn off" the record protect byte set by the Protect all records in a
file utility. With the record protect byte "turned off" file access is
allowed from any calling partition or CPU. :

This utility can be accessed by pressing FN' 02 of the Supplementary
Data File Utilities Menu Module. An input screen is displayed and the user is
prompted to enter a file name for the records to be released. If the file
name is less than eight characters, the user must enter a RETURN when the name
is complete in order to complete this entry; if the name is a full eight
characters, entry is automatically terminated on the eighth character. If the
file does not exist or has not been opened by the "START" module, an error
message is displayed and the user has the option to enter a different file
name, or exit from the utility by pressing the SF' key specified as the
"CANCEL" key in the "START" program generation module.

If a valid data file name has been entered the utility then displays the
number of records provided for in the file. The user may continue and protect
the records by keying RETURN, or cancel by touching the SF key specified as
the "Cancel" key. Successful execution of this utility returns the user to
the Supplementary Data File Utilities Menu Module, cancellation will return
the user to the menu from which the Supplementary Data File Utilities Menu
Module was loaded. ,

9.1.5 . Reconstruct Key File(s)

The Reconstruct key file(s) utility was developed to provide end users
with a procedure by which damaged key files can be rebuilt quickly and
easily. The utility;

Initializes any alternate key files.

Initializes the primary key file index.

Determines primary key composition, length, field position
within the data record, and sort order from information
contained in the primary key file data file definition

Determines any alternate key composition, length, field
position within the data record, and sort order from
information contained in the alternate key file data file
definition

Reads the existing data records and reconstructs the primary
data file index for complete records or deletes partial
records

Reconstructs associated alternate key files

77

The reconstruct key file(s) utility can be accessed by pressing FN' 03,
for 2200MVP & 2200VP, or FN' 01, for 2200T, of the Supplementary Data File
Utilities Menu Module. An input screen is displayed and the user is prompted
to enter a file name for the key file to be reconstructed. The user must

enter a PRIMARY FILE name, an alternate key file cannot be used for
reconstruction. Alternate key files contain only keys and pointers to the
data records in the primary data file. '

If the file name is less than eight characters, the user must enter a
RETURN when the name is complete in order to complete this entry; if the name
is a full eight characters, entry is automatically terminated on the eighth
character. If the file does not exist or has not been opened by the "“START"
module, an error message is displayed and the user has the option to enter a
different file name, or exit from the utility by pressing the SF'!' key
specified as the "CANCELY key in the "START" program generation module.

A second utility screen is displayed containing the names of the primary
key file and its associated alternate key files (if any exist) that are to be
reconstructed. The user may continue key file reconstruction by touching
RETURN, or abort the procedure by pressing the FN key defined as the "Cancel"
key. Successful execution of this utility will return the user to the
Supplementary Data File Utilities Menu Module, cancellation returns the user
to the menu from which the Supplementary Data File Utilities Menu Module was
loaded.

NOTE

If the actual data records are damaged, reconstruction will
delete keys and data for the damaged records. Damaged data
records can not be reconstructed. If relative Sector 0 of
the primary data file, which contains data file parameters,
is damaged the key file reconstruction utility will apend.

It is strongly suggested that BACKUP copies of data file definitions and
primary data files be kept. BACKUP copies of primary data files can easily be
created and maintained by using the supplementary data file utility - Convert
IDEAS data file to Wang Telecommunications file format. The data records in
these BACKUP copies can then be easily restored to the online files by using
the utility - Convert Wang Telecommunications file to IDEAS data file format.

9.1.6 Convert IDEAS Data File to Wang Telecommunications File Format

The Convert IDEAS data file to Wang Telecommunications file format
utility was designed and implemented to provide the user with an easy to use
conversion process by which IDEAS HIKAM files may be converted into Wang
standard telecommunications format for subsequent data transmission. . Files
converted from IDEAS data file format to Wang telecommunications file format
may be transmitted to host or remote sites using any of the Wang
Telecommunications Emulators.

78

@\

This conversion utility can be accessed by depressing SF' 04, for
2200MVP & 2200VP, or SF' 02, for 2200T, of the Supplementary Data File
Utilities Menu Module. A data entry screen is displayed and the user 1is

prompted to enter;

A valid input IDEAS HIKAM file name

If the file name is less than eight characters, the user must
enter a RETURN when the name is complete in order to complete
the entry; if the name is a full eight characters, entry is
automatically terminated on the eighth character. If the file
does not exist or has not been opened by the "START" module, an
error message is displayed and the user has the option to enter
a different file name, or exit from the utility by pressing the
SF' key specified as the "CANCEL" key in the "START" program
generation module.

An output Telecommunications file name

If the file name is less than eight characters, the user must
enter a RETURN when the name is complete in order to complete
this entry; if the name is a full eight characters, entry is

automatically terminated on the'eighth character.

An output address for the Telecommunications file

The

Entry is automatically terminated on the third character.

If an invalid or unattached device is specified, an error
message is displayed and the user must reenter a valid device
gselection or exit from the utility by pressing the FN™" key
defined as the "CANCEL" key. If the ouput file name entered
currently exists on the output device selected a warning message
is displayed and the user may touch RETURN to abort utility
execution or enter NO to the prompt and press RETURN to
continue. If the user aborts the utility at this point the
parameters are cleared and the user is returned to the first
input fiels of the data entry screen. If the user continues the
the number of sectors to be reserved for the output file will
default to the number selected when the file was originally
created. The TC file created will overwrite the previously
catalogued TC file.

number of sectors to be reserved for the output file

If the entry is less than five digits, the user must enter a
RETURN when the entry is complete in order to complete this
entry; if the entry is a full five digits, entry is
automatically terminated on the fifth character. If user
chooses to overwrite a previously created TC file, this
parameter will default to the number of sectors previously saved
on the output platter.

79

Whether or not output records are to be concatenated

Non-concatenated records are padded with spaces at the end of
the output record to produce 80 character records. If the input
record is longer than 80 characters the output records will be
multiples of 80. On the other hand concatenated records are not
padded, input records are written to 80 character records with
one record starting at the end of another record. For example
suppose we have a 65 character input record. IF these records
are concatenated, the first record of the input file will be
written to the first 65 bytes of the output record, the second
input record would then be written to the last 15 bytes of the
first output record and first 50 bytes of the second output
record. If these records had not been concatenated each 65 byte
input record would be padded to 80 bytes. Input record one would
be ouput record one, input record two would be output record two
and so on,

If an invalid selection is specified an error message is
displayed and the user must reenter a valid selection or exit
from the utility by pressing the FN' key defined as the "CANCEL"
key.

Up to four logical tests for input records to be processed

The choice of using logical field tests is optional. Stringing
of logical tests is restricted to the "AND" conjunction only.
If the field name is less than eight characters, the user must
enter a RETURN when the name is complete in order to complete
this entry; if the name is a full eight characters, entry is
automatically terminated on the eighth character. If the field
does not exist, in the record, an error message is displayed and
the user has the option to enter a different field name. The
user then enters a mathamatical operator, if the operator is
less than two characters, the user must enter a RETURN when the
entry is complete; if the entry is a full two characters, entry
is automatically terminated on the second character. If the
operator is invalid an error message is displayed and the user
has the option to correct the entry.

After entering the field to be tested and the operator, the user
then enters a value by which to test the field within each
record. This value should match the format and length of the
field parameters in the record. For example if the user wishes
to test FIELD00), which is five characters long, numeric only
and zero filled. The test value to write output records where
FIELDOOl is greater than zero must be 00000.

80

£ 4

[¥]

NOTE

All records should be released (unprotected) before
converting to Telecommunications format. Protected records
cannot be written when converting back to IDEAS file
format. Alternate or primary key file names may be entered
for the input file.

After all necessary information has been entered, the user can continue
by pressing RETURN, or cancel by touching the FN key specified as the "Cancel"
key. Successful execution of this utility will return the user to the
Supplementary Data File Utilities Menu Module, cancellation will return the
user to the menu from which the Supplementary Data File Utilities Menu Module
was loaded.

9.1.6 Convert Wang Telecommunications File to IDEAS Data File Format

The Convert Wang Telecommunications file to IDEAS data file format
utility was designed as a counterpart to the Convert IDEAS data file to Wang
Telecommunications file format utility. Files previously converted from HIKAM
to Telecommunications format can be easily converted back to IDEAS HIKAM file
format to update online data files.

.The utility can be accessed by depressing FN' 05, for 2200MVP & 2200VP,
or FN' 03, for 2200T, of the Supplementary Data File Utilities Menu Module. A
data entry screen is displayed and the user is prompted to enter;

A valid output IDEAS HIKAM file name

If the file name is less than eight characters, the user must
enter a RETURN when the name is complete in order to complete
this entry; if the name is a full eight characters, entry is
automatically terminated on the eighth character. If the file
does not exist or has not been opened by the "START" module, an
error message is displayed and the user has the option to enter
a different file name, or exit from the utility by pressing the
FN' key specified as the "CANCEL" key in the "START" program
generation module.

An input Telecommunications file name
If the file name is less than eight characters, the user must
enter a RETURN when the name is complete in order to complete

this entry; if the name is a full eight characters, entry is
automatically terminated on the eighth character.

81

An input address for the Telecommunications file

Entry is automatically terminated on the third character.

If an invalid or unattached device is specified an error
message is displayed and the user must reenter a valid device
selection or exit from the utility by pressing the SF' key
defined as the "CANCEL" key. If the input file name entered
does not exist on the device selected an error messgae is
displayed and the user may touch reenter a valid input file name
or exit from the utility by pressing the FN' key specified as
the "CANCEL" key in the "START" program generatioci module.

Whether or not input records are concatenated

It is imperative that the correct selection be made concerning
telecommunications record concatenation. If the wrong selection
is made the output data file may be damaged, or incorrectly
formatted records may be written into the output file,

After all necessary information has been entered, the user may continue
by keying RETURN, or cancel by touching the. FN key specified as the "Cancel"
key. Successful execution of this utility will return the user to the
Supplementary Data File Utilities Menu Module, cancellation will return the
user to the menu from which the Supplementary Data File Utilities Menu Module

was loaded.

