CUSTOMER IV.A3 M
ENGINEERING

MODEL 2200LVP

Wi

PRODUCT
MAINTENANCE MANUAL

- (WANG)

IV.A.3M

CUSTOMER
ENGINEERING

MODEL 2200 LVP

PRODUCT
MAINTENANCE

MANUAL

WANG LABORATORIES, INC.,, 1980

NOTICE:

THIS DOCUMENT IS THE PROPERTY OF WANG
LABORATORIES, INC. INFORMATION CONTAINED
HEREIN IS CONSIDERED COMPANY PROPRIETARY
INFORMATION AND ITS USE IS RESTRICTED
SOLELY TO THE PURPOSE OF ASSISTING YOU

IN SERVICING WANG PRODUCTS. REPRODUCTION
OF ALL OR ANY PART OF THIS DOCUMENT IS
PROHIBITED WITHOUT THE CONSENT OF WANG
LABORATORIES.

~

LABORATORIES, INC.

\ (WANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

PREFACE

This manual provides field personnel with information‘needed to unpack,

install, operate, and maintain the Model 2200LVP Central Processing Unit.

Following is a list of documentation categories referenced by this
manual. In many cases, documentation from these other categories is directly
required for the performance of certain maintenance tasks. Be sure to check
the list of other required documentation at the beginning of each such

task-section.

MODEL 2236MXD MULTIPLEXER/CONTROLLER -- IV.B.1

MODEL 22C32 TRIPLE CONTROLLER -- IV.B.1

I/0 CONTROLLERS: SETTING DEVICE ADDRESS SWITCHES -- IV.B.1

I/0 CONTROLLERS: PART #'S & I/O CABLE CONNECTION -- IV.B.1

I/0 CABLE CONNECTOR INSTALLATTION -- I.B.O

2236DE INTERACTIVE TERMINAL -- III.D.1

DISK DRIVES -- III.A.11 AND III.A.12

PERIPHERALS -- Appropriate categories

OPERATING SYSTEM -- IV.C.4

MODEL 2200LVP CPU DIAGNOSTICS -- IV.C.1

PERIPHERAL AND DISK DRIVE DIAGNOSTICS -- IV.C.1

2200LVP CPU PREVENTIVE MAINTENANCE -- I.A.4

2200LVP CPU DATA MEMORY CAPACITY UPGRADES -- I.B.2

FIXED-DISK DRIVE CAPACITY UPGRADES -- I.B.2

SITE PLANNING & PREPARATION -- I.A.7

WANG BASIC-2 DISK REFERENCE MANUAL, WL #700-4081F -- III.A.O
2200VP BASIC-2 LANGUAGE REFERENCE MANUAL, WL #700-4080C -- IV.C.2
3740 DISKETTE COMPATIBILITY SOFTWARE RELEASE 2 USER MANUAL, WL #700-4369C

ii

TABLE OF CONTENTS

PAGE
SECTION 1 GENERAL DESCRIPTION .cicecececcceccccnccensosscocossscnsssonnss 1=1

SYSTEM OVERVIEW ccceceeceeeeneceocnnceossosooseoscnssossocnssnnes
PARTITION GENERATION AND SYSTEM CONFIGURATION cesteccsens
X)
FOREGROUND/BACKGROUND OPERATION ...cveeeeccocsscsccncoanssannans
COMPATIBILITY WITH OTHER 2200 SYSTEMS ...veeeeecesccconccansanas
MODEL CONFIGURATION ¢ccceveccecceooocoscccncescsssssscscnnnnnnes
SPECIFICATIONS teceeveceeececncesensssoesasossscossssnssscnnnans

.
[}

O P Y
L]

N O EWN -

N QR G
1

.Te1 2200LVP CPU ‘e eeeeeceecencnnnnnnns ctecectcertcctessesrssanns
.7.2 DISK DRIVES ® 0 06 0 0 00 00 0 0 0 o0 ® 0 0 0.0 00 000 00 000000000000

]
O o O3 Ul Ul =

1
1

—_

SECTION 2 SYSTEM-LEVEL THEORY OF OPERATION ..ceeieecccccccccceccnns ceses 2=1

2.1 MEMORY RESOURCES IN THE 2200LVP ..ieveveccesescocescscescncosene 2=1
2.2 MEMORY MANAGEMENT IN MULTI-USER SYSTEMSceeeeececcccennssces 2=1
2.3 PARTITIONING 2200LVP USER MEMORY ...eeeeeeesecsccoccnscnscannnas 2=2

2.3.1 MASTER INITIALIZATION teveeeeeceooccccccsns Cecestcccnsenees 2=2
2.3.2 GENERATING THE PARTITIONS tuveeeecscccsscccosccosscccsnscaas 2=2
2.3.3 PARTITION SIZE & INTERNAL ALLOCATIONS cesesecssscsess 2=5

2.4 THE SERVICING OF PARTITIONS ..eceeceececsccscesccsccnscasconnncas 2=0

2.4.1 TIME-SLICE PROCESSING «ceeeeeevcceonscceoscsonssasosnsssosnss 2=9
20"‘-2 BREAKPOINTING © 0 00 0000000000000 00000000000000000000000006000 2-9

2.5 ASSIGNMENT, ATTACHMENT, AND FOREGROUND/BACKGROUND PROCESSING ... 2-10

2.5.1 ASSIGNMENT 4eveeeencnceccesosnnseasssssossscesosssscsssscee 2=-10
2.5.2 ATTACHMENT e ieieeeeeenenecsessssssnnas ceeesesccscesccaans 2=11
"RELEASING" A TERMINAL +.cuvveecececceccscscocsscsccssoscscsncnee 2-12
"RELEASING" A PARTITION .cccceecccceccccnccsoncsccnessscnsssnnss 2=14
"GLOBAL"™ PARTITIONS .cvuceeecnccnccnccsoscessossscscnscasscnncas 2=16
"UNIVERSAL GLOBAL" PARTITIONS ..iecceeceeccccsccsccssccssosceassass 2=16
0 USER PROGRAM EXECUTION ..vvevececeocescscccesoscnscssnscssnscses 2=17

DN NN N
=0 003 O

2.10.1 GENERAL t¢ceeeeececcncccccnnns ceececcctracesccceanensssaes 2=17
2.10.2 SUBROUTINES ..iuceeeenceescesccssasscoscnssonssonsosscnnee 2=17
2.10.3 TEXT POINTER, POINTER TABLE, & INTERNAL STACKSeece.. 2=-18
2.11 ALLOCATION AND HANDLING OF PERIPHERALS tvievevecocccccccacanaaes 2=21

2.11.1 GENERAL civeeeereecececcceocccnsscsnsccsnsssscnssscnssses 2=21
2.11.2 BACKGROUND PRINTING .ccececccccencccsnssccessscnnsssnnnas 2=23

iii

SECTION 3 BOOTSTRAP OPERATION t.vevvevncnoeeecencennns ceccsrssncssccces 3=
3.1 BOOTSTRAP & eiinetennereeensennonnnnnannas ceseceenas ceeecccecans . 3-1
3.1.1 MASTER INITIALIZATION .evevrececcncnncncnans cretececcenans . 3-1 _J
30702 RESET tttitintnennreeeneesesoseocesencnnnaanoenennes ceeanes 3-2
3.1.3 CONTROL AND DATA MEMORY PARITY ERRORS ...iiveiieiiieeineeas 3-3
3.1.4 LOAD SYSTEM FILES .vevveceven. creerecectencean cerecteeeenas . 3-3
A4
3.2 BOOTSTRAP ERROR MESSAGES AND RECOVERY 4uveuveneneenenonecnannnnn 3-4
3.2.1 INITIALIZATION ERRORS ...vvvvnnnn ceteccecceeceanen ceeenn ee. 2-4
3.2.2 RESET ERRORS 4uveuvenienneeoseoneennenneenecneennannennnnss 3-7 -
3.2.3 SYSTEM ERRORS ...vievenennss et ecscrertetterctccesanenseonens 3-10
3.2.3.1 CONTROL MEMORY ERRORS +uvtvrievuennnranennennennasnness 3=11
3.2.3.2 DATA MEMORY ERRORS ..i.ievenuenn. ceeees ceeerecsetecennns 3-13
3.2.3.3 DISK ERRORS ..cveeeeneses ceccetctecceasnennn ceseen eees 3=15
SECTION 4 SYSTEM GENERATION ..ivevveseenn ceceerasnnns ceeececaen cesecnes h-1
)401 GENERAL © 0 0000000000000 0 0000000000000 0000000000000000 e e o 00 oo 0)4_1
4.2 POWER-UP, MASTER INITIALIZATION, AND SYSTEM GENERATION eee b2
4.2.1 POWER-UP i titiinienenieieeieneeesoesoconenconencnnnnannnaas U2
4.2.2 LOADING THE OPERATING SYSTEM ceeecccenns ceeene ceceenen 4-3
4.2.3 PARTITION GENERATION +.cuvuvnrenceoonnocococanananannsnnass U5
h.2.4 GENERATING A SAMPLE CONFIGURATION ceeecetcesann ceees Hom
4.3 GENERATING EVENLY-DIVIDED PARTITIONS: A SAMPLE PROGRAM ceececeees U4-18
4.y CUSTOMIZED PARTITION GENERATION ctecetecctcenesannse . h-20 -~
4.5 COPYING THE SYSTEM DISK D T P |
4.6 MODIFYING DEVICE TABLE ENTRIES ..evveeeeennn.. ceeeeennn ceceeneenn 4-25
4.7 SPECIAL PROGRAMMING CONSIDERATIONS cececnnnn cteececenons h-26
4.7.1 TIME-DEPENDENT SOFTWARE e teesescccecceesensonnne . L-26
4h.7.2 PERIPHERALS 4t ietieineeennsnenceosescocoscoscncncannnnanaes U026
h,7.3 $GIO RESTRICTIONS tuvvvrueeennoecoaenoneeconnncnneaonennnns 4-27
4.7.4 I/0 STATEMENT RESTRICTIONS veveveevcecsocncancnnanannnnanes U227
4.7.5 DEFAULT DEVICE ADDRESS Ceeeetcereccseerceceennnns ee. U4-28
4.7.6 CONTINUE tuteitneoneneeneaneneanenssosossoaocanancannnnnaas U-28
4.8 PROGRAMMING THE 2209A ON THE 2200LVP tuevuveeeeencennannsns ceee. U4-28
SECTION 5 HARDWARE THEORY OF OPERATION +vvvvcuveccncenencenensnncnnnnes 5-1
5.1 FUNCTIONAL STRUCTURE OF THE 2200LVP COMPUTER SYSTEM eees 5-1
5.1.1 CENTRAL PROCESSING UNIT tuveveeceoocosonacecencnnnnncooness 5-1
5.1.2 SYSTEM MEMORYcceeveennn creeeen ceeecceennn ceseencssese H=1
5.1.3 INPUT/OUTPUT SUBSYSTEM R R T T T . b5=2 '
~7