9.2 IDEAS SUPPLEMENTARY DATA FILE UTILITIES INSTALLATION PROCEDURES

Certain restrictions of the BASIC language on the 2200T has made some of
the utilities hardware dependent. 1Installation of the Supplementary Data File
Utilities is relatively simple, however the following steps should be followed.

9.2.1 2200T Installation Procedures

1. Copy the following program files to the device address selected as
Device # 02 in the I.D.E.A.S. System Utilities - Application Device

Selection Module.

IDFU-310 - 2200T Device Selection Module
IDFU-311 - 2200T Device Selection Module

82

o

o\

o

“w

2. Copy the following data files to the device address selected as
pevice # 03 in the I.D.E.A.S. System Utilities - Application Device
Selection Module.

ideas302 -
ideas3ls -
idfu=-302
1idfu-303
idfu-304
idfu=-3ml

Companion screen file IDFU-300, IDFU=302
Companion screen file IDFU-300

Companion screen file IDFU-302

Companion screen file IDFU-312

Companion screen file IDFU=-314

Companion data description IDFU-3MO

3. Copy the following program files to the device address selected as
pevice # O in the I.D.E.A.S. System Utilities - Application Device
Selection Module.

IDFU-300
IDFU-302
IDFU-312

IDFU-313

EDFU-314

IDFU-315

IDFU-3M0 =

Check File Status

Reconstruct key file(s)

Convert IDEAS data file format to Wang Telecommunications
file

Convert IDEAS data .file to Wang Telecomunications file
format ‘

Convert Wang Telecommunications file to IDEAS data file
format

Convert Wang Telecommunications file to IDEAS data file
format '

IDEAS Supplementary Data File Utilities Menu Module

9.2.2 2200MVP & 2200VP Installation Procedures

1. Copy the following data files to the device address selected as

Device

03 in the I.D.E.A.S. System Utilitles - Application

Device Selection Module.

ideas302 - Companion screen file IDFU-300, IDFU=-302

ideas3l5 - Companion screen file IDFU=-300
1dfu-302 - Companion screen file IDFU-302
idfu-303 - Companion screen file IDFU=-312
idfu~304 - Companion screen file IDFU=-314
idfu-3m0 - Companion data description IDFU-3MO

2. Copy the following program files to the device address selected as
Device # OY in the I.D.E.A.S. System Utilities - Application Device
Selection Module.

IDFU-300
IDFU-301
IDFU-302
IDFU-303
IDFU-304
IDFU-305
IDFU-306
IDFU-3M0

Check File Status

Protect all records in a file / Release all records in a file

Reconstruct key file(s)

Convert IDEAS data file format to Wang Telecommunications file
Convert IDEAS data file to Wang Telecomunications file format

Convert Wang Telecommunications file to IDEAS data file format
Convert Wang Telecommunications file to IDEAS data file format
IDEAS Supplementary Data File Utilities Menu Module

83

APPENDIX A
SYSTEM RESIDENT MACROS

All IDEAS based systems make use of the system resident macros. The
system resident macros are a set of very powerful subroutine calls. The
system resident macros are contained in two programs: ID-SUB-T, for use with
the 2200T and VP, and ID-SUB-M, for use with the 2200MVP.

Both programs contain the same set of subroutines, but ID-SUB-M is used as a
global subroutine module, while ID-SUB-T is loaded with the actual application
progams. The user does not have to worry about loading ID-SUB-T, as it is
automatically loaded by the IDEAS-generated "START" modules, and overlays are
performed. ID-SUB-M is automatically loaded by IDEASVAR when IDEAS-based
applications are loaded.

The system resident macros may also be used to modify the code generated

by IDEAS. Use of the system resident macros can greatly uncrease the power of
IDEAS-based systems. I

84

174

1N

W

LIST OF SUBROUTINES AVAILABLE IN IDEAS SYSTEM SUBROUTINE MODULES

DEFFN'32(N$)
DEFFN'33(N$)
DEFFN'34(F)
DEFFN'35(E$)
DEFFN'36
DEFFN'37(Q)
DEFFN'38(N$)
DEFFN'39(N$,P)
DEFFN'40(N$,E$)
DEFFN'U41(V,Kl4,TO)
DEFFN'42(V,P)
DEFFN'44(R,C,K$,L)
DEFFN'45(Q)
DEFFN'U6(Q,KS$)
DEFFN'47(P,K$,L)
DEFFN'48(C,K$(1),L)
DEFFN'49(L)
DEFFN'50
DEFFN'51(Q,M)
DEFFN'52(Q)
DEFFN'53(E$)
DEFFN'54(P,K$, (1))
DEFFN'55(4A,E0)
DEFFN'56 (K$,Q)
DEFFN'57(L)

DEFFN'58(V,T0,K$,D0)

DEFFN'59(V)
DEFFN'60(V,K$)
DEFFN'61(V,K$,T0)
DEFFN'62(V,U,TO)
DEFFN'63(M)
DEFFN'65(A$,E$,GS)

DEFFN'66(V,TO)
DEFFN'67(V,TO)
DEFFN'68(T0)
DEFFN'79(R,C,K$,L)
DEFFN'80(P,L)
DEFFN'81(Q)
DEFFN'82(N$)
DEFFN'83(M,N)
DEFFN'84(V)
DEFFN'85(V)
DEFFN'86(V)
DEFFN'8T(V)
DEFFN'88(V,K$(1))

DEFFN'89(V,R$(1),D0)

DEFFN'90(N$,P)
DEFFN'91(N,DOS(N))

Get field parameters and display screen.

Get field parameters for screen N$, do not display screen.
Allow input from keyboard into field number "F".

Display E$ as error message on line 24, sound audio alarm.
Display all fields starting at current field # "F".
Display field # "Q".

Get field parameters, display screen, keep current record.
Get limits of file "N$" on device # "P".

Load program "N$", display loading message "E$".

GET and unpack record from file number "V",

Pack record and PUT it in file number "V".

Display "L" bytes of "K$" at row "R", column "C".

Retrieve contents of field number "Q".

Put contents of "K$" into field number "Q".

Copy "L" bytes to/from "K$" from/to record position "P".
Copy "L" bytes of "K$(1)" to print buffer at position "C".
Print "L" bytes of the print buffer, reset buffer.

Reset print buffer.

' Copy field # "Q" to print buffer at screen column + "M",

Unpack all field parameters for field number "Q".

Display "E$" on line 24 as message to operator.

Internal routine used in date validation routines.

Round value "EO" to field spec. dec., put in field # "A".
Date validation/conversion subroutine.

Convert Julian date.

Key file access subroutine (insert/retrieve/delete keys).
Set up merge array for "FIND 1ST" - file # "V".

Set up merge array for "FIND 1ST" = "K$" - file # "V".
Find lowest key = "K$" in file "V".

Find next higher key in file "V",

Display "M" bytes of "K$" at current row and column.
Display "A$" and "E$" on line 24 - Sound alarm if
"G$" = nin,

Find lowest key in file # "V",

Find first physical key in file # "y,

Get next physical key from last file inquired into.
Display "L" bytes of "K$" at row "R"+1l, column "C"+1l.
Internal subroutine - redimension S$(P)L.

Unpack basic field parameter for field number "Q".
Set "Y" = file number of file named "N$" (or zero).
Position cursor at row "M"+1l, column "N"+l.

Pack record in Z$() to Z$() for file # V.

Unpack record in Z$() to Z$() for file # V.

Build key index element, record in Z$() for file # V.
Build key for unpacked record in Z$() for file # V.
Adjust key in K$(1) for ascending/descending order.
Internal subroutine - record protect check/update.
Set device # "P" = 2 if N$="IDEAS" or "ideas".

Set status flag N.

85

DEFFN'98
DEFFN'99

DEFFN'141(N$,K$,TO)
DEFFN'142(N$,P)
DEFFN'155(A,E0Q)

DEFFN'159(N$)

DEFFN'160(N$,K$)
DEFFN'161(N$,K$,TO)
DEFFN'162(N$,U,TO)
DEFFN'166(N$,T0)
DEFFN'167(N$,TO)

Error message trap - must be in user program if used.
Function key trap - must be in user program if used.

Same
Same
Same
Same
Same
Same
Same
Same
Same

as
as
as
as
as
as
as
as
as

DEFFN'41, but
DEFFN'42, but
DEFFN'55, but
DEFFN'59, but
DEFFN'60, but
DEFFN'61, but
DEFFN'62, but
DEFFN'66, but
DEFFN'67, but

86

with
with

do not display resultant field.

with
with
with
with
with
with

file NAME.
file NAME.

file NAME.
file NAME.
file NAME.
file NAME.
file NAME.
file NAME.

o

ot

DEFFN'32(N$) Get field parameters and display screen.

Pass the name of IDEAS-developed screen mask file to this subroutine.
The subroutine will then copy the contents of the work buffer (S$() 1,1008
) to the record buffer (Z$()), and use all of S$() as a screen buffer. The
screen mask is loaded from disk (device #3 - unless the first five characters
of the screen file name are "IDEAS" or "ideas", in which case the screen mask
is loaded from disk device #2), and displayed. The work buffer is then set to
blanks, and the field parameters associated with the specified screen are
loaded into S$() starting at byte #1009.

The variable "F" (field number) is set to zero, and the variable "FO" is
set to the number of fields defined for the specified screen.

The previous contents of the work buffer are left in Z8().

The contents of the print buffer I$() are destroyed by this routine.

DEFFN'33(N$) Get field parameters for. screen N$, do not display
screen.

Pass the name of an IDEAS-developed screen mask to this subroutine. The
System will load the field parameters associated with the specified screen
into S$(), starting at byte #1009. It will load from disk device #3, unless
the first five characters of the screen file name are "IDEAS" or "ideas", in
which case it will load from disk device #2.

The variable "F" (field number) is set to zero. The variable "FO" is
set to the number of fields defined on the specified screen.

The contents of the work buffer S$()<1,1008> and the record buffer
Z2$() are not affected by this subroutine.

The contents of the print buffer I$() are destroyed by this routine.

The screen display is not changed by this subroutine.