iv

5.2 FUNCTIONAL STRUCTURE OF THE 2200LVP CENTRAL PROCESSING UNIT

5.2.1 WORK REGISTERS seveveeeecosacens ettt iccereccscsctecsccnoons

5.2.2 ARITHMETIC/LOGIC UNIT (ALU) .eeveeeeoensconcosconcanncanns .

5.2.3 CONTROL CIRCUITRY seeeeeecces teteescerescteeneenons ceceeens

5.3 2200LVP CPU BLOCK DIAGRAM THEORY (BASIC) .eveeeeecesencescocens .
5.4 2200LVP CPU BLOCK DIAGRAM THEORY (DETAILED) teveeeescccecscccnss
5.4.1 CONTROL MEMORYevceeeee ceetsessessccnnn ceesevesencananse .

5.”.2 DATA mMORY ® o o0 0 00 ® ® 0 0. 0060060 000000000 0000000000 o o 0 0 0 L N] .
5.4.3 REGISTERS vt eereeeeececanannnns ceeteteseaas ceeteesessecennns

5.4.4 ALU ® 0 0.0 000 00 0 0 0 0 00O OO OO OO OO OO 0O 000 OO 0O 0L OO OO OO OSEOEOCEOLEOOLEOIEOSEOGSEOIOSLES
5.4.5 AUXILIARY REGISTERS AND SUBROUTINE STACK cecevas .o

5.4.6 INPUT/OUTPUT CIRCUITRY vveeveeeceeoccescossosconcanncnnnns

5.5 DISK PROCESSING UNIT ceeeeecennnnsnss . ceersescertetcssersecannne .o
5.5.1 MICROCOMPUTER AND MEMORY .vvuieeeeeeocecosccconsccnoncconnns

5.5.2 2200/DISK INTERFACE .c.vvivenreannn ceetcssccnenn ceesecscrecens

5.5.3 DISK CONTROLLER cueveiveeereecccccscancnns ceeseccresertscnnnnn
SECTION 6 SITE PREPARATION ...ccceevncenes ceessenene cencen ceeeccecnnes .
SECTION 7 INSPECTION, UNPACKING, AND CABINET LEVELING........ ceetesaene .
7.1 TOOLS REQUIRED cecsescesencnns cecttececas cretecesnan ceves
7.2 PRE-UNPACKING INSPECTION ¢¢cceeececccnosns cececssnae ceeeeen ceeeee
7.3 UNPACKING INSTRUCTIONS ...ccevenn cececenn ceseccens ceeecans ceees
7.4 CABINET LEVELING PROCEDURE ceecsctccceectcennns cecene ceeonnn
SECTION 8 INSTALLATION creteseeanas ceecrccsscssennn cecteerccanas
8.1 PRE-INSTALLATION INSPECTION t.veeeveccceosccnosccoooccecnnnnnnas
8.2 INITIAL SETUP ceceeececccnccnnns ceecennn cocecens TN ceceene
8.2.1 2200LVP CIRCUIT BOARDS (W/LAYOUT) cevveececcocecencnaannnann

8.2.2 2200LVP POWER SUPPLY-TO-CPU-TO-DISK CABLE CONNECTIONS

8.2.3 DISK DRIVE I/O CABLE CONNECTIONS ceceecececcncenns

8.2.4 2200LVP POWER SUPPLY AC INPUT VOLTAGE SELECTION .¢iieeeeee .

8.2.5 2236MXD MULTIPLEXER/CONTROLLER “uvvveveencocanconanonannans

8.2.6 22C32 TRIPLE CONTROLLER e ececccccssecseecesssnasenns

8.2.7 I/0 CONTROLLERS ..ceveeenss et ececeseccccteccccennossssnnns

8.2.8 2236DE INTERACTIVE TERMINAL +.vevevvcecncecacans cectececsnns

8.2.9 DISK DRIVES .euvvvne ceeecctteertectccccncnnons cecstecceccnnns
8.2.10 PERIPHERALS ttvtuvvvencrocsnconanceecnnnnns ctecsecsecccncns

8.3 INSTALLATION AND POWER-ON PROCEDURES ...veec.. ceeceecescecteannns
SECTION 9 DIAGNOSTICS ceecencsen N coctecencenns ceeccssene
SECTION 10 PREVENTIVE MAINTENANCE cteceteccensnans checrteccensnnsn

10-1

SECTION 11
1.1
1.2

11.3
1.4

SECTION 12

12.1
12.2

12.2
12.2

12.3

12.3
12.3

SECTION 13
SECTION 14
SECTION 15
APPENDIX A
APPENDIX B

APPENDIX C

REMOVAL/REPLACEMENT AND ADJUSTMENT PROCEDURES +vvsveecsnenss
RECOMMENDED TEST EQUIPMENT/TOOL LIST 4uveeeeeveoesonnnnceonnnss
CPU VOLTAGE ADJUSTMENT PROCEDURE +uuvveenneeeneenneconeeeennnns
DISK PROCESSING UNIT ADJUSTMENT PROCEDURE ¢vvevvevncenecnnnnnn.
REMOVAL /REPLACEMENT PROCEDURES 4 evevveucenenceoenesosoanaanenns

1 CABINET TOP COVER tuveeeeooneenoeeennnnnoeonnnnonsnnnnnnns
2 CABINET BACK PANEL 4tveutrueennneoneeneconeseesnconncnnnes
3 CPU CHASSIS COVER 4uveeeoueoesoneeonnneenncesnnaennnonnnns
B CPU CHASSIS tuuuuueeeeetoeeeeennnnnnneeeesoeaeeeeennnnnnns
.5 POWER SUPPLY 4tutieunnieeenneeronseooneeenneesnnonnnnennnns
6 POWER SUPPLY COVER «eeveunensoecononcononcannncsosnannenes
7 ~ POWER SUPPLY REGULATOR tevueeenneeennncenneconnaeonnnennnss
8 DISK DRIVES tuveueruuunononceeeenannnnnnnnnnnnneoeeeennnns

TROUBLESHOOTING ..

GENERAL $0c0 0000000000000 0000000000000 00000000000000000000s0

SYSTEMERRORS ...

o1 CONTROL MEMORY ERRORS tiutveuievurennneoeenenesnencncannnnes
.2 DATA MEMORY ERRORS

MEMORY DIAGNOSTIC ERROR INTERPRETATION woeveeeeecnconcneonnnnns

.1 CONTROL MEMORY‘..................................
.2 DATA MEMORY ® 0 0 0 00 000000 o0Q.........................

CONVERSIONS 4 tuuuneeteenneesseeonnnneeeeosnnsaeeonnnnnesenns
N P
BILL OF MATERIALS teeuuunueeeoonnnneeesannnsceonnnnnsennnss
ERROR CODES tttuuneeunerenneeoeosoaneeennncesneenncannnnnnns
MECHANICAL DRAWINGS 4 uvvuveonueneeneeeeeeeenesonnnnnnnnnnnss

SCHEMATICS 4 teteeenneuneeeeneeeoonesonneeonncennseonneennens

vi

11-1
11-1

11-2

11-5

11-14
11-14
11-14
11-14
11-14
11-15
11-15

11-15
11-16

12-1

12-1
12-18

12-18
12-20

12-23

12-23
12-25

13-1
14-1
15-1
A-1
B-1

C-1

-

FIGURE

LIST OF FIGURES

TYPICAL 2200LVP SYSTEM CONFIGURATION
"NEGATIVE" FREE SPACEcoveevee cetecccans
INTERNAL PARTITION ALLOCATIONS .ieeeeeeeneens oo
2200LVP BLOCK DIAGRAM (BASIC) teveensn ceeceetccscsectsscteesessnnns
2200LVP BLOCK DIAGRAM (DETAILED) P
MICROCOMPUTER/MEMORY BLOCK DIAGRAM

2200/DISK INTERFACE BLOCK DIAGRAM oo

©ee e oo 00

e e 0c 000000000000

DISK CONTROLLER BLOCK DIAGRAM ..cieveeeeeceeoceoseoscosconsonnas
2200LVP PACKAGING ciceveecececnscnsanannes ctectcsecssessccssenes
LEVELING-PAD SCREW BOLTS «vveeeeeecscesonsssssesossssesssscsnnes
2200LVP (FRONT VIEW) cvevevecenccncsnannns ceececcrctessctscsanens
2200LVP (REAR VIEW) seveeveesescoccscscnnenes
2200LVP (INSIDE VIEW) .eoveves crecevtteccssnns

WL
WL
WL
WL
WL
WL
WL
WL
WL
WL
WL
WL

NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.