DEFFN'34(F) Allow input from keyboard into field number "F".

Passing a valid field number to this subroutine will cause the system to
start processing the specified field according to the specifications contained
in the field parameter record for that field. These are the specifications
that were defined when the screen was last created or revised, and are shown
on the screen documentation. The actual processing of the field varies
significantly depending on the field parameters, and is explained below. One
factor that remains constant, however, is that no matter how the field is
processed, the contents of the field after the ., processing has been completed
are always returned to the application program in the variables "K$" and
K$(1). If the contents of the field represent a valid numeric string, the
numeric representation of the field will be returned in the variable m"Q",
otherwise, "W" will be set to zero.

87

The generally recommended method of using this subroutine is shown on
the next page, followed by a more detailed explanation of exactly what
transpires within the subroutine itself. This is probably the most important
subroutine in the entire IDEAS system, and a thorough understanding of it is
necessary to properly design and define screens and application modules.

The way that this subroutine should normally be used in an application
medule is as follows:

AAAA F=F+1
BBBB GOSUB'24(F)
CCCC ON F GOTO XXXX,YYYY,2Z7Z,.......

Assuming that a screen file has been loaded (using DEFFN'32, for
example) prior to executing line AAAA, F will be zero the first time that line
AAAA is executed.

Line AAAA increments the field number, then line BBBB gets the field
from the keyboard.

Line CCCC sends the program to one of several line numbers, depending on
which field has just been processed and returned to the application program,

Each of these lines would perform any additional validation necessary on
the field (beyond that which was specified in the field parameters), or
perform ahy other desired functions such as to retrieve a reference record
from disk, etc.

If there are no additional actions to be taken after a field has been
input, other than to go on to the next field, the line number in the ON F GOTO
statement corresponding to that field number would be AAAA.

If other actions are to be taken, they would be coded at the appropriate
line number, then there would be a branch to line AAAA if the results were as
expected, or to line BBBB to enter a new value into the same field if
necessary (possibly after an error message had been displayed - GOSUB'35) .

ACTUAL "INTERNAL OPERATION 'OF ‘DEFFN'34

When the subroutine is called, the appropriate field parameters are
unpacked from the field parameter record. If there is no field parameter
record for the specified field (F> FO), the field number is incremented until
it reaches #1129, which is always defined by the system as a "SPECIAL FUNCTION
KEYS AND EXEC ONLY" field of l-byte in length with no data going into the

record, appearing at row 24, column 80. Assuming a valid, defined field
however, the following appears: ’

1. The system checks to see if there is already default field specified

to pifvide a default value for the current field. If not, skip to
Step 4.

2. If a default field were specified, and if the current field is
blank, the default value is copied into the current field, and we
skip to Step 4.

88

&

o

If a default field were specified, and the current field is not
blank, the system checks to see if the current field is a REQUIRED
field. If not, the default field is not copied. If the current
field is REQUIRED and has a default field specified, the default
value is copied into the current field, even if it is not blank to
start with.

The system positions the cursor at the beginning of the field. If
the field is blank, and is available for input from the keyboard, a
string of boxes equal in length to the field length is displayed.
If the field is not blank, and may be displayed, the contents of the
field are displayed. If the field may not be displayed, and may not
be input from the keyboard, a string of spaces equal in length to
the field length is displayed.

If the field is not available for input from the keyboard, skip to
step XXX.

The cursor returns to the beginning of the field for keyboard
input. Only those characters in the specified allowable character
set for the field will be permitted. If an invalid character is
input, it will be ignored, the audio alarm will sound, and an error
message will appear on line 24 specifying the valid character set.

Exceptions to #6:

a. EXEC (or RETURN) may be used at any time to terminate a field,
except when:

1) The field is a REQUIRED field and is currently blank.

2) The field has been specified as FULL IF PRESENT and contains
any blank character.

b. BACKSPACE is valid at any time other than when the cursor is at
the beginning of the field.

c. SPECIAL FUNCTION KEYS

1) Tf the SPECIAL FUNCTION KEY TRAP is ON, any special function
key, at any time, will branch to DEFFN'98 in the application
program, where a user-programmed test may be performed.

2) If the SPECIAL FUNCTION KEY TRAP is OFF:

a) If the EDIT key is touched, the field will be
underscored, and the BEGIN (FN'07), END (FN'O4), INSERT
(FN-10), DELETE (FN'09), SRIGHT (FN'1l), 1RIGHT (FN'12),
1LEFT (FN'13), and SLEFT (FN'14) will operate until the
EDIT mode is terminated by touching EXEC, completing the
entry of a field which does not require EXEC for
termination, or touching the RECALL key (FN'15) which
will redisplay the original contents of the field.

89

T

b) If the CANCEL key (user-specified in the "START" module
creation utility) is touched at any time (other than in
EDIT mode), the current program will be cancelled, any
currently retrieved and protected records will be
deprotected in the files, and the last MENU (or whatever
program is specified in the variable "NO$") will be
loaded while the load message contained in the variable
"MO$" is displayed.

c¢) If the SKIP AHEAD KEYS are turned ON:

i. FN'O4 will cause the cursor to skip to the end of
the screen.

ii. FN'1ll will cause the cursor to skip ahead 5§
fields.

iii. FN'l2 will cause the cursor to skip to the next
field.

Any of these three operations will redisplay the
original contents of the field in which the key was
touched. '

d) 1If the SKIP BACK KEYS are turned ON:

i. FN'07 will cause the cursor to skip back to the
first field on the screen.

ii. FN'l3 will cause the cursor to skip back to the
previous field.

iii. FN'l4 will cause the cursor to skip back 5 fields.

If the field is available for input from the keyboard, but not
displayable, the system will accept keystrokes and put the data into
the field, but nine of the input data will be displayed.

The field may be terminated (other than as listed in #6 above) as
follows:

By filling the field, if EXEC is not required by the field
specifications.

By touching EXEC.

By touching "-" as any but the first character is a NUMERIC
field which permits the entry of SIGNS as valid characters. A
"-" may be input as the first character in a numeric field to
make the field negative, in which case the field will not be
terminated until full or EXEC is touched. Or "-" may be used in
place of EXEC to both terminate the field AND make the value
negative. In either case, the "-" will appear at the front of
the field after the field is terminated.

90

@y

@?“

9. The alpha representation of the field contents will be returned to
the application program in the variables "K$" and "K$(1)". If the
value of the field is a valid numeric string (regardless of the
field type), the numeric representation of the field's value will be
returned to the application program in the variable "Q". Otherwise,
the value of "Q" will be zero. The field number will be returned in
the variable "F", U"F" will always be the number of the file Jjust
processed. It may differ from the value of "F" that was passed to
the subroutine if one of the SKIP AHEAD or SKIP BACK keys were
touched.

If the field was a "SPECIAL FUNCTIN KEYS & EXEC ONLY field type, "Q"
will contain the number of the FUNCTION KEY that was used (0-31), or
32 if EXEC was used, or 240 if EDIT was used. The value of ngd" and
"K$(1)" may be indeterminate in this case.

DEFFN'35(E$) Display E$ as error message on line 24, sound audio

alarm.

Y

When the subroutine is called, the words "Error Message -" will appear

‘on line 24 followed by the contents of the variable E$ (the string

passes to the subroutine), and the audio alarm (if any) will sound. The
error message will remain on line 24 of the screen only until the next
key is touched on the keyboard, or until another error message or
operator message is displayed, whichever occurs first.

If the ERROR MESSAGE TRAP is ON, the system will branch to DEFFN'99 in
the application program with the message contained in "E$" and "Error
Message -" in "A$" after displaying the error message.

If the SYSTEM ERROR MESSAGES are OFF, the message will not be displayed,
but the branch to DEFFN'99 will still occur if the ERROR MESSAGE TRAP is
ON.

DEFFN'36 Display éll fields starting at current field # "F".

This routine will display the current contents of all fields associated
with the current screen before starting at field number "F" and ending
with field number "FO" which have not been specified as fields which may
not be displayed. "FO" is the highest field number in the screen and is
set during the loading of the screen's field parameters (using DEFFN'32,
DEFFN'33, or DEFFN'38). The return values will be those as described in
DEFFN'37(Q) where Q=FO.

"F" is normally the number of the current field to be processed. The
value of "F" is not changed by executing this subroutine.

nIf wFr is zero, the first field to be displayed will be field #1.

A fatal error may be caused by calling this subroutine when the value of
npn is greater than the value of "FO".

91

DEFFN'37(Q) Display the contents of the field number "Q".

This subroutine will display the contents of the field number specified
in the subroutine call unless the field was specified as one which does
not permit display. The contents of the field will be returned in the
variables "K§" and "K$(1). 1If the field contains a valid numeric value,
it will be returned in the valiable "Q", otherwise "Q" will be zero.

A fatal error may be encountered if the value passes to the subroutine is
less than 1 or greater than FO.

DEFFN'38(N$) Get field parameters, display screen, keep current record.

This subroutine operates in exactly the same manner as DEFFN'32, except
that the contents of the work buffer (S$() <1,1008 >) which were copied
into the record buffer Z$*#() are returned to the work buffer upon
completion of the subroutine, thus the current record is preserved. (It
is also left in Z$().) This subroutine is especially useful when 2 or
more screens are required to generate a single record.

As in DEFFN'32, the print buffer I$() is destroyed by the user of this
subroutine. :

DEFFN'39(N$,P) Get limits of file "N$" on device # "P".

Pass a file name (either a program file or a data file), and a disk
device number to this subroutine. The system will then get the limits of
the specified file from the specified disk unless the first 5 characters

of the file name are "IDEAS" or "ideas" in which case the vlue of npn
will be changed to 2.

The 1limits are returned to the application program in the following
variables:

$ File name

Device number used

Device number used

Starting sector of file

Ending sector of file

Number of sectors used in the file

Z2RX>3 02

A fatal error will be encountered if the specified file does not exist.

DEFFN'U40(N$,E$) Load program "N$", displaying load message "E$".