210-7587-1B DATA MEMORY (32K) oo
210-7587-1A DATA MEMORY (6U4K) ...evene

210-7587-3A DATA MEMORY (128K) ® 00 00 00000000000 00000000

210-7588-1A CONTROL MEMORY (32K)
210-6789-A MEMORY CONTROL e0 0000000000

210-6790 INSTRUCTION COUNTER seveevseesccnscosconsoansonns
210-6791 STACK © 0000000000000 0000000000000 00000000000000 0

210-5T92 ALU tvverveeernscnnnsessncnnes
210-6793-1 REGISTERS 0 0000000000000 0

LRI S Y

o0 e 000000000

00000000000

210-7694 2200/DISK INTERFACE (DPU) tevveevccescoscosannns

210-7695-A DISK CONTROLLER (DPU)
210-7696-A MICROCOMPUTER/MEMORY (DPU)

CIRCUIT BOARD LAYOUT AND VOLTAGE TEST POINTS
CPU MOTHERBOARD POWER CABLE CONNECTIONS

POWER SUPPLY CABLE CONNECTIONS .vieeeeencses

DISK DRIVE POWER AND I/O CABLE CONNECTIONS ..
POWER SUPPLY CABLES ..ceeeeeneecscsncnccnnnss
DISK DRIVE I/O CABLE CONNECTIONS ..ceeeeeeess
POWER SUPPLY REGULATOR ADJUSTMENT POTENTIOMETERS ...ccoccceecces
DPU ADJUSTMENT TEST POINTS AND POTENTIOMETERS ON 210-7694 BOARD
43.0V DC LEVEL tiveeeenccceocccnasecnnscnnnns

R7
R7
R7
R8
R8
R8

ee 00 e

ee o0 o e

e e 0000000000

ADJUSTED PROPERLY ® ® 00 060000 00 0 00 00 00 0o ® 0 0 00600 00 00 00 00000 00000

SET TOO FAR COUNTERCLOCKWISE

SET TOO FAR CLOCKWISE ceceresennnn

ADJUSTED PROPERLY teveeeeeceenocccccnncenss
SET TOO FAR COUNTERCLOCKWISEcccevevveaes

00000000000

SET TOO FAR CLOCKWISE ceveeeceoeeseoeossscosscnosssnnsscnnnes
FASTENING SCREWS teeeeeneceeeceencceecsssesssscnsscsssscsnsssns
TOP COVER SNAP-LOCKS cesecens ceven
DISK DRIVE FASTENING SCREWS cececscssnns
CONTROL MEMORY DIAGNOSTIC ERROR INTERPRETATION
DATA MEMORY DIAGNOSTIC ERROR INTERPRETATIONccceeeeccccccncs

vii

o000 ce0c00ce0 00

e 0000000

(I R T W N U U |
N oV

|
2O WOV EWEMNMDWNOVN OOE O &=

Ly
-0 o

8-12
8-13
8-14
8-17
8-18
8-19
8-20
8-21
11-4
11-6
11-7
11-9
11-10
11-10
11-12
11-13
11-13
11-17
11-18
11-19
12-24
12-26

SECTION 1

GENERAL DESCRIPTION

1.1 SYSTEM OVERVIEW

The 2200LVP is an interactive, multi-user, multi-task, disk-based
computer system. The LVP central processor supports up to five terminals and

16 jobs (tasks) concurrently, and is programmable in Wang BASIC-2.

The 2200LVP utilizes a user-defined, fixed-partition memory configuration
along with a 600 ns cycle-time central processor to extend multiprogramming
capabilities to system users. In a fixed-partition memory scheme, user memory
is divided into a number of distinct areas called "partitions", each of which
can contain a separate program. The central processor allocates intervals of
processing time (time slices) to each partition in turn, permitting the
program in an individual partition to execute for a brief time slice before
servicing the next partition (called’"interleaving"). Since programs
performing input/output operations are not serviced until the operation is
complete, they relinquish their central processing time to another partition.
This method ensures a complete overlap of I/0O processing, which is handled by
peripheral controllers and CPU processing. By interleaving execution of
different partitions, and bypassing those which cannot use central processing
time: the 2200LVP response time decreases to create the illusion that each
user has exclusive, continuous control of the system. Response time, an
important consideration in a multi-user environment, is extremely fast for all
users, regardless of the number of partitions or type of program currently

executing.

State-of-the-art disk technology enhances the speed and versatility of
the 2200LVP. Two new types of disk drives are available with the 2200LVP--a
dual-sided, double-density (DSDD) diskette drive, which is IBM 3741-
compatible, and a fixed, Winchester-style drive. Both storage devices

represent the latest developments in cost-effective, high-spegd, mass storage
peripherals.

1-1

The expanded capacity diskette can be used to obtain faster backup with
fewer platters. In addition to its backup capabilities, the DSDD diskette
also serves as the medium for transferring system software and application
packages. The fixed disk provides fast data access in a compact space without
the mechanical or environmental problems associated with removable media-type
drives. The DSDD diskette drive and the fixed-disk drive are mounted directly
in the compact system housing, which also contains the central processor, thus
saving space which separate drives would customarily require. (Refer to
Section 1.7.2 for disk drive capacity specifications, and sector addressing
scheme. Refer to Wang BASIC-2 Disk Reference Manual, WL #700-4081F--II1.A.0,
for an explanation of the BASIC-2 disk commands. Refer to 3740 Diskette
Compatibility Software Release 2 User Manual, WL #700-4369C, for an
explanation of 3740 diskette compatibility.)

System users communicate directly with the 2200LVP by using a 2236DE
Interactive Terminal with business graphics capabilities. The terminal
consists of a large, easy-to-read 80 X 2U-character CRT-screen display and a
typewriter-style keyboard. Up to five terminals can be attached (via one
2236MXD Multiplexer/Controller, and one 22C32 Triple Controller) either
locally to the central processing unit at distances ranging up to 2,000 feet,
or remotely by using modems and telephone lines. Line speeds, which range
from 300 to 19,200 baud, are supported by using, asynchronous, full-duplex
transmission. To accelerate communication and improve response time, the
system performs automatic data compression on information transmitted to etch
terminal. Since each terminal has provision for connection of a local printer
or plotter on the back of the unit, screen dumps may be output, and all
standard printing operations may be performed. The 2236DE terminal also
generates extensive bar and line graphics by standard program statements (ref:

2236DE Terminal documentation in category III.D.1).

At the customer's option, the 2200LVP can be equipped with
telecommunications controllers to enable remote devices to be connected to the
central processing unit. Both asynchronous and bisynchronous transmission are

supported by the 2200LVP processor.

1-2

-y

The 2200LVP also supports a wide range of peripheral devices, such as
printers, plotters, disks, and tape drives. The current peripherals available
for use with the 2200LVP are:

PRINTERS PLOTTERS
2201L Character 2232B Large Flatbed
2221W Matrix (120 cps) 2271P Bi-Directional
2231W Matrix (120 cps) 2272-2 Drum
2251 Matrix (110 cps) 2281P Daisy
2261W Matrix (240 1lpm) 2282 Graphic CRT
2263W Chain (400/600 1pm)

2271 Bi-Directional (15 cps) TELECOMMUNICATIONS
2273 Band (250/600 1lpm)
2281 Diablo Daisy (30 eps) 2227B Asynchronous
2281W/WC Wang Daisy (40 cps) 2228B/C Bisynchronous
IPY41L Image (900 cps)
TAPE DRIVE

PRINTER MULTIPLEXERS 2209A 9-Track (1600 bpi)

2211M DISK DRIVES *

2221M
2280 Cartridge Module

¥ 2230/60/70 model disk drives are supportable but are not sold in
standard LVP-system configurations.

NOTE:
As of July, 1980, only 3 I/O slots are available in
the 2200LVP, one of which is taken up by the 2236MXD

Multiplexer/Controller. A field-upgradable,
9-I/0-slot version of the LVP is being designed.

FIGURE 1-1, on the following page, illustrates a typical 2200LVP system

configuration.

1-3

273
LOCAL
PRINTER 2236DE
REMOTE
TERMINAL
2281W
LOCAL PRIMARY
PRINTER 2236DE PsnE 2236DE
LOCAL
TERMINAL TERMINAL frocar L~/ REMOTE TERMINAL
MODEM MODEM
- s == |
2236DE
LOCAL i I | |
TERMINAL N Ten
SYSTEM
L1 PRINTER
2200LVP
CPU
LOCAL (32/64/128 K)
MODEM
\é 2280
?\ 1MBDSDD | 2/4/8 MB DISK
DISKETTE FIXED
REMOTE REMOTE DRIVE DISK
2200LVP
SYSTEM MODEM

1-4

FIGURE 1-1 TYPICAL 2200LVP SYSTEM CONFIGURATION

-;

1.2 PARTITION GENERATION AND SYSTEM CONFIGURATION

The number of partitions on the system and the size and characteristics
of each are established initially in a process called "partition generation.”
(Wang provides a special utility program to facilitate the partition
generation process.) When the number of partitions and the size limits of
each partition have been defined, and when other system characteristics have
been specified, a "system configuration" is created. The user can
create/generate one or many such system configurations, each tailored to a
specific set of processing requirements. All configurations can be uniquely
named and then saved in a system disk file, to be accessed when needed.
Optionally, the user can designate a particular predefined configuration to be

automatically loaded and executed whenever the system is powered on.

The system configuration selected determines system and program operating
parameters such as how many partitions will be created, how much memory will
be allotted to each, and how many partitions will be assigned to each
terminal. Once the system configuration is executed, each terminal on the
system functions as if it were part of a single-user system. In general, each
user can enter and run programs, interrogate and modify variables, and access

common disk files as if there were no other users on the system.

1.3 MEMORY

The 2200LVP does not store its system programs (the BASIC-2 interpreter,
operating system, and system diagnostics) in the same memory area used to
store the application software. System programs are stored in a separate
memory area called "control memory." The 2200LVP contains approximately 32K
24-bit words of control memory. When the system is powered on, the system
programs are loaded into control memory from the system platter and remain
resident in memory until the system is powered off or reinitialized. Control
memory is a separate, protected memory area which cannot be accessed by the
user or the user's programs. The system programs are, therefore, always

protected against accidental interference or destruction by a user program.

1-5

User memory is the area of memory avajlable to the user's programs and
data. User memory may be 32K bytes, 64K bytes, or a maximum of 128K bytes.
Because the system programs are stored separately, all user memory except for
a small portion used for partition overhead, is available for user programs

and data.

User memory consists of either one or two "banks" which contain a maximum
64K bytes each. The user may divide each bank into a number of partitions of
fixed size, each of which can execute a separate program. The addressing
scheme, however, does not permit partitions in the first bank to extend into
the second bank. Within each bank, a fixed amount of memory is reserved for
system overhead. In the first bank, 3K bytes are reserved for overhead and in
the second bank, 8K bytes are unavailable to the user. Thus, a total of 61K
bytes in Bank 1 and 56K bytes in Bank 2 are available to the user. The amount
of system overhead is fixed, regardless of the total memory purchased for each
bank. In addition, each partition in each bank requires approximately 1K
bytes of partition overhead. All remaining memory in a single partition is

available for user programs and data.