This subroutine first checks the key buffer F$() for any keys which may
exist there. The existence of a key in the key buffer indicates to the
system that a record has been read AND PROTECTED on disk. If there are
any keys in the key buffer, the system re-reads the indicated records,
and re-writes each of them with the protect byte turned off. While it is
doing this, it displays the message "Cleaning up data files" in the
center of a blank screen.

92

by

After the file has been cleaned up, or immediately if the key buffer is
blank, the system displays nLoading ..." followed by the specified load
message in the center of a blank screen and loads the program specified
in "N$" form device #4 starting at line 1000. (If the 1lst 5 characters
of the program name are "IDEAS" or videas", the program will be loaded
from device #2.)

A fatal error will occur if the specified program does not exist, and
may occur if the specified program does not begin with line 1000.

DEFFN'41(V,K$,TO0) "GET" and unpack record from file number "V".

The following variables are passed to this subroutine:

' The file number of the primary or alternate key file
K$ The key associated with the desired record
TO Record protect flag AND position within the work buffer

This subroutine searches the specified file for the given key, reads the
record, unpacks it and places the record in the record buffer Z$()
starting at byte #l1. If absolute value of TO is 1 or greater, the
record is also copied into the work buffer S$() starting at byte #
ABS(TO).

If ‘the value of TO is negative, the record will not be protected, and
the keys will not be written into the key buffer.

If the value of TO is zero or positive, the record will be protected
with the terminal number of the requesting terminal written to disk in
the protect byte of the record in binary, and the primary and any
associated alternate keys will be written into appropriate elements of
the key buffer.

If the record was found unprotected, the above will be true and the
value of "Q" returned to the application program will be positive.

If the record was found protected by another terminal, it will still be
read and unpacked to the record buffer, and transferred to the work
puffer if specified. However, the keys will not be written into the key
buffer, nor will the record be protected by the current terminal. An
error message will be displayed stating that the record is currently in
use and specifying the protecting terminal. The value of "Q" will be
negative.

If the record was not found, the value of "Q" will be zero and an error
message will be displayed stating that the record is not on file.

The value of "K$" as passed to the subroutine must be already adjusted

using DEFFN'88 if any part of it is specified to be in DESCENDING sort
order.

93

A fatal error will occur if "VY" is less than 1, or greater than the
number of files currently open.

A fatal error will occur if the absolute value to TO plus the unpacked
record record length exceeds 1009.

DEFFN'42(V,P)

Pack record and PUT it into file number V.

Pass this subroutine a file number (V) and a position in the work buffer

(P).

The system will copy the record from the work buffer starting at

byte P into the record buffer (unless P=0 in which case the record is
already assumed to be in the record buffer Z$().)

The system then checks the primary and alternate keys (if any) for that
record against any that may exist in the key buffer for the primary and
any alternate files associated with the given file number. If there is
a key in the key buffer then the "PUT" operation is an update, because
there must have just been a "GET" to cause those key buffer positions to
be filled. .

If an update is sensed, each key in the record is compared to the
corresponding key in the key buffer and if they are unequal, the old one
is deleted from the file and the new one is inserted.

If an operation is only a "save" and not an update, then each key in the
record is inserted into the appropriate key file.

The key buffer elements associated with the given file are then cleared,
the record is packed, and it is saved in the primary file with the
protect byte turned off.

If the record was stored successfully, a positive value will be returned
to the application program in the variable "Q". If the record was not
stored successfully, an error message will be displayed giving the
reason (i.e., File full, or Illegal duplicate key) and specifying the
file name in which the problem occured. Any keys which may have been
updated prior to the occurance of the error condition will have been

restored to their original condition.

DEFFN'44(R,C,K$L) Display L bytes of K$ at row R, column C.

Civen a row and column on the screen where an alpha string is to be
displayed, the string of characters, and the number of characters in the
string to be displayed, this subroutine displays the specified number of
characters in the given string starting at the specified row and column.

Row on the screen for the first character in the string.
Column on the screen for the first character in the string.
The string of characters to be displayed (max=614).
The number of characters to be displayed. If L=0, the number of
characters displayed will be equal to the length of
K$ (LEN(KS$)).

oy

A

gﬂﬁ

Note:

IDEAS counts rows and columns starting at 1 i.e., rows 1-24, columns
1-80, rather than 0-23, 0-79.

If the string represents a valid numeric value, the numeric value will
be returned to the application program in the variable "Q". Otherwise,
"Q" will be zero.

DEFFN'45(Q) Retrieve the contents of field number "Q".

Passing a valid field number to this subroutine will cause the contents
of the specified field to be returned to the application program in the
variables "K$" and "K$(1)". If the field represents a valid numeric
value, the number value os the field will be returned in the variable
nQn, Otherwise, "O" will be zero.

A positive field number will cause the field to be retrieved from the
work buffer S$() < 1,1008 >. A negative:.field number will cause the
field to be retrieved from the record buffer Z80). If you are
retrieving from the record buffer, be certain that the contents of the
record are as desired and have not been changed by another "PUT" or
"GET" operation.

Unpredictable and/or fatal results may occur if the absolute value of
the field number is zero or greater than FO (the maximum number of
fields in the current screen).

DEFFN'46(Q,K$) Put the contents of K$ into field number "Q".

pPass this subroutine a field number and an alpha string. The number of
characters in the string equal to the length of the specified field will
be copied into the field.

If the field number is positive, the field will then be displayed on the
screen.

If the field number is negative, the field will not be displayed.

The numeric representation of the string will be returned to the
application in the variable "Q" if the string were a valid numeric
string. Otherwise, "Q" will be zero.

* Unpredictable and/or fatal results will occur if the absolute value of

the field number is zero or greater than FO.

DEFFN'47(P,KS$,L) Copy "L" bytes to/from "K$J from/to record position "P".

This subroutine allows you to copy a string of up to 64 characters from
K$ to either the work buffer S$() 1,1008 or the record buffer Z$(),
or to copy a string of up to 64 character to K$ either from the work

buffer or the record buffer.

95

P = Position in the work or record buffer for copy to start.
If P > 0, copy the ABS(L) bytes of K$ to the work or record
buffer starting at byte number SBS(P).
1f P < 0, copy the ABS(L) bytes from the work or record buffer
starting at byte # ABS(P) to K$.

L = Length of string to be copied.
If L > 0, copy to or from the work buffer S$() <1,1008>.
If L 0, copy to or from the record buffer Z$().

The system returns the copied string in the variables "K$" and "K$(1)".
If the string is a valid numeric string, the numeric value is returned
in the variable "Q", otherwise, ™"Q" is zero.

DEFFN'48(C,K$(1),L) Copy"L" bytes of "K$(1)" to print buffer € position "C".

The print buffer is I$() which consists of an array of 128 elements of
2-bytes each. When the print buffer is initialized, the first 254 bytes
are set to spaces and the last 2 bytes are set to HEX(0000). Byte 255
is used as a part line length indicator.

Use of DEFFN'48 assumes that the print buffer has not been destroyed
since it was last initialized (DEFFN'50), printed (DEFFN'A9), or updates
(DEFFN'U48). Subroutines which destroy the print buffer are as follows:

1. The program loading subroutine (DEFFN'40).

2. ‘The screen and/or field parameter loading subroutine (DEFFN'32, '33,
138,

3. The record packing or unpacking subroutines (DEFFN'84, 85).
4, The key assembly subroutines (DEFFN'86, '87, '88).

5. The file access subroutines (DEFFN'U41l, '42, '58, '59, '60, '61l, '62,
‘66, ‘67, '68, '89', '141, 'l42, '159, '160, '161, 'l62, '166, 'l67).

The variables passed to this subroutine are as follows:

C The position where the beginning of the specified string is to

be placed in the print buffer.

IfFC>0 The string will be copied into the print buffer
starting at byte # C.

iIfCc =0 The string will be copied into the print buffer
starting at the next available byte (current 1line
length + 1).

Ifc<O0 The string will be copied into the print buffer
starting at the next available byte + the absolute
value of "Cv,

K$(1) The string which is to be copied into the print buffer.

L The number of bytes of K$(1) which are to be copied into the
print buffer.

IfL>0 The specified number of bytes will be copied.
IfL=0 The number of bytes copied = LEN(K$(1))

96

L9

In any of the above cases, the line length (byte 255) will be updated to
reflect the new line length.

A fatal error will be encountered if you attempt to copy beyond byte 254.

DEFFN'49 (L) Print "L" bytes of print buffer, reset buffer.

Using the printer at device address #1, print the contents of the print
buffer starting at byte 1 for "L" bytes, unless "L" = zero, in which
case use the line length in byte 255 of the print buffer as the length
to be printed. Then drop through to DEFFN'50 to reset the print buffer.

This subroutine may be used immediately after a DEFFN'50 to generate a
line feed on the printer.

DEFFN'50 Reset Print buffer.

This subroutine resets the printer buffer in preparation for the use of

 DEFFN'48 to copy text or data into the print buffer. It sets the first

254 bytes of I$() to spaces, and sets the line length (Byte 255) to zero
(HEX(00)). :

DEFFN'51(Q,M) Copy field # "Q" to screen buffer € screen column + "M".

This subroutine copies the contents of the specified field from the work
buffer (S$()) to the print buffer, starting at the position in the print
buffer equal to the column on the screen where the field starts plus the
value of the variable M (or - if M< 0). It updates the line length
byte in the print buffer.

DEFFN'52(Q) . Unpack all field parameters for field number "Q".

Unpacks the field parameters for the specified field from the field
parameters record for that field as follows:

T Field type (1 - 9)
1 Digits only
2 Digits & signs
3 Digits & decimal point
4 Any numeric
5 Uppercase letters
6 Uppercase letters & digits
7 Uppercase letters, numerics, & punctuation
8 Any character
9 Special functions keys, EDIT & EXEC only
D Number of decimal places
P Position in the record (or in the work buffer)
L Field Length
R Row on screen of first byte in field (-1)
c Column on screen of first byte in field (-1)

97

D0 Keyboard/Display enable/disable flag
DO=0 Keyboard enabled, display enabled
DO=1 Keyboard disabled, display enabled
D0=2 Keyboard enabled, display disabled
D0=3 Keyboard disabled, display disabled

TO Field termination enable flag
T0=1 Optional field, need not be filled, terminate on full or EXEC
TO=2 Optional field, need not be filled, EXEC required to terminate
TO=3 Optional field, must be full if used, terminate on full or EXEC
TO=4 Optional field, must be full if used, EXEC required to

terminate

T0=5 Required field, need not be filled, terminate on full or EXEC

T0=6 Required field, need not be filled, EXEC required to terminate

TO=7 Required field, must be full if used, terminate on full or EXEC

TO=8 Required field, must be full if used, EXEC required to

terminate
W$ Justification & fill character indicator

W$=HEX(00) Left justified - no fill character

W$=HEX(01) Left justified - no fill character

W$=HEX(02) Right Jjustified - space fill wunused high order
positions

W$=HEX(03) Right Jjustified - =zero fill unused “high order
positions

A fatal error may be encountered if the value of "Q" is greater than
129, less than -129, or zero.

' DEFFN'53(E$) Display message to operate on line 24.

The word "Attention: ", followed by the string passed to the subroutine
(up to 64 characters) will be displayed on line 24 and will remain there
until the next key is touched. If the ERROR MESSAGE TRAP is ON, this
will then branch to DEFFN'99 in the application program, where checking
for "Attention: " in A$ will allow you to return.

DEFFN'54(P,K$(1)) Internal routine used in data validation routines.

This subroutine has no viable use in an application program. It is
strictly an internal subroutine used in the date utility section of the
system subroutine module.

DEFFN'55(A,EO) Round value "EO" to field spec. dec., put in field
man,

This subroutine will round the value passed to it as EO to the number of
decimal places specified in the field parameter record for field number
npn, convert the value to an alpha strlng with justification and fill
character as specified by the field parameters, place the string in
field number "A"™ in the work buffer and display it if the field
parameters allow the field to be displayed.

98

L

1

6?“

If the value converts to a string that exceeds the field length, only
the most significant digits that fit into the field will be used, and an
error message will be displayed showing the actual value stating that
the value does not fit in the specified field.

The alpha representation of the field is returned to the application
program in the variables "K$" and "g$(1)". The numeric value 1is
returned in the variable "Q".

A fatal may occur if the specified field does not exist or if its length
exceeds 13 characters.

DEFFN'56(K$,Q) Date validation/conversion subroutine

This subroutine allows a date to be input as an alpha string in any of 4
formats. It checks the validity of the date, and 1if valid, provides a
total of 6 formats of the same date to the application program. If the
date is invalid, an error message is displayed showing the invalid date
and stating that it is invalid. .

The date is passed to the subroutine as in alpha string and a number
indicating the format of the date is passed as a numeric value (1,2,3,
or 6). Ex. August 29, 1979.

l, MMDDYY format GOSUB'56("082979",1)
2. DDMMYY format GOSUB'56("290879",2)
3 YYMMDD format GOSUB'56("790829",3)
6. YYDDD (Julian) format GOSUB'56("79241",6)

The results will be returned to the application program in the D$() for
a valid date as follows:

1. MMDDYY format D$(1) = 082979
2. DDMMYY format D$(2) = 290879
3. YYMMDD format D$(3) = 790829
4, MMM DD YY format DH(L) = AUG 29 79
5. DD MMM YY format D$(5) = 29 AUG 79
6. YYDDD (Julian) format DS(6) = 79241

In addition, the Julian date will also be returned in the variable "Q".
If the date were invalid, the value of "Q" is zero.

A fatal error may occur if a format number other than 1, 2, 3, or 6 is
used, or if the string does not contain 6 digits (5 for Julian).

DEFFN'ST(L) Convert Julian date.

pPassing a Julian date in the form YYDDD as a numeric value to this
subroutine will return the date to the application program in the same
manner as DEFFN'56 (qv). '

99

DEFFN'58(V,T0,K$,D0) Key file access subroutine (insert/retrieve/delete).

File number of key file to be accessed‘

' =

TO = Protect flag: TO0=0 - do not protect record, TO > 0 - protect
K$ = The key to be inserted, retrieved, or deleted

DO = Operation Code

DO = 0 Retrieve key K$

DO =1 Insert key K$, even if it is a duplicate key
DO = 2 Insert key K$, it it is not a duplicate key
DO = 3 Delete key K$

If the specified operation is NOT successful, a value of zero is
returned to the application program in the variable "Q". If the record
accessed is currently in use by another terminal, the value of "Q" will
be the negative of the terminal number of the "using" terminal.

If the operation was successful, the value of "Q" will be positive, the
disk device number of the platter containing the record will be "Tn, the
sector number where the record starts will be "E", and the byte number
within that sector where the protect byte for that record (the byte
" immediately preceeding the PACKED record) will be "C". The pointer
associated with the record will be found in the 3-byte variable R$(1).

DEFFN'59(V) Set up merge array for "FIND 1ST" - file # wyv

This subroutine reads the first key and pointer from each bucket in the
files and places it in ascending sort order in the array U$(). it does
NOT actually retrieve any records. It merely sets up the merge array so
that the application may process the file by using FIND NEXT (DEFFN'62)
for each record, rather than having to perform a FIND FIRST (DEFFN'66)
followed by a series of FIND NEXTs.

Each element in U$() consists of string variable K+6 bytes where K = the
length of the actual key. The 3 bytes immediately following the actual
key represent the pointer associated with that key, and the last 3 bytes
are the sector number and byte number from which the key was taken.

DEFFN'60(V,K$) Set up merge array for "FIND 1ST D> =K$" - file # m"yn

This subroutine performs the same function as DEFFN'59 except that you
may start at other than the lowest key in the file. It will set up the
merge array such that you may begin processing with the lowest key that
is equal to or greater than the value passed to the subroutine.

100

W

DEFFN'61(V,K$,T0) Find lowest key > =K$ in file # "V" (FIND 1ST > =K$)

Sets up the merge array as in DEFFN'60, and retrieves the record
corresponding to the lowest key in the merge array. If T0O <= 0, the
record is not protected. If TO > 0, the record is protected. The
record is unpacked and left in the record buffer Z8$(). If
INT(ABS(T0)) <> 0, the record is also copied into the work buffer
s§() € 1,1008 > starting at the byte indicated by the absolute value of
10. 1If Q< 0, the record was found not protected. If Q > 0, the record
was found protected. If Q=0, a record was not found (end of file).

DEFFN'62(V,U,TO) Find next higher key in file number "V".
Use of this file assums the prior use of DEFFN'59, DEFFN'60, or

DEFFN'61, for the same file number. Otherwise a fatal error may occur.
Sequential processing operations may NOT be used on more than 1 file at

a time.
v = File number
U = Previous key deletion flag - for most normal sequential

processing operations, the value of "U" should always be 1.

However, if the file is being processed sequentially for the

purpose of deleting a certain record, the value of "U" must be

zero on the next use of DEFFN'62 following the deletion of the

record immediately preceeding the same files.

TO = Protect flag/position indicatior.

< =-1 The record will NOT be protected, it will be
unpacked to the record buffer Z$() and copied to
the work buffer S$() 1,1008 starting at byte #
ABS(TO) .

-1< TO<=1 The record will NOT be protected, and will only be
unpacked to the record buffer Z$().

0<T0<1 The record will be protected and will be unpacked
to the record buffer Z$() only.

TO > =1 The record will be protected and will be unpacked
to the record buffer Z$() and copied to the work
puffer S$() 1,1008 starting at byte #TO.

The return value of "Q" are as follows:

20 €0 The record is currently in use on another terminal.

Q=0 The end of the file has been reached - a record was not found.
Q>0 An unprotected record was found.
DEFFN'63 (M) Display "M" bytes of K$ at the current row & column.

This subroutine will display the first "M" bytes of K$ of the current
contents of the alpha variable "K$" starting at the current -cursor
position.

101

DEFFN'65(A$,E$,G$) Display "A$" and "E$" on line 24, sound alarm if G$="t".

This subroutine gives the programmer the facility to create a message or
error message of up to 80 characters to be displayed on line 24 of the
screen and left on the screen until the next key is touched. The first
16 characters of the message go into the variable "A$" and the remainder
go into "E$". If the character "!" is passed to "G$", the audio alarm
(if any) will sound. If any other character is used, it will not.

If the ERROR MESSAGE TRAP is ON, this will branch to DEFFN'99 in the
user program. If you do not wish this to occur, you may first turn off
the error message trap by using DEFFN'91.

DEFFN'66(V,TO) Find lowest key in file number "V".

This operates in exactly the same way as DEFFN'61 except that you do not
pass a specific key value to the subroutine. 1Instead, it finds the
lowest logical key in the file. The protect/position code TO and the
return value Q are the same as in DEFFN'61l ¢r DEFFN'62.

DEFFN'67(V,TO0) Find first physical key in file number "V".

Instead of finding the lowest logical key in a file, this subroutine
finds the first PHYSICAL key in bucket number zero (the first bucket) in
the file. It does NOT use the merge array, so it may be used in
conjunction with sequential processing operations on another file if

necessarye.

The protect/position code TO, and the return code Q are the same as in
DEFFN'61.

DEFFN'68(TO0) Find next physical key.

In;tead of finding the next logical key as in DEFFN'62, this subroutine
finds the next PHYSICAL key IN WHATEVER FILE WAS LAST ACCESSED WITH A
RETRIEVAL OR DELETION SUBROUTINE.

Please note that a file number is not specified.

This routine uses the file that was last accessed for anything but a
"pPUT" or a GOSUB'58.

The value of TO and the return code Q are the same as in DEFFN'62.

This subroutine, combind with DEFFN'67, is useful for a quick scan of a
file when key sequence processing is not necessary.

102

i

»

‘J

-

b}

¢

DEFFN'79(R,C,K$,L) Display L bytes of K$ at row R+l, column C+l

This subroutine operates in exactly the same way as DEFFN'4Y4 with the
following exception:

IDEAS normally uses row and column designations starting at the number 1.

This subroutine may be used for row and column designations starting
with 0, 1i.e., GOSUB'79(3,0,"ABCDEFGHIJ",5 would cause ABCDE to be
displayed at row 4, column 1.