1.4 FOREGROUND/BACKGROUND OPERATION (ref: SECTION 2 for detailed information)

Since each terminal on the system may be assigned more than one memory
partition, each terminal may be running several different jobs concurrently.
Although the terminal may be running several jobs in different partitions, it
can communicate with only one job at a time. The job which is currently
communicating with the terminal is running in the "foreground." The job or
jobs associated with a terminal but not currently communicating with it are
running in the "background." A terminal may be switched from one partition to
another, shifting the current foreground job into the background and shifting
a particular background job into the foreground to permit operator

communication with that program.

Foreground/background operation allows a user to run several Jjobs
requiring varying degress of operator attention from a single terminal. A
typical example would involve running a batch-type job requiring minimal
operator interaction (such as payroll processing) in the background, while a

more interactive job (such as order entry) runs in the foreground.

1.5 COMPATIBILITY WITH OTHER 2200 SYSTEMS

The 2200LVP has been designed to preserve compatibility with Wang's
older, single and multi-user systems, as well as the more recent single-user
systems. Since the 2200LVP is compatible with the 2200MVP, multiuser software
written for the 2200MVP will function correctly on the 2200LVP. However,
differences in the number of peripherals which can be attached to the system

may affect some user programs.

Because the BASIC-2 language supported on the 2200LVP is identical to
BASIC-2 on the 2200VP, there is 100% software compatibility between these
systems for single-user programs. The 2200LVP also supports earlier Wang
BASIC syntax, providing a significant degree of compatibility with non-VP and

non-MVP systems.

1.6 MODEL CONFIGURATION

The 2200LVP is identified by a model number of the format:

2200LVP-xxy

where: 2200LVP represents the CPU, 1 megabyte of dual-sided

double-density diskette, and the cabinet.

xx is a one or two digit number representing the actual CPU

user-memory size when multiplied by 4.

8 - 32 kilobytes of user-memory
16 - 64 kilobytes of user-memory

32 - 128 kilobytes of user-memory

y is a capital letter representing the model for the fixed disk

capacity option.

2 megabyte fixed disk option

I} megabyte fixed disk option
8 megabyte fixed disk option

x> U Q o
I

No fixed disk option

1-7

A summary of all model

MODEL

2200LVP-8X
2200LVP-16X
2200LVP-32X
2200LVP-8B
2200LVP-16B
2200LVP-32B
2200LVP-8C
2200LVP-16C
2200LVP-32C
2200LVP-8D
2200LVP-16D
2200LVP-32D

TABLE 1-1

32K
64K
128K
32K
64K
128K
32K
64K
128K
32K
64K
128K

1.7 SPECIFICATIONS

1.7.1

Size

2200LVP CPU

Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,

descriptions and numbers is given in TABLE 1-1.

CEEEEEEEEEEE

SUMMARY OF 2200LVP MODEL NUMBERS

DESCRIPTION

Floppy

Floppy

Floppy

Floppy,
Floppy,
Floppy,
Floppy,
Floppy,
Floppy,
Floppy,
Floppy,
Floppy,

Height - 27.0 in. (68.6 cm)
- 20.4 in.
- 30.0 in.

Width
Depth

Memory Cycle Time

600 nanoseconds

User Memory Size

32K bytes (standard)
Expandable to 64K or 128K bytes

Control Memory Size

32K 24-bit words

(51.8 cm)
(76.2 cm)

Maximum Number of Partitions

16

Minimum Partition Size

1.25K (1,280) bytes

Maximum Number of Terminals

5

1-8

BE5585558

Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed

Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk
Disk

WL # WL #

60 HERTZ 50 HERTZ
177-3204 157-3204
177-3205 157-3205
177-3206 157-3206
177-3207 157-3207
177-3208 157-3208
177-3209 157-3209
177-3201 157-3201
177-3202 157-3202
177-3203 157-3203
177-3210 157-3210
177-3211 157-3211
177-3212 157-3212

System Overhead

3K (3,072) bytes for 32K and 64K machines
11K (11,264) bytes for 128K machines
1K (1,024) bytes per partition

Numeric Range

107100 t5 10100, f1oating point with 13 significant digits

Power Requirements

115 or 230 VAC + 10%
50 or 60 Hz + 1.0 Hz
230 Watts

Fuses

5.0 amp (SB) for 115 V
3.0 amp (SB) for 230 V

Operating Environment

Temperature - 60° to 90°F (15° to 32°C)
Relative Humdity - 35% to 65% (noncondensing--recommended)
20% to 80% (noncondensing--allowable)
Heat Output

1,050 Btu/hr.

1.7.2 DISK DRIVES

1 MB DSDD 2 MB 4 MB 8 MB

Diskette Fixed-Disk Fixed-Disk Fixed-Disk
Disk Surfaces 2 1 2 L
Sectors/Track 26 32 32 32
Tracks/Surface 77 *%25) *%%255 *X2005
Bytes/Sector 374 320 320 320
Bytes/Data Field 256 256 256 256
Sectors/Surface 2002 8128 8160 8160
Total Sectors ¥3978 8128 16320 32640
Total Bytes 1,025,024 2,080,768 4. 177,920 8,355,840
Sector Addresses *0-3977 0-8127 0-16319 0-32639

* The first track on side zero is single density, and is accessed by
sector addresses 16384-16409. NOTE: The sector addresses for a
single-density single-sided diskette are 16384-18386.

% Actually 256 -- the last track is reserved for alternate sector
assignment, and the next to last track is reserved for diagnostic
testing purposes.

%%% Actually 256 -- the last cylinder is reserved for alternate sector
assignment and for diagnostic testing purposes.

1-9

NOTES

1-10

SECTION 2

SYSTEM-LEVEL THEORY OF OPERATION

2200LVP operation is handled collectively by hardware, firmware, and
software; however, the key to understanding how each major element of the
system interacts with others comes by first understanding the method of memory
control used in the Central Processor. This discussion will therefore

commence in the general area of 2200LVP memory and memory control.

2.1 MEMORY RESOURCES IN THE 2200LVP

There are two random-access memory units in the 2200LVP--Control Memory

and User Memory.

Microcode for the Operating System is contained in Control Memory. The
Operating System is a software package dedicated to central processor time
management, system memory management; and I/0 operations management. Control
Memory comprises thirty-two-thousand 24-bit words; that microcode is not

accessible to users.

Physically separate from Control Memory is the RAM space allocated for
User Memory--for storage of user programs, user data, and other information
needed for correct user program execution. User Memory is divided into areas
known as "banks"; a maximum of two banks are possible. A system containing 32
or 64 kilobytes of User Memory uses only bank #1; a system containing 128

kilobytes of User Memory uses both bank #1 and #2.
2.2 MEMORY MANAGEMENT IN MULTI-USER SYSTEMS
In a multiple-user system such as the 2200LVP, system resources must be

shared. The simplest technique of sharing user memory space is called

"partitioning".

Normally, the word "partition" means "a dividing wall". However, in the
computer industry, the word has come to mean the space enclosed by the wall,
rather than the wall itself. Henceforth, when discussing partitioned memory
management, the "partition" is a block of memory space with specified address
boundaries; it is not a boundary itself. The 2200LVP is configured such that
each user is allocated one or more blocks (partitions) of User RAM which

belong exclusively to him.
2.3 PARTITIONING 2200LVP USER MEMORY

2.3.1 MASTER INITIALIZATION

Before partitions are allocated for system users (during Master
Initialization), a "system-use" block--comprising the first 3K in Bank #1 of
User Memory--is established for Operating System housekeeping. (For this
preliminary allocation, the Operating System might be loosely thought of as

another "user" of User RAM space, requiring its own partition.)

During Master Initialization, the "MOUNT SYSTEM PLATTER" message is
displayed at terminal #1; the operator at terminal #1 uses a Special Function

key to load the Operating System from the system platter.
2.3.2 GENERATING THE PARTITIONS

The number of partitions to be created and the amount of User Memory to
be allocated to each partition are specified by the user in a process called
"partition generation". This process also involves specifying certain
attributes for each partition (ref: SECTION U4) and supplying the addresses of
peripheral devices connected to the system.

Once the Operating System has been loaded into Control Memory, the
special utility program "@GENPART" is loaded and executed at terminal #1.
This program leads the system operator through the necessary steps for
"partition generation". A series of display prompts appear at terminal #1
that require the user to supply information pertinent to each partition and
each shared peripheral device.

2-2

o

-

A "system configuration" is created by the @GENPART utility. Once
created, a system configuration can be saved on disk for later recall. For
this reason, a system configuration need be defined only once. A variety of
system configurations can be created for different processing requirements;

the operator can then select an appropriate configuration, as needed.

When the user has provided all of the information requested by @GENPART,
or when the desired saved configuration is selected from the @GENPART display,
the BASIC-2 statement $INIT must be executed. In the case of the Wang version
of @GENPART, this is accomplished by keying SF 15. $INIT directs the
Operating System to allocate resources as prescribed in @GENPART, in order to
create a requested system configuration. Note that the $INIT statement alone
may be used instead of the @GENPART program; but in either case, it is the

$INIT statement which ultimately causes configuration to be carried out.

Once partition generation (partition allocation) has been implemented,
each partition can be handled much like the entire user memory space of a
single-user 2200 System: program text can be entered by a user, starting near
the low end of his allocated partition, and his text entry progresses with
ascending User Memory addresses; variable data for that program can be entered
starting at the end (highest address) of his partition, and entry of that data
progresses with descending addresses. This information will be illustrated in

a partition diagram which appears in subsequent text of this section.

The LVP Operating System and CPU hardware will support a maximum of 16
partitions and 5 system users. All 16 partitions may be allocated to a single
user, or multiple-parititon configurations may be created for each user. The
16 partitions (maximum configuration) may reside entirely within a single
bank, or may be split up between both banks (as could be the case for a 128K
LVP). One restriction, in regards to this latter statement, is that each
partition must be defined wholly within the confines of a bank; that is, no

user partition is allowed to extend from one bank to the next.

NOTE:

The first 8K of bank 2 is non-addressable, due to

certain constraints of the LVP Operating System; this
means that prior to partition generation time, there
is only 56K (maximum loading) left for partitioning in
bank #1. A 128-kilobyte LVP therefore provides an
actual total of 117 kilobytes for partitioning of User
Memory--61K in bank #1, plus 56K in bank 2.

2200LVP USER MEMORY

1St 8K-NON ADDRESSABL B‘

PARTITION
" SYSTEM-USE" BLOCK 5‘ #4 4/¢

UNIVERSAL-GLOBAL AREA

PARTITION

USER PARTITION #1 #5

USER PARTITION #2 BANK #2

USER PARTITION #3

BANK #1

»

2.3.3 PARTITION SIZE & INTERNAL ALLOCATIONS

Partition sizes are specified in 256-byte (1/UK) increments. The first
947 bytes of each partition is used by the Operating System for "Operations
Housekeeping" requirements of that parititon (this is not to be confused with
the "system-use" block in bank #1). The minimum size that may be specified
for any user partition is 1.25K.

Within each partition, there is also a User Program Text area, a Work
Buffer, a Free Space area, a Value Stack, and a User Data Space (further
explanation follows). Realize that neither the 947-byte housekeeping space,
nor the Work Buffer, nor the Value Stack in each partition is addressable by
the user; instead, values are stored in and retrieved from those blocks by the
Operating System, according to the the conditions of execution existing in

that partition at any given moment.

The Value Stack is not of fixed size; it expands and contracts in size
during the course of program execution, and its size is zero prior to program
execution. Typically, the Value Stack serves as a storage space for transient
operands during the evaluation of mathematical expressions; subroutine return

address information is also stored here, as required by the user's program.

The Work Buffer "floats" at the end of the Program Text area in memory.
It is used to temporarily store information transferred into memory from the
keyboard's input buffer, as well as for temporary storage of data for certain
system functions such as LIST DC, MOVE and COPY. Immediate Mode lines and
system commands transferred to the Work Buffer are immediately executed and
then cleared; numbered program lines are moved from the Work Buffer area to

the Program Text area so that they will be threaded into the user's program.

The Work Buffer can become as large as necessary (subject to available
space) to contain an entered line. In every case, however, the system
reserves a fixed minimum of 192 bytes for the Work Buffer. When the addition
of a new program line or variable threatens to overlap into the minimum buffer

area, a memory overflow error is signaled, and the program line or variable is

not stored.

5

The actual amount of free space that exists in a partition at any given
moment may be calculated by the two BASIC functions SPACE and END. Before
computing this free space, the system automatically subtracts 192 bytes from
the available space (for the minimum Work Buffer area). Thus, if END and
SPACE return free space values of zero, there remains a minimum of 192 bytes
still available for the Work Buffer.

It is important to recognize that a situation may arise in which

- initially, there is sufficient free space to enter a program, but not enough
free space to execute the program; this occurs when, specifically, the Value
Stack requires more space than is available for the execution of the user's
program. To determine how much free space actually is available, free space
must be checked by SPACE during program execution when the Value Stack attains
its maximum size. Typically, this occurs when the program executes the
innermost loop in series of nested loops. SPACE can be executed in the

innermost loop to determine how much free space is available at the point.

The SPACE function returns, to the workstation screen, the amount of
memory not currently occupied by program text or data, minus the amount
occupied by the Value Stack. This value represents the actual amount of free

space in memory at any point during program execution.
The END function does not subtract the space taken up by the Value Stack.

The Meaning of "Negative" Free Space

Although the system ensures that a minimum of 192 bytes always remain
unoccupied by program text or variables in memory, it does permit the Value
Stack to utilize a portion of this minimum buffer area. Up to 128 bytes of
the 192-byte minimum Work Buffer can be used by the Value Stack. This fact
implies that a program can be run even when memory is legally "full," since
additions to the Value Stack during execution can overlap into the reserved
Work Buffer area. Note that in this case the SPACE function would return a

negative free space value.

»

Program
Text Area
Reserved }\ | _ _ _ _ _ _ _ _ _ _ ____
Minimum SPACE = =100
Work Buffer Value Stack (100 bytes) END = O
(192 bytes)
Variable
Table

FIGURE 2-1 "NEGATIVE" FREE SPACE

To understand why this is so, consider the following:

When memory is so fully packed that the Value Stack must occupy part of
the minimum buffer area, size of the Value Stack is subtracted from zero by
SPACE, yielding a negative free space figure. Thus, a free space value of
-100, returned by SPACE, indicates that memory is legally "full"; however, 100
bytes of the reserved minimum buffer have been used by the Value Stack. Since
a maximum of 128 bytes of the minimum buffer area can be used by the Value
Stack, SPACE cannot return a value less than -128. When the Value Stack
requires more than 128 bytes of the buffer, a memory overflow error is

signaled.

The following diagram offers a detailed summary of major allocations made

in each partition (see next page):

2 O H 13 H 13 %9 > Y9

LOWEST PARTITION ADDRESS ("Beginning" of Partition)

fixed boundary

PARTITION HOUSEKEEPING AREA
(947 Bytes, fixed)

fixed boundary

USER PROGRAM TEXT AREA

(Expands Downward)

floating boundary

WORK BUFFER AREA = 192 Bytes, Min.
(64 Bytes: For Immediate-Mode lines)

(128 Bytes: General work space)

(Entire buffer floats downward as program expands)

floating boundary

FREE SPACE

(Compressible To zero space)

floating boundary

VALUE STACK
(Floats upward as user data is added to the variable
table. Also, starting with zero space, the VS expands

upward during operations)

floating boundary

USER VARIABLES (DATA) TABLE

(Expands upward)

fixed boundary

HIGHEST PARTITION ADDRESS ("End" of Partition)

FIGURE 2-2 INTERNAL PARTITION ALLOCATIONS

2.4 THE SERVICING OF PARTITIONS

2.4.1 TIME-SLICE PROCESSING

The LVP CPU services each partition (max.= 16) in a repetitive, ordered
sequence. Each partition is given a standard 30 ms. "time slice", during
which exclusive use of the CPU is granted. A limited number of program or
immediate-mode operations can be executed during this interval. For this
purpose, the CPU has a 30-millisecond timer which is set at the beginning of
each timeslice; this clock is checked periodically for expiration of the 30-ms
limit. For reasons which will be explained in subsequent text of this

section, note that time slices are not always allowed to last the full 30 ms.

When a partition's time slice ends, the Operating System saves all
current status conditions for that partition. The Operating System then
proceeds to load the status of the next partition into the CPU and begins a
new 30-ms time slice. The exact moment when execution is halted in a
partition is called the "breakpoint" of the time slice. The programmer cannot
predict in advance when a breakpoint will take place, but the occurrence of
breakpoints is of little or no concern to him. Further, since the ordered
time slice arrangement is repeated at high speed, all user programs appear to
operate simultaneously.

Whenever a partition is given a new time slice, conditions that existed
at the end of that partition's previous time slice will be restored, and

processing for that application resumes for the duration of the new time slice.

2.4.2 BREAKPOINTING

As previously mentioned, a time slice does not always last exactly 30
milliseconds. Unlike many operating systems, the LVP Operating System will
cause breakpoints whenever it is convenient or advantageous, rather than only
allowing breakpoints to occur upon expiration of the the CPU time-slice
clock. Specifically, under the direction of the Operating System, a
breakpoint may occur if a peripheral device being addressed is busy, or if the
device being addressed is being "hogged" (explained later) by another

partition; either condition is called an "I/O breakpoint".

For instance, if the partition that has the current time slice attempts a
disk access, and if the disk is temporarily being "hogged" (used exclusively)
by another partition, the hogging condition is quickly detected and a

breakpoint occurs in the current partition time slice.

The term "I/O breakpoint" should not be confused with "program-
breakpoint". Program breakpoints are conditional, scheduled halts in a user's
program; they are a means, for instance, of monitoring an I/0 port for pending
data entry requests. Program breakpoints are written into the user's program
by the user.

I/0 breakpoints differ from program breakpoints in that the partition
interrupted by an I/0 breakpoint is specifically marked "waiting for I/O".
When that partition is given another time slice, the Operating System takes
only microseconds to decide whether I/0 processing may proceed or whether the
partition is still waiting for the I/0 device and must therefore be bypassed.
The Operating System temporarily bypasses that partition as effectively as if

it had been entirely removed from the system during the I/0 waiting period.

The CPU is much faster than any of its peripherals, and for this reason,
breakpointing during I/0 allows the LVP to perform work with other partitions
while the I/0 operation is still being carried out. For example, when a
program uses KEYIN to receive data from a keyboard, the CPU can give time
slices to other partitions between operator keystrokes. In a similar manner,
several partitions can be serviced by the CPU during a carriage return on a
2221W printer.

2.5 ASSIGNMENT, ATTACHMENT, AND FOREGROUND/BACKGROUND PROCESSING

2.5.1 ASSIGNMENT

Although system resources must be shared in the 2200LVP, each user is
given the impression of having his own personal system--his own terminal, his
own memory, his own peripherals. As previously explained, the exact
configuration of each user's "personal system" is specified by an operator at
partition generation time. Partitions and terminals configured into one such
"personal" system are said to be assigned to each other; they belong to each

other as integral parts of an independently-functioning personal computer

system.

Assignment alone is only a prerequisite for the actual operation of each
"personal" system. In order to use any facility of the system, attachment is

required.
2.5.2 ATTACHMENT

"Attachment" is a state that exists when the Operating System establishes
an active bidirectional communications link between a partition and a terminal
that have previous assignment to one another. Unless attachment occurs, a
user has no access to the LVP central processor. Without attachment, the user
terminal is dumb, having no program mode, no immediate mode. At any given
time, only one attachment is possible in each user's "personal" system
configuration. Attachment with the lowest-numbered assigned partition occurs
automatically on completion of @GENPART (ref: $INIT statement in the BASIC-2
Language Reference Manual, WL#700-4080).