DEFFN'80(P,L) Internal subroutine - redimension S$(P)L.

This subroutine should be of little or no use to the programmer. It is
used in several places internally in the IDEAS system subroutine module
to redimension S$().

USE OF THIS SUBROUTINE WITHOUT A COMPLETE UNDERSTANDING OF THE INTERNAL
LOGIC OF IDEAS AND WITHOUT RETURNING THE ,DIMENSIONS OF S$() TO THEIR
APPROPRIATE VALUES WILL UNDOUBTEDLY CAUSE FATAL ERRORS!

DEFFN'81(Q) Unpack basic field parameters in field # Q.
This subroutine performs the same function as DEFFN'52 except as follows:
1. W$ is not set.

2. DO is not set.
3. R is not set - R will be 4%R + DO (as compared to the results of

DEFFN'52).
DEFFN'82(N$) Set "V" = file number of file named by "N$".
passing the name of a currently open primary or alternate file to this
subroutine will set the variable "V" equal to the file number for that
file. 1If the specified file does not exist (has not opened), the value
of "y" will be zero.

DEFFN'83(M,N) Position cursor at row M, column N.

As in DEFFN'79, this subroutine assumes row and column numbers starting
at 0. GOBUB'83(3,0) will position the cursor at row 4, column 1.

103

DEFFN'84(V) Pack record in Z$() to Z$().

This subroutine packs the record in the record buffer Z$() according to
the record description parameters loaded when the file was opened. Any
specified numeric fields at the beginning of the record are packed 2:1,
and any uppercase alpha fields immediately following are packed 4:3.
The resulting packed records is left in the record buffer Z$().

DEFFN'85(V) Unpack record in Z$() to Z$() for file # V.

This subroutine assumes that a packed record from file # V is in the
record buffer Z$(). It unpacks the record according to the record
description parameters loaded when the file was opened and leaves the
unpacked record in the record buffer Z$().

DEFFN'86(V) Build key index element, record in Z$() for file # V.

This subroutine currently performs the same function as DEFFN'87. It
may be used for additional purposes should the file types supported by
IDEAS be expanded at a later date.

DEFFN'87(V) Build key for unpacked record in Z§$() or S$().

If V> 0, the record is assumed to be in the record buffer, Z$(). If
V< 0, the record is assumed to be in the work buffer, S$() < 1,1008 >,
starting at byte #1.

This subroutine builds the key for specified file (ABS(V)) consisting of
up to 3 fields. It complements any field specified to be in descending
sort order.

The correct, complemented key is left in the variable "K$(1)". The
uncomplemented key is left in the variable "K$".

DEFFN'88(V) Adjust key in K$() for ascending/descending sort order.

A key for file # "V" is assumed to be in the variable "K$(1)". This
subroutine adjusts any necessary component of the key to reflect a
specified descending sort order for the particular field component. The
complemented key is left in K$(1), and the original uncomplemented key
is left in K8$.

DEFFN'89(V,R$(1),D0) Internal subroutine - record protect check/update.

v = File number
R$(1) = Pointer to record (found in key index)
DO = Operation code

104

Y

[

g““

Given the file number pointer and operation code, this subroutine will
read the protect byte for a given record and set the value of "Q" to the
negative of the protecting terminal number if the record is protected.

The device number of the disk on which the record resides.

The sector number on disk # T where the record begins.

The byte number within sector # E where the protect byte for
the specified record exists. This byte 1is the byte
immediately preceeding the packed record.

T
E
o

If the value of DO is zero, AND TF THE VALUE OF TO IS POSITIVE, the
record will be protected by the terminal using this subroutine.

DEFFN'90(N$,P) Set device # P = 2 if N§ = "IDEAS" or njdeas".

This subroutine is used internally in all of the IDEAS program and/or
data file loading subroutines. A program or data file name and a disk
device number is passed to the subroutine. If the first 5 characters in
the file name are either "IDEAS" or rideas", the device number will be
set to 2. Otherwise, the device number will be left unchanged. In
either case, the device number is returned to the application program in
both "P" and "T".

DEFFN'91(N,008, (N)) Set status flag "N".

This array 00$() consists of 9 bytes of flags as follows:

00$(1) The binary value of special function key number used as the
CANCEL key. If this is set to a function key number which is
not available on the keyboard, the CANCEL function will be
disabled.

00$(2) Skip-ahead key enable flag. If this flag is set to "Y", the
skip-ahead keys are turned ON. Otherwise, they are not
available to the opeator.

00$(3) Skip-back key enable flag. If this flag is set to "Y", the
skip-back keys are turned ON. Otherwise, they are not
available to the operator.

105

003 (4) Error message flag. If this flag is NOT set to "N", the error
messages will be displayed as usual. If this is set to “N",
no error messages will be displayed.

00%(5) Error message trap flag. If this flag is NOT set to "Y", the
error message trap will be inoperative. If this flag is set
to "y", any error message (DEFFN'35), operator message
(DEFFN'53), or general message (DEFFN'65) will cause a branch
to the error message trap subroutine (DEFFN'99) in the
application program.

003 (6) Special function key trap. if this flag is NOT set to "yw,
the special function key trap will be inoperative. If it is
set to "Y", then ANY special function key tocuhed at any time
(including the CANCEL key or a function key used in a FUNCTION
KEYS & EXEC field type) will cause a branch to the special
function key trap subroutine (DEFFN'98) in the application

program,
003 (7) Reserved for future use.
00$ (8) The binary representation of the terminal ID number.

003%(9) The CPU type identification flag.
T if the CPU is a 2200T.

V if the CPU is a 2200VP.

M if the CPU is a 2200MVP,

Any of these flage may be reset by the use of DEFFN'91l by passing the
element number (1-9) and the new flag value to the subroutine.

DEFFN'98 Special functiuon key trap: must be in application if

used.

This is a subroutine that is NOT contained in the system subroutine
module. If it 1is desired, it must be coded by the application
programmer in each application program where it is needed. If the
special function key trap is turned on, any function key will cause a
branch to this subroutine where the application program may make a test
on the function key number (contained in the variable G$(6) as a binary
value) and perform any desired function accordingly.

If no programmed function is performed, a RETURN will suffice to return
control to the point in the program execution where the function key was
touched. Otherwise, 2 RETURN CLEAR's should be used to clear the
subroutine stack if you do not return to that point.

106

Ty

b

¢

uh

@&N

DEFFN'99 Error message trap: must be in application if used.

This 1is a subroutine that is NOT contained in the system subroutine
module. T1f it 1is desired, it must be coded by the application
programmer in each application program where it is desired. If the
special function key trap is turned on, any error message (DEFFN'35),
operator message (DEFFN'53) or general message (DEFFN'65) will cause a
branch to this subroutine.

Error messages and operator messages may be identified by the contents
of the variable A$ ("Error message -", and "Attention:" respectively).
Also, the contents of E$ will be the actual message.

Any action taken in this subroutine (except loading another program)
should be terminated by a RETURN to the calling point in the main
program execution because the original error message may have been
called in any of several levels of subroutines' and there is a distinct
danger of causing an overflow of the subroutine stack if this option is
not used carefully.

DEFFN'141(N$,K$,TO) N

This subroutine operates in exactly the same way as DEFFN'41(V,K$,TO)
except that you supply a file name N$ instead of a file number V.

DEFFN'142(N$,P)

This subroutine operates in exactly the same way as DEFFN'U42(V,P) except
that you supply a file name N$ instead of a file number V.

DEFFN'155(A,EO)
This subroutine operates in exactly the same way as DEFFN'55(A,EO0)

except that the field is not displayed and is always assumed to be
right-justified, space-filled.

DEFFN'159 (N$)
This subroutine operates in exactly the same way as DEFFN'59(V) except
that you supply a file name N$ instead of a file number V.

DEFFN'160(N$,K$)

This subroutine operates in exactly the same way as DEFFN'60(V,K$)
except that you supply a file name N$ instead of a file number V.

DEFFN'161(N$,K$,T0)

This subroutine operates in exactly the same way as DEFFN'61(V,K$,TO)
except that you supply a file name N$ instead of a file number V.

107

DEFFN'161(N$,U,TO)

This subroutine operates in exactly the same way as DEFFN'61(V,U,TO)
except that you supply a file name N§ instead of a file number V.

DEFFN'162(N$,U,TO)

This subroutine operates in exactly the same way as DEFFN'62(V,U,T0)
except that you supply a file name N$ instead of a file number V.

DEFFN'166(N$,T0)

This subroutine operates in eéxactly the same way as DEFFN'66(V,TO)
except that you supply a file name N$ instead of a file number V.

DEFFN'167(N$,T0)

This subroutine operates in exactly the same way as DEFFN'67(V,TO)
except that you supply a file name N$ instead of a file number V.,

NOTE:

In all of the above (except DEFFN'S55), the use of
non-existent file name will cause a fatal error to occur.

108

£

(1%

te

APPENDIX B
DATA RECORD DEFINITION FILES

I. Relative sector 0 (loaded into I$() in BA mode)

4 POSITION
STARTING BYTE # LENGTH DESCRIPTION
1 8 Logical file name
9 3 Vol 1 disk address
12 8 Primary file name
20 1 Number of volumes
21 1 Record blocking option #
22 1 Performance option #
23 2 File type
25 8 Key 1 nanme
33 1 Key 1 order
34 3 Key 1 position in record
37 1 -not used-
38 2 Key 1 length
@ ko 1 Key 1 type
41 8 Key 2 name
49 1 Key 2 order
50 3 Key 2 position in record
53 1 -not used-
5u 2 Key 2 length
56 1 Key 2 type
57 8 Key 3 name
65 1 Key 3 order
66 3 key 3 position in record
69 1 -not used-
70 2 Key 3 length
T2 1 Key 3 type
3 73 2 Key length
75 3 # of fields
78 y Unpacked length
N 82 4 # of packed numerics
86 4y ## of packed alphas
90) Packed length
94 3 Vol 2 disk address
97 3 Vol 3 disk address

109

I1.