To illustrate the states of assignment and attachment, consider the
following:

Suppose that a program (arbitrarily called "program A") requires frequent
operator interaction; another program, "B", belonging to the same user,
requires only minimal interaction. The preliminary requirement is that of
assignment. The two partitions (one with program "A", the other with program
"B") and the user's terminal must have been previously assigned to each other
by the Operating System, that they might function as an integral unit, a
"personal system". So that program "A", the priority real-time program, can
function on an interactive basis with the user terminal, the next requirement
is that of attachment. The Operating System moves the partition holding
program "A" into the "foreground". By this action, the Operating System
attaches the user terminal and partition to one another. For the duration of
each subsequent time slice given to the foreground (attached) partition, both
program and user can communicate with one another, and both have access to the
CPU. Also by time-slice processing, program "B" runs "simultaneously" in the
background, communicating with the CPU, communicating with certain
peripherals; however, since this partition is running in the background, it is

unable, for the moment, to interact with its assigned terminal.

When a background partition (program) attempts to communicate with its
assigned terminal, and if that terminal is currently in a state of attachment
with another assigned partition, execution of the background program is
suspended ("hangs") until the requested terminal is released (detached) from

the foreground partition and is attached to the requesting partition.

Note that some background jobs may have no requirements for access to a
terminal other than periodic display of current job status. To avoid having
such jobs "hang" while awaiting availability of the terminal, the $IF ON
statement can be used to determine if the terminal currently is attached to
the partition. If $IF ON finds that the terminal is attached, the status
information is displayed; if not, the program branches to perform further

processing before testing for availability of the terminal again.

2.6 "RELEASING" A TERMINAL

"Release" of a terminal from a state of attachment is accomplished by
executing the BASIC statement $RELEASE TERM in either the program mode or the
immediate mode. Once a terminal has been released from a foreground
partition, the assignment that existed between the terminal and the partition
is still recognized and maintained by the Operating System. Further, when a
$RELEASE TERM is executed, the foreground partition is moved immediately to
the background by the Operating System. Simultaneously, the Operating System
establishes a new state of attachment between the terminal and the
lowest-numbered waiting (suspended, assigned) background partition. Of
course, the partition selected for attachment is then considered to be in the
foreground. Note that the term "background" implies only assignment;

"foreground" implies both assignment and attachment.

All waiting background partitions may have a need for the terminal within
their assignment; however, each of the assigned background partitions
(programs) is sequentially given access to the terminal (i.e., is brought into

the foreground for attachment) only when:

1) The program operating in the foreground partition executes a $RELEASE
TERM statement; this means that the terminal is released, in the
program mode, to the next-highest-numbered waiting partition.
(Special case: If the $RELEASE TERM statement is executed in the
highest-numbered assigned partition, the terminal is given to the

lowest-numbered waiting partition in the assignment.)

OR When:

2) The. user executes a $RELEASE TERM statement in the immediate mode;
the terminal is released to the next- highest-numbered waiting
partition. (Due to the fact that the processing order of partitions
is repeated by the CPU, if the $RELEASE TERM statement is executed
when the highest-numbered partition is in the foreground (attached),
the terminal is given to the lowest-numbered waiting background

partition in the assignment.)

If there are no assigned partitions actually waiting for a terminal after
it been released, it is possible for the user at that terminal to request the
Operating System to re-establish a state of attachment between his terminal
and one of the partitions assigned in his "personal" system. This is
accomplished by keying either RESET or HALT on the terminal. On that signal,
the Operating System moves the user's lowest-numbered assigned background
partition to the foreground, HALTs or RESETs any program operating in that
partition, and then establishes a state of attachment between the terminal and

the new partition.

NOTE:

In order to allow re-attachment, and in order to

prevent the halting or resetting of an active
background program, it is a good practice to generate
a small control or "dummy" partition as the

lowest-numbered assigned partition.

2-13

Optionally, the user himself may direct the swapping of
terminal/partition attachments by executing a modified form of the $RELEASE
TERM statement ($RELEASE TERM TO) in either the program mode or the immediate
mode. A partition is named in the TO parameter, and that partition must, of
course, be a partition that already shares assignment with his terminal. When
a $RELEASE TERM TO statement is executed, the terminal is placed in attachment
with the specified partition, even if that partition has not attempted to
communicate with the terminal, and even if one or more other assigned
partitions have attempted to communicate with the terminal. $RELEASE TERM TO
does not halt the execution of programs running in either the current
foreground partition or the target background partition specified in the TO

parameter.

2.7 "RELEASING" A PARTITION

Release of a parititon from a state of attachment is accomplished by
executing the BASIC statement $RELEASE PART in either the program mode or the
immediate mode. A partition may also be considered "released" if, at
partition generation time, an operator specifies terminal #0 (a non-existent
terminal, sometimes called the "null" terminal) for any terminal/partition
assignment in the system. Another term used in place of "released partition"
is "available partition". In any case, the flag which signifies that a
partition is released (i.e., available) is the terminal #0 assignment. A
released partition does not belong to any user's "personal system"; it has no
terminal associated with it; it has no terminal assignment. Note that if a
program is running in a released partition, execution of that program will

"hang" if any communications are attempted with a terminal.

The $RELEASE PART statement allows a partition to become available to any

terminal connected to the system.

»

Consider the following:

1) If a terminal is in a state of attachment with some partition, and if
that partition does not meet requirements for some new application
(due to insufficient partition size, for instance), the operator may
elect to use an "available" partition more suited to his needs. The
characteristics of available partitions may be examined by executing
a $PSTAT statement. When the available partition is found having
characteristics most suited to the operator's needs, the user may
then execute a $RELEASE TERM TO statement to the available partition;
the newly-acquired partition will then be given a new assignment with
the requesting terminal, and will be placed in a state of attachment
with that terminal. Thus, the new partition becomes a new addition

to the user's "personal" system.

2) An operator at a non-assigned terminal may also request assignment
and attachment to a released (available) partition by keying RESET or
HALT.

$RELEASE PART causes a present states of attachment and assignment
between a terminal and a partition to be broken off. The terminal formerly
belonging to that assignment can optionally be re-directed to a new partition
for assignment and attachment (if a new assignment is specified in parameters
of the $RELEASE PART statement). This carries the implication that, in
addition to making a partition available, $RELEASE PART also performs a
$RELEASE TERM TO for the terminal. TIf a new partition assignment is not
specified for the terminal in the parameters of $RELEASE PART, that terminal
will either be attached to a waiting partition already within the assignment
(if there is one waiting), or the terminal will have no further assignment or
attachment with any partition. 1In the latter case, the terminal becomes
non-assigned, having no immediate mode, no means of executing programs, no
access to system peripherals; it would no longer be part of the active LVP

system.

Note that $RELEASE PART does not clear a partition, nor does it terminate

a program running in that partition.

2.8 "GLOBAL" PARTITIONS

Partitions can also be "global"; that is, each partition so designated
contains programs and/or data which become conditionally shareable. A
foregound or background program that is running in a partition in one bank can
access any global partition (i.e., global routine and/or global data) residing
in that same bank. Additionally, a user terminal that is in a state of
attachment with a partition in that same bank can access those global routines

and/or data while in the immediate mode.

Although partitions function independently, there are situations in which
it is highly expedient for two or more partitions to cooperate with one
another, to share common information, common programs. This sharing
eliminates needless duplication of applications software and data, thus

allowing more efficient use of available User Memory space.

2.9 "UNIVERSAL GLOBAL" PARTITIONS

The first 5K of User Memory in bank #1 (immediately following the
System-Use Block) constitutes a special section of User Memory known as the
"universal-global™ area. Partitions defined within this area are
correspondingly called "universal-global partitions". A universal-global
partition may be accessed by a program running in any foreground or background
partition. Also, similar to standard global access, user terminals in a state
of attachment are allowed access to universal-global routines and/or data
while in the immediate mode. To summarize, a universal-global partition can

be used to store programs and data that can be shared by all system users.

Note that the entire 5K universal-global area need not be used
exclusively for universal-global partitions; the only restriction is that, for
a partition to be universally global, it must reside entirely within the 5K
universal-global address block in bank #1. When not required for
universal-global purposes, that same 5K in bank #1 can be treated as all other

partitionable memory.

2-16

'\

2.10 USER PROGRAM EXECUTION

2.10.1 GENERAL

The term "job flow" refers to the path of execution followed by a job
from beginning to end. In the 2200LVP, job flow may be confined within a
single partition, or it may extend across several partitions via global
subroutine calls. The term "job" is preferred to "program" here, because the
term "program" is too closely associated with the contents of a single
partition. A job consists of one or more program routines; each line of each
routine in the job contains one or more program statements. In the normal
execution of an individual routine, each statement is executed from left to

right, from lowest line number to highest.

2.10.2 SUBROUTINES

The Operating System tracks execution of a Job by using a "text
pointer". The text pointer always points to the statement that is to be
executed next in a particular job flow; the text pointer provides a "thread"
leading from the statement currently being executed to the statement that is
about to be executed.

If job execution is confined within a single partition, the text pointer
contains all information required by the Operating System for the execution of
a user's program. However, to execute global subroutines, the Operating
System requires additional information that reveals which partition contains

the currently-executing program text.

When a global subroutine call is made, the global text is executed as if
that text were appended to the calling text within the originating partition.
The "job" may therefore be thought of as the combination of all nonglobal and

global program text, considered as a integral unit.

2-17

The "originating partition" is the partition in which the job is
initiated; further, it is the partition that holds all status information
pertinent to the execution (flow) of that job, even if that job extends across

several partitions. Each job has only one "originating partition".

"Calling partition", which may be familiar to some readers, is simply a
partition making the current global/universal-global subroutine or data call

in a multi-partition job.

When a user program issues a non-global, global, or universal-global
subroutine call (or requires global/universal-global variables), the status
and return-address information for each successive subroutine level is stored
in the originating partition sequentially. If a time slice expires while
execution is taking place in an originating partition, or if the time slice is
terminated by the occurence of a breakpoint, or if the time slice ends while
execution is taking place in a called global/universal-global routine, the
conditions of execution that exist at the moment the time-slice ends are also

stored in the originating partition. -

In order to track all of the various conditions that arise during
subroutine calls, each partition has two internal "stacks" and a "pointer
table"; users are not allowed access to these housekeeping elements. The CPU
and the Operating System service each partition, and in the process, monitor,
use, and update each pointer, each stack. Note that the text pointer for each

Job is maintained within the originating partition's pointer table.

2.10.3 TEXT POINTER, POINTER TABLE, & INTERNAL STACKS

Typically, when a subroutine call is issued (for instance, by a GOSUB'
statement), the number of the statement following the GOSUB' becomes the
current value in the text pointer. Simultaneously, the same number is saved
on top of the value stack, one of the internal stacks previously mentioned in

this discussion.

Y

NOTE:

The value stack functions as a "push-down, pop-up"

storage element. (The last, most recent entry in the
value stack will be the first to be recalled at any
given time by the Operating System.) The value stack
can also be thought of as a "last-in, first-out" or

"LIFO" storage element.

The Operating System searches the program for a DEFFN' that corresponds
to the GOSUB' just issued. The statement number at which the DEFFN' is found
becomes the a current value in the text pointer. The Operating System

instantaneously passes execution to that point in the program.

The number in the value stack is unchanged; it is still the statement
number following the GOSUB'. When a RETURN statement is executed in the
subroutine, the Operating System retrieves the "old" text pointer entry from
the top of the value stack. That entry is placed in the text pointer (in the
pointer table), thus replacing the DEFFN' statement number, and then the
Operating System passes execution back to the statement which immediately
follows the GOSUB statement.

Pointer Table Format

The following illustrates basic Pointer Table format:

Text Pointer

Text Partition #
Data Partition #
Global Partition #

Current Partition #

Terminal #

Basically, each text pointer consists of a line number and a statement

number. For example, consider the following line of program text:

10 A = 100: PRINT A

2-19

In line #10, when the statement "A = 100" is executed, the text pointer
is automatically incremented to point to the next statement in that line,
"PRINT A". Thus, during execution of the statement "A = 100," the text
pointer would have the value "10,2", indicating that the next statement to be

executed is the second statement in line 10.

Initially, all items in the Pointer table refer to the current
partition. For example, immediately following Master Initialization, a system
configuration could be established such that Partition #2 (in a state of
assignment with Terminal #4 for this arbitrary example) would have the

following values in its pointer table.

Text Pointer 0,0
Text Partition #
Data Partition #

Global Partition #

Originating Partition #

RS E AT RV IR N O RN I\ VI Y

Terminal #

The last two items in the table, Originating Partition# and Terminal#,
are constants that are set during Master Initialization. These values do not
change unless the system is reconfigured; other items in the table can be
modified frequently during job execution. The meanings and uses of each item

in the pointer table follow:

The Text Pointer - is updated by the Operating System, each time a

statement is executed, to point to the next sequential statement.
Further, it is modified by any branch statement (GOSUB, GOTO, GOSUB',

etc.), in order to point to the branched-to statement.

The Text Partition # - is the number of the partition to which the text

pointer applies (i.e., it is the number of the partition containing the
currently-executing text). It is modified by a GOSUB' statement whenever
a branch is made to a DEFFN' in a global partition. In this case, GOSUB'
sets the Text Partition# equal to the Global Partitioni.

2-20

e

The DATA Partition # - is the number of the partition containing DATA
statements referenced by READ. The DATA Partiton# can be modified by a
RESTORE statement, which always sets that number equal to the current

Text Partitionit.

The Global Partition # - is the number of the currently- selected global
partition. It is modified by a SELECT @ PART statement. It is the
partition searched by GOSUB' for a corresponding DEFFN' when the DEFFN'
cannot be found in the Text Partition. It is also the partition used for

all global variable references.

The Originating Partition # - is the number of the partition in which

execution of the job originates and the Pointer Table is stored. The
Originating Partition # is a constant for each partition. It is used for
all local variable references, for LOAD operations, and for all system
commands issued from the user terminal. The Originating Partition # is
returned by the #PART function.

The Terminal # - is the number of the terminal that is in a state of

assignment with the originating partition. Like the Originating
Partition #, it is set at configuration time and generally is not
modified, except by reconfiguring the system. (Terminal # can be altered
upon execution of a $RELEASE PART statement.) Terminal # is used for all
CRT, keyboard, and local printer I/0 operations performed during job
execution; this includes CO, CI, PRINT, LIST, INPUT, LINPUT, KEYIN, etc.

For any partition, the Terminal # is returned by the #TERM function.

2.11 ALLOCATION AND HANDLING OF PERIPHERALS

2.11.1 GENERAL

The mental image of multiple partitions and terminals functioning as
completely independent "personal systems" may be clouded somewhat by the
problem of competition (between partitions) for shared peripheral devices
("system peripherals"). This situation is familiar to programmers accustomed
to working with single-user Wang 2200 systems that share one or more disk
drives via disk multiplexers. In such systems, it is sometimes necessary for
one CPU to request exclusive control of a disk (i.e., to "hog" the disk) while

a file update is conducted.

With the 2200LVP, it may be necessary for a partition to exclusively
control a printer. For example, if, during a report printout, a printer were
not exclusively available to one partition, that partition's print lines might
become unintelligibly mixed with those of another partition's, if both were
allowed access to one system printer at the same time. Tp solve this problem,
the concept of disk hog mode has, in the LVP, been extended to all shared I/O

devices ("system peripherals").

To state the situation more specifically: prior to configuration of the
system through $INIT, and with the exception of user terminals and local
printers, peripherals connected directly to 2200 I/0 controllers are available
to all partitions i.e., such peripherals are "sharable". This implies,
further, that printers connected to terminals would not be considered
"shareable". A conflict arises when more than one user partition

simultaneously attempts access to a shareable device.

In order to avoid such situations, the LVP Operating System enables a
partition, under program control, to request exclusive use of a peripheral
with a $OPEN statement; the address of that peripheral must be specified in
that statement. Once "open", the device remains hogged by the requesting
partition until either a $CLOSE or an END statement is executed or if a CLEAR,
RESET, or LOAD RUN command is initiated. Thus, if a disk is "hogged" by the
$OPEN statement, only the user who executed that statement may read or write

disk files until the device is released by one of the above prescribed methods.

With the exception of terminals and local printers connected to them, all
peripherals connected to the system must be specified in the Master‘Device
Table at partition generation time. Using the Device Table, a device can be
placed in exclusive assignment with a specific partition until a new system
configuration is generated. This method involves use of the SELECT statement
with its various options (Ref: 2200VP/MVP Language Manual; WL# 700-4080).

2-22

Basically, peripheral assignments are established at partition generation
time by the entry of a number--the number of the partition which is to have
control of a particular device--in the "Master Device Table". Such entries
are carried out indirectly by the Operating System during the execution of
@GENPART. Console device addresses--i.e., HEX 005 (CRT), 001 (Keyboard), 204
(terminal printers)--are not specified in the Master Device Table; these are
specified in a partition device table. Each partition, in fact, has its own
local device table which should not be confused with the Master Device Table;
the partition device table keeps track of console devices in a user's

"personal" system configuration.

If any partition attempts to use a shareable device that has not been
allocated to it during @GENPART (i.e., use of that peripheral device was not

specified in the Master Device Table), an error is signalled.

2.11.2 BACKGROUND PRINTING

As an additional feature of the LVP system, if a printer is connected to
the rear apron of an "assigned" terminal (thus making the printer an assigned
"local printer"), it is possible for a background program to send output to
that printer while a foreground program simultaneously interacts with the
keyboard and display of the attached terminal. The only requirement for
background printing is that the terminal to which the local printer is
connected must be in a state of assignment with both the foreground and the
background partition. The simultaneous I/0 required for this type of action
is handled by the 2236MXD controller and the 2236DE firmware (PROM's).

2-23

NOTES

2-24

y

SECTION 3

BOOTSTRAP OPERATION

3.1 BOOTSTRAP

A BOOTSTRAP, by definition, is "that part of a computer program used to

establish another version of the computer program."

In general, the Wang LVP BOOTSTRAP, is a set of microcoded routines
loaded in three 1024 x 8-bit Intel 2708 PROMs. The purpose of the BOOTSTRAP
is to handle four system functions and make available certain subroutines

which are used for I/0 operations.
The four system functions handled by BOOTSTRAP are:

1) Master Initialization (Power-0On).

2) Reset (Initiated by depressing the RESET key on the keyboard).

3) Control and Data Memory Parity Error Detection.

4) Loading the desired system software (i.e., standalone diagnostics, or

BASIC-2) from disk and initiating their execution.
An explanation of each of the above functions follows.
3.1.1 MASTER INITIALIZATION

Master Initialization begins by turning the CPU power switch to the ON
position. A branch to Control Memory address 8003 (HEX), located in the
BOOTSTRAP PROMs, is executed and the BOOTSTRAP routine begins controlling and

performing its various tasks.
The tasks performed by the Master Initialization routine in BOOTSTRAP are:

a) Exercise the CPU to determine if any obvious malfunctions exist.
b) Verify the BOOTSTRAP PROMs still maintain the desired data.
c) Write zeros to all locations in Data Memory in preparation for

subsequent Data Memory Reads.

If all Master Initialization tasks are completed satisfactorily, the
following prompt will be displayed at the system console:

MOUNT SYSTEM PLATTER
PRESS RESET

3.1.2 RESET

Reset is initiated by depressing the RESET key on the terminal keyboard.
This action causes the execution of a branch to Control Memory address 8001
(HEX), located in BOOTSTRAP PROMs.

The tasks performed by Reset are:

(a) To pass control, from the present point of program execution, to the
currently loaded system program, located in Control Memory

(BOOTSTRAP, Microcode diagnostiecs, or BASIC-2).

(b) To allow the user to recover from any of the various system error

conditions which may be encountered.
(e¢) To abort a BOOTSTRAP load.

Should task a) be called for, the user may expect those messages and/or
actions designed into the particular system program. Activation of RESET
would typically result in the occurrence of a display menu of user-selectable
software options (key Special Function), or, for instance, an automatic return

to some predetermined starting point in the software currently resident in

Data Memory.