(Continued)

POSITION

STARTING BYTE # LENGTH DESCRIPTION
100 3 Vol 4 disk address
103 3 Vol 5 disk address
106 3 Vol 6 disk address
109 3 Vol 7 disk address
112 3 Vol 8 disk address
115 6 Last revised date
121 8 Physical file name
129 8 Alternate key file #1
137 8 Alternate key file #2
145 8 Alternate key file #3
153 8 Alternate key file #U4
161 8 Alternate key file #5
169 8 Alternate key file #6
177 8 Alternate key file #7
185 8 Alternate key file #8
193 8 Alternate key file #9
201 8 : Alternate key file #10
209 8 " Alternate key file #11
217 8 Alternate key file #12
225 8 Alternate key file #13
233 8 Alternate key file #14
241 8 Alternate key file #15
249 8 Alternate key file #16

Relative sectors 1-6 contains field names, field type, position of field
in record and field length. These sectors are loaded into Y1$() in DA
mode. Y1$ is dimensioned to Y1$(24)62. After the sectors are loaded
into Y$(), the system does a MATCOPY to Y$(). Y3$() is dimensioned to

Y$(128)11.

The first three bytes of each element of Y$() is the result of a $PACK.
These three bytes contain the following information: 1) field type, 2)
position of field in record, and 3) field length.

To retrieve the information in these 3 bytes, do the following.
Assume PU4$-STR(Y$(I),1,3) where I is any field from 1 to 128.
UNPACK (######)PU$ to Q
CONVERT Q TO K8, (#i##i###)
K$(1)=HEX(100110031002)
SUNPACK (F=K$(1))K§ to M1, M2, M3
Where M1 is the field type, M2 is the position within the record and
M3 is the length of the record.

110

(3

DATA FILE (Relative sector 0 on each Volume of Data File)

P1332
5““ Position in E$() Position in P1$ Description
12 1 File Type
13 2 Key Length
14 3 Giskie Length
15 y Fiskie Length
16 5 HASH Length
B 17 6 # Fis/Bucket
18 7 # Rec/Block
19 8 Key 1 Length
20 9 Key 2 Length
2 21 10 Key 3 Length
22 11 Key 1 Pos
24 13 Key 2 Pos
26 15 Key 3 Pos
28 17 # of Buckets
30 19 Vol 1 Bucket Length
32 21 # Sectors/Record Length
34 23 4 Records/Bucket
36 25 ‘Uncompressed Record Length
38 , 27 # of Compressed Num
40 29 # of Compressed Alpha
42 31 Compressed Length

@ﬁ& Other values of E$()

1-8 Filename

9 File type

10 Disk Dev #

11 Disk Address (last digits)

111

Hashing Algorithm is in DEFFN'58 (line 356 in ID-SUB-M and ID-SUB-V)

The following variables are used in the code generated by IDEAS and
should not be used for other purposes by the programmer:

A file type

C key length

D gross index sector

B

D home bucket number

EO

L fine index sector

M hash length

N number of fine index sectors per bucket
Q total number of buckets
F field number

FO number of fields

SH() work buffer

Z$() work buffer

I$0) work and print buffer

H$() work buffer

K$

K$() value of field is in K$ and K$§() _

Q numeric value of field if any, otherwise zero
RB() pointer to data record

ers()

T$() translation table for numeric pack and unpack
e€To$()

T0$() list of valid characters

Us$() merge array for FIND FIRST, FIND NEXT

éWH() set of pointers to the 'TO$() -- used in validation
w$()

E$() 45 bytes in length

A\

(1Y

112

Jo

'

FIELD PARAMETERS

BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 BYTE 8

BYTE 1
A B C D E F G H
A = Field type (1-9) (Valid input character set)
1 = Digits
2 = Digits and signs
3 = Digits and decimal point
4 = Digits, signs, and decimal point
5 = Uppercase letters
6 = Uppercase letters and digits
7 = Uppercase letters, digits, signs, and punctuation
8 = Any character
9 = Function keys, EDIT, and EXEC
B = Number of decimal places (valid for types 1l-4)
¢ = Starting position of field in work buffer
D = Length of field
E = Row (on screen) and entry and display enable flags'externally, (to
the programmer creating the screen). The rows are numbers 1-24,
 Internally, they are 0 to 23. In the field parameter, the number
is authorized by a (0 to 92).
The row for the field, then may be found by the following formula:
R = INT(E/4)+1
By storing the row as described above, the lowest 2 bits of byte 5
in the field parameter are available for flags. The "one" bit is
used as the display enable/disable flag, and the "two" bit is used
as the keyboard input enable/disable flag. 1In either case, a zero
in the appropriate bit enables the function.
COMBINED KEYBOARD
2-BIT 1-BIT VALUE DISPLAY INPUT
0 0 0 Enabled Enabled
0 1 1 Disabled Enabled
1 0 2 Enabled Disabled
1 1 3 Disabled Disabled
F = Column (on screen). Externally, the column numbers are 1-80.
Internally, they are 0-79 in the field parameters.
G = Miscellaneous Field Parameters. This byte contains 5

miscellaneous field parameters, 3 in the high order half-byte, and

113

HIGH ORDER LOW ORDER

G G G G G G G G
8 - 7 6 5 Y 3 2 1

G8 Not used

G7 1l - Required field 0 = Optional field

G6 1l = Must be filled if used 0 = Need not be full

G5 1 = EXEC required 0 = Terminate when full
G4 Not used

G3 Not used

%G2 1 = Zero fill 0 = Space fill

Gl 1 = Right justify 0 = Left Justify

*¥G2 is not applicable if field is left justified.

H = Default value field number. This is the only byte in the field
parameter which is stored in full binary location. It indicates
the field number in the current or previous record which is to
supply the default value (if any) for the current field.

If H=HEX(7F) (decimal 127), there is nét default value.

If H HEX(7F), the default value is supplied by the contents of
field #(127-VAL(H)) in the current record.

If H HEX(7F), the default value is supplied by the contents of
field # (VAL(H)-127 in the previous record.

H(in HEX) DEFAULT FIELD # RECORD
00 | 127 Current
0l 126 Current
TE 1 Current
TF NONE
80 1 Previous
81 2 Previous
FE 127 Previous
FF 128 Previous

114

/%

4

APPENDIX C

PARTIAL VARIABLE LISTING

IDEAS - Partial Variable Listing

Dimension

S$(255)8
72$(128)8
1$(128)2

T$(2)34
TO$(2)45

Wo$(9,2)1

Y1$(24)62
Y$(128)11
J$(1)2
G$(10)1
G$10
D$(6)9

M$(12)5
F$L6
00$(9)1

E 3

Variable

F

FO

FO$
S$()
z8()
1$0)
H$ ()
T$()

TO$()
us()

uo
Wos$()

X$()
Y1$()
¥Y$()
J$()
G$()
G$
D3()
D$
M3()
F$
00$()
ESQ)

F3$()

Not used in applications.

115

Description

Field Numbers

Total # of Fields

HIKAM File Name

Screen Buffer

Work Buffer

Work & Print Buffer

Work Buffer

Translation Table for Numeric Pack &
Unpack '
List of Valid Characters

Merge Array for Find First, FINDNEXT
(Dimensioned When Creating Start
Module)

Number of Opened Files

Set of Pointers to TO03$() (Used in
Validation)

Contains Valid Disk Selections

Load Variable for Field Names

Search Variable for Field Names

Search to Variable in MAT Search

GIO ARG 2 Variable

GIO ARG 2 Variable

Date Storage Variable

Numeric Form of Date

Month Storage Variable

Variable Used in $PACK & $UNPACK
Variable for Status Flags

File Parameters Buffer (Dimensioned
When Creating Start Module)

Key Buffer (Dimensioned When
Creating Start Module)

APPENDIX D
IDEAS SYSTEM UTILITIES

II.

START-UP PROGRAMS

PROGRAM

1.
2.

10.
11.

IDEAS

IDEAS300
IDEAS301
IDEAS302
IDEASsub
IDEAS303
IDEAS304
IDEAS305
IDEAS306

IDEAS307
IDEAS309

DESCRIPTION

IDEAS package disk selection module.
Variable definition module.

Character listing, validation module,
Application device selection module.

Subroutine module.

Device selections for T, VP, MVP,

Additional device selections for VP, MVP.
Internal device selection module.

Subroutine module to create files or take

limits on files.
System date module.

Main menu selection module.

IDEAS SYSTEM UTILITIES

A.

DATA FILE UTILITIES

PROGRAM

1.
2.
3.
.
5.
6.
7.

B.

IDEAS31IM
IDEAS310
IDEAS311
IDEAS312
IDEAS313
IDEAS314
IDEAS315

SCREEN MASK

PROGRAM

1.
2.
3.
y,
5.
6.

IDEAS32M
IDEAS320
IDEAS321
IDEAS322
IDEAS323
IDEAS32X

DESCRI PTION

Menu

Create/revise/re-initilize module
Record field definition module

Key field selection module
Performance option selection module
File initialization module
Documentation module

UTILITIES

DESCRIPTION

Menu

Creation module
Revision module
Documentation module
Printing module
Execution

116

ASS. SCREEN (IF ANY)
ideas3lm

ideas308, ideas 312
ideas3ll

ideas3lo0

ideas3l3

ideas314

ideas3ld, ideas315

ASS. SCREEN (IF ANY)
ideas32m
ideas308
ideas308
ideas308

ideas32x

V42

b

&

C.

REPORT/FORM PRINTING UTILITIES

PROGRAM

1.
2.
3.
L.
5
6.
7-

D.

IDEAS33M
IDEAS330
IDEAS331
IDEAS332
IDEAS333
IDEAS334
IDEAS33X

APLICATION INITIALIZATION PROGRAM GENERATION

PROGRAM

1.
2.

3.
b,

E.

IDEAS35M
IDEAS350
IDEAS351
IDEAS352

APPLICATION

PROGRAM

1.
2.
3.
y.
5.

F.

IDEAS36M
IDEAS360
IDEAS361
IDEAS362
IDEAS363

DATA ENTRY/INQUIRY/UPDATE PROGRAM GENERATION

PROGRAM

l.
2,
3.
y,
5.
6.
7.
8.
90
10.

G.

IDEAS3™
IDEAS3TX
IDPROGO1
IDPROGO2
IDPROGO3
IDPROGOY
IDPROGOS
IDPROGO6
IDPROGOT
IDPROGO8

DESCRIPTION
Menu

Creation/revision module
Report generator module

Execution module
Execution module
Documentation module
Execution module

DESCRIPTION

Menu

Creation module
Revision module
Definition module

MENU PROGRAM UTILITIES

DESCRIPTION
Menu

Menu screen & program revision mod.
Menu screen & program creation mod.
Menu screen & program revision mod.
Documentation program revision mod.

DESCRIPTION
Program generation

Module 1 of generated program

Inquiry module
Add module
Add/modify module
Add/delete module

Add/modify/delete module

Modify module
Delete module
Modify/delete module

APPLICATION MODULE SELECTION

PROGRAM

1.

IDEAS30A

DESCRIPTION

Execution of start module

117

ASS. SCREEN (IF ANY)
ideas33m

ideas308

ideas33l

ideas333, ideas33l

ASS. SCREEN (IF ANY)
ideas35m

ideas308, ideas350
ideas308, ideas350
ideas350, ideas3bl
ideas3ld

ASS. SCREEN (IF ANY)
ideas36m
ideas360

ASS. SCREEN (IF ANY)
ideas370

ASS. SCREEN (IF ANY)
ideas308

APPENDIX E
IDEAS RUN-TIME UTILITIES

The following is a list of program and data files which reside on the
IDEAS Application Utilities diskette. Next to each program name are listed
the 2200 Hardware configurations which require the program or data file be
resident during IDEAS - based application run time.

PROGRAM or DATA FILE HARDWARE CONFIGURATIONS

[

ID-SUB-M MVP
ID-SUB-T T
ID-SUB-V VP
IDEAS301 T / VP / MVP
IDEAS306 T/ VP / MVP
IDEAS307 T / VP / MVP
IDEAS332 T/ VP / MVP
IDEAS3 33 T / VP / MVP
IDEAS356 T/ VP / MVP
IDEAS357 T/ VP / MVP
IDEAS358 T/ VP / MVP
IDEAS35X T / VP / MVP
IDEASVAR MVP
IDFU-300 T / VP / MVP
IDFU-301 VP / MVP
IDFU-302 T / VP/ MVP
IDFU-303 VP / MVP
IDFU-304 VP / MVP
IDFU-305 VP / MVP
IDFU-306 VP/ MVP
IDFU-310 T
IDFU-310 T
IDFU-311 T
IDFU-312 T

{ IDFU-314 T
IDFU-315 T
IDFU-3M0 T / VP / MVP
IDGBSL-2 MVP
IDGLBSEL MVP
IDNONGBL T / VP
IDPRNTSL T / VP / MVP
ideas307 T / VP ¥ MVP
ideas308 T/ VP / MVP
ideas315s T /) VP / MVP

118

kg3

ideas3ld
ideas33l
ideas333
ideas3s)
idfu=-302
idfu-303
idfu-304
idfu-3m0
idfu=-3ml

119

HEHaaa33 34

N NN NN NN

VP
VP
VP
VP
N3
VP
VP
VP

NN NN NN

MVP
MVP
MVP
MVP
MVP
MVP
MVP
MVP

APPENDIX F

PRIME NUMBERS

2
29
67

107
157
199
257
311
367
421
467
541
599
647
709
769
829
887
967

3
31
71

109
163
211
263
313
373
431
479
547
601
653
719
773
839
907
971

5
37

113
167
223
269
317
379
433
487
557
607
659
727
787
853
911
977

T
41
79

127
173
227
271
331
383
439
491
563
613
661
733
797
857
919
983

11

43

83
131
179
229
277
337
389
443
499
569
617
673
739
809
859
929
991

120

13

47

89
137
181
233
281
347
397
149
503
571
619
677
743
811
863
937
997

17
53

139
191
239
283
349
401
45T
509
577
631
683
751
821
877
911

1009

19
59
101
149
193
241
293
353
409
461
521
587
641
691
757
823
881
947
1013

23
61
103
151
197
251
307
359
419
463
523
593
643
701
761
827
883
953
10109

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

700-5778A
TITLE OF MANUAL IDEAS
(Inquiry Data Entry Access System) User Manual
COMMENTS:
Fold
Fold

(Please tape, Postal regulations prohibit the use of staples.)

WANG

Fold

FIRST CLASS |
PERMIT NO. 16
Lowell, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

—~ POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical ertlng Degunmom

Fold

Printed in

U.S.A,
13-1019

Cut along dotted Bne.

N}

ﬁ

United States
A}abama Florida Louisiana New Hampshire Oregon Vermont
Barmfngham Miami Baton Rouge Manchester Eugene Montpelier
Mobile Hialeah Metairie Portland
Jacksonville New Jersey Virginia
Alaska Orlando RM”Y',"I"" Toms River Pennsylvania Newport News
Anchorage Tampa ockville Mountainside Al Norfolk
g Towson ¢ lentown
. Clifton Camp Hill Richmond
Arizona Georgia Massachusetts Erie o
Phoenix Atlanta Billerica New Mexico Philadelphia Washington
Tucson Savannah Boston Albuquerque C\i;tsburgh gnchtltalnd
" Burlington ayne eattle
California :awzlml Chelmsford xr‘" York Spokane
Culver City onolulu Lawrence Bu??a% Rhode Island Tacoma
Fountain Vall Littleton . Cranston
Fn?:sr:\:m allev 'Iga‘t:o Fall Lowell Fairport Wisconsin
Inglewood ano Falls Tewksbury l':':ke 3 uc:e;s South Carolina Broqkfueld
Sacramento Winoi Worcester w York City Charleston Madison
San Diego élrllpons Syracuse Columbia Wauwatosa
San Francisco lcago Michigan ’
Santa Clara Morton Kentwood North Carolina T
Venitrs Park Ridge Okemos Charlotte c:nnessee
Rock Island Southfield Greensboro attqnooga
Colorado Rosemont i . Raleigh :\(ﬁ'::;'r"';
innesota
Englewood :ngiana . Eden Prairie Ohio Nashville
ndianapolis N Cincinnati
Connecticut South Bend Missouri Texas
Creve Coeur Cleveland ;
New Haven Middleburg Heights ~ Austin
Stamford Kansas Nebraska Toledo 33"37
Wethersfield Overland Park Omaha Worthington S:ui\g:‘o o0
Wichita n ni
District of Nevada Oklahoma
Columbia Kentucky Las Vegas Oklahoma City Utah
Washington Louisville Reno Tulsa Salt Lake City
International Offices International Representatives
Australia France Singapore Abu-Dhabi Kenya
Wang Computer Pty., Ltd. Wang France S.AR.L. Wang Computer (Pte) Ltd. Argentina Korea
Adelaide, S.A. Paris Singapore Bahrain Kuwait
Brisbane, Qid. Bordeaux Bolivia Lebanon
Canberra, AC.T. Lyon Sweden) Brazil Liberia
DarwinN.T. Marseilles Wang Skandinaviska AB Canary Islands Malaysia
Perth, WA, Nantes Stockholm Chile Malta
South Melbourne, Vic3 Strasbourg Gothenburg Colombia Mexico
Sydney, NSW Toulouse Maimo Costa Rica Morocco
L Cyprus Nicaragua
Austria 3\/’9‘" (BJ"?)"L' ’ Switzerland Denmark Nigeria
ang (UK.) Ltd. Wang AG. Dominican Republic Norway
a::'ga Gesellschaft, m.b.H. R!ch(nond Zurich Ecuador Paraguay
E'":';ngham Basel Egypt Pe|.'u.) ‘
ondon Geneva El Salvador Phillippines
Belgium Manchester i Finland Portugal
Wang Europe, S.A. Northwood Hills Wang Trading A.G. Ghana Saudi Arabia
Brussels Hong Kong Zug Greece Scotland
Erpe-Mere Wang Pacific Ltd X - Guatemala Spain
Hong Kon ' United States Haiti SriLanka
Canada g Kong Wang International Trade, Inc. Honduras Sudan
Wang Laboratories .lwapan c L Lowell, Mass. Iceland Syria
(Canada) Ltd. ang Computer Ltd. India Thailand
3 d.
Tokyo West Getmany Ind : Turk
Burnaby, B.C.) ndonesia urkey
Wang Laboratories, GmbH Ireland United Arab
Calgary, Alberta Netherlands Frankfurt relan Erriveten
Don Mills, Ontario Wang Nederland BV. geriin Israel v mira Ts
Edmonton, Alberta Jsselstein Cologne Italy ' enezuela
Hamilton, Ontario Gronigen Dusseldorf Jamaica
Montreal, Quebec Essen Japan
Ottawa, Ontario clvew Zgaland Ltd Freiburg Jordan
Winnipeg, Manitoba ang Computer Ltd.
s Auckland Hamburg
China Wellington Kassel
Wang Industrial Co., Ltd. Panama Munich
Taipei Wang de Panama Nurnberg
Wang Laboratories Ltd. (CPEC) S.A. Saarbrucken
Taipei Panama City Stuttgart

(WANG)

LABORATORIES,

INC.

J

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 459-6000, TWX 710 343-6769, TELEX 94-7421

b
2

D,

Printedin US.A.

700-5778A
4-80-1M

	Cover
	Table of Contents
	Chapter 1: Overview
	Chapter 2: Daily System Initialization Procedures
	Chapter 3: Data File Utilities
	Chapter 4: Application Initialization ("START" Module) Program Generation
	Chapter 5: Menu Program Utility
	Chapter 6: Screen Mask Utilities
	Chapter 7: Data Entry/Inquiry/Update Program Generation Utility
	Chapter 8: Report/Form Printing Utilities
	Chapter 9: IDEAS Suppliementary Data File Utilities
	Appendix A: System Resident Macros
	Appendix B: Data Record Definition Files
	Appendix C: Partial Variable LIsting
	Appendix D: IDEAS System Utilities
	Appendix E: IDEAS Run-Time Utilities
	Appendix F: Prime Numbers