Generally speaking, whenever task b) is to be performed, the user is

expected to inform the BOOTSTRAP of what action to take (by keying a Special
Function, for instance).

¥

4

3.1.3 CONTROL AND DATA MEMORY PARITY ERRORS

In both Data and Control Memory a bit has been set aside, called the

parity bit, to aid in error detection.

In Control Memory, bit 24 is set aside for parity; it should be turned on
by the programmer whenever an even number of the remaining 23 bits are turned
on. (This is called ODD Parity.) This bit must be properly set when the

microprogram is written.

In Data Memory, a ninth bit is set aside for parity; it is turned by the
hardware whenever an even number of the 8 data bits are turned on. (This is
also ODD parity.) The hardware determines and sets this bit, whenever data is

written into Data Memory.

Whenever the system detects bad parity in Control Memory, during an
instruction fetch, a branch is made to location 8000, located in the BOOTSTRAP
PROMS. The BOOTSTRAP will then display the appropriate error message at the
system console.

Similarly, whenever the system detects bad parity in Data Memory, during
a read from Data Memory, a branch is made to location 8002, located in the
BOOTSTRAP PROMS. The BOOTSTRAP will then display the appropriate error
message at the system console.

3.1.4 LOAD SYSTEM FILES

Whenever the operator responds to the BOOTSTRAP request for a system file
to be loaded, the following tasks are performed by the BOOTSTRAP.

a) Check for disk ready.

b) Verify whether the user-requested file exists on the mounted platter.

c) Determine whether the requested file should be loaded into Control

Memory and/or Data Memory, and then load the file.

3-3

d) Verify Control Memory, checking instruction parity and built-in CRC
and LRC checksums.

e) Check Data Memory Parity.
f) Pass control to the newly loaded system file.
3.2 BOOTSTRAP ERROR MESSAGES AND RECOVERY

Three types of errors and five possible error messages can be reported by

BOOTSTRAP. The three error types--initalization, reset, and system--are
discussed below.

3.2.1 INITIALIZATION ERRORS

The BOOTSTRAP, during Master Initialization, fails to display the complete

MOUNT SYSTEM PLATTER
PRESS RESET

message upon the CRT.

This error implies that some routine of the LVP BOOTSTRAP has failed.
This may be due to either a CPU-related error.or an I/O-related error. If an

initialization error occurs, refer to SECTION 12.

In some cases, a device address may need to be corrected and the system

powered on again.

The Master Initialization sequence is described on the following pages.

3-4

CRT DISPLAY

CLEAR SCREEN

"M"

"MO L

"MOU"

"MOUN"

"MOUNT"

"MOUNT S"

MASTER INITIALIZATION

Step-By-Step Breakdown of Function

SEQUENCE OF OPERATIONS

1. Power On Trap to 8003

2. Enable CRT, Clear Screen
and Display "M"

3. Test 24-Bit Parity Trap.
Execute IC 800F which has
Bad Parity

4, Test Subroutine Branch
and Subroutine Return
Instructions

5. Clear CH, CL Parity Bits

6. Check File Registers

T. Check PC Incrementing on
the A-BUS.

8. Test Auxiliary Registers

POSSIBLE FAILURES

1. Hardware Trap,
Branch Instruction

2. CRT Address,
I/0 Register,
I/0 Lines,

CIO Instruction

3. Parity Checking Logic,
Hardware Trap,
TSP Instruction (IC+1l
stored in stack),
PC's may not hold IC
retrieved from Stack,
Compare Instruction

4, Subroutine Branch
Instruction,
Subroutine Return
Instruction,
Stack

5. Write/Read Data Memory

6. Register Instruction,
Register Chip,
Compare Instruction

7. PC Chip,
LPI Instruction,
Register Instruction,
A-Bus Increment
Hardware,
Compare Instruction

8. Auxiliary/Stack Chip,
PC Chip,
Auxiliary Register
Instruction,
Compare Instruction

MASTER INITIALIZATION
Step-By-Step Breakdown of Function
(Continued)

CRT DISPLAY SEQUENCE OF OPERATION POSSIBLE FAILURES

"MOUNT SY"
9. Test Binary ALU 9. Binary ALU,
AC, ACX, AI, SC or
SCX Instruction,
Compare Instruction

"MOUNT SYS"
10. Test Stack. 10. Auxiliary/Stack Chip,
PC Chip,
Stack Instruction,
Compare Instruction

"MOUNT SYST" 11. Test Decimal ALU 11, Decimal ALU,
DAC, DACI, DACX,
DSC, DSCI or DSCX
Instruction,
Compare Instruction

"MOUNT SYSTE"
12. Test Binary Multiply 12. Multiply Logie,
M OR MI Instruction,
Compare Instruction

"MOUNT SYSTEM"
13. Test Shift 13. Shift Logiec,
Compare Instruction

"MOUNT SYSTEM "
14. Verify PROM 14. PROM Chip

"MOUNT SYSTEM P"
15. Zero 8-Bit Data Memory 15. SR Failure,
Bad IC's

"MOUNT SYSTEM PLATTER"
"PRESS RESET"
16. Write/Read Control Memory 16. WCM/RCM Instruction,

Stack,
Auxiliary Register,
PC Chip,
SB Instruction,
Compare Instruction

3.2.2 RESET ERRORS

If the hexdigit display of the keyed special function did not appear upon
the CRT, during the Reset function, when the operator has properly responded
to the "KEY SF'?" message by keying the desired special function key:

This implies that the special function key was not depressed
sufficiently, or the 2236DE or 2236MXD may be defective, or an SF' key not
defined was depressed. If a RESET error occurs, refer to SECTION 12.

NOTE:
During the RESET function, several of the SYSTEM ERROR
messages may appear. If one does, consult the
recovery procedure for that particular message, given
in Section 3.2.3.

The system reset sequence is described on the following pages.

SYSTEM RESET
Step-By-Step Breakdown of Function

CRT DISPLAY SEQUENCE OF OPERATIONS POSSIBLE FAILURES

1. Reset keyed while 1. Reset Trap
BOOTSTRAP is in control

CLEAR SCREEN

"KEY SF'?"
2. Enable Keyboard (address 2. Inactive SF is keyed,
= 01) and accept Special I/0 Register,
Function key input; I/0 Lines,
operator keys the desired CRB or KFN,
SF key. Keyboard

NOTE: if any undefined SF'

key is despressed, the "KEY
SF" message re-appears and

step 2 must be repeated.

*"KEY SF'?" (address)
3. Enable specified disk 3. Improper disk address,
I/0 Register,
I/0 Lines,
Disk Not Powered On,
Disk Not Ready

4, Search disk for desired 4, Wrong Special Function
file; if file cannot be key depressed,
found, Step 2 is repeated Wrong disk mounted

5. Load desired file 5. I/0 Register,
into Memory I/0 Lines,

Disk Problems
NOTE: System files should
contain a comment block
containing file date.
If a disk error results, the
system error message will
appear. Consult Error
Recovery, for proper
procedure. If a parity error
occurs during loading, 'P'
will be displayed and the
previous sector will be
reloaded. If no control
memory data is found, skip
to step 9.

*The name of the file to load and the platter to load from is displayed.

SYSTEM RESET
Step-BY-Step Breakdown of Function
(continued)

CRT DISPLAY SEQUENCE OF OPERATIONS POSSIBLE FAILURES

"KEY SF'?" (address)
"COMMENT"
6. Verify Control Memory. 6. Memory,
(Parity, LRC & CRC). WCM/RCM Instruction
If an error results, the
system error message will
appear. Consult Error
Recovery, for proper
procedure.

T. Check 8-Bit Data Memory. 7. Memory,
If an error results, the Read/Write Instruction
system error message will
appear. Consult Error
Recovery, for proper
procedure.

8. Control is passed to
loaded system file which
now takes over control.
Consult proper system file
documentation. (Address
= 3000).

9. Display Diagnostic Menu
listing upon CRT.

"KEY SF'?"

10. Enable Keyboard (address 10. Inactive SF is keyed,
= 01) and accept Special I/0 Register,
function key input. I/0 Lines,

Operator keys the SF key CRB OR KFN,
of the desired diagnostic Keyboard

"KEY SF'?" (address)
11. Go to Step U4.

3.2.3 SYSTEM ERRORS

The third grouping of error conditions is reported to the operator via a
SYSTEM ERROR message on the CRT.

First, should memory fail, the following message will appear:

%%% SYSTEM ERROR MMMM XXXX ###
PRESS RESET

where: MMMM

PECM--Parity Error Control Memory
PEDM--Parity Error Data Memory
VECM--Verify Error Control Memory
VEDM--Verify Error Data Memory

XXXX = Various error information pertinent to the type of error.

Secondly, a disk error will result in the following message being
displayed:

#%% SYSTEM ERROR DISK 00XX #*##
PRESS RESET

where: 00XX = is the Disk Error Code

The procedure used to recover from these SYSTEM ERRORS is similar.
Therefore, the general procedure will be outlined and each error will be
discussed.

The general procedure is:

a) Key RESET in response to the "PRESS RESET" message on line 2 of the
CRT.

3-10

b) Choose one of the four following courses of action.

1. Key SF'15 to resume, using the currently loaded system program
(usually BASIC-2).

2. Key SF'00-'05, '08-'013 to load BASIC-2 from disk 310, Bl0, 320,
B20, 330, B30, 350, B50, 360, B6O, 370 or BT7O.

3. Key SF'16-'19 to load the User diagnostic menu from disk 310,
B10, 320, or B20, respectively.

4. Key SF'28-'31 to load the Field Service diagnostic menu from
310, B10, 320, or B20, respectively.

Use special caution when you choose #1 above: depending on what type of

error and where it occured, BASIC-2 may not function properly in all cases.

The following discussion will outline each of the SYSTEM ERRORS and what
may be done, in particular, to recover from them. (Also refer to SECTION 12

if a system error occurs.)
3.2.3.1 CONTROL MEMORY ERRORS

In both Data Memory and Control Memory, one bit has been set aside for

parity error detection.

In Control Memory, the 2U4th bit (bit #23) of every microinstruction is
set aside for parity (it is turned ON whenever an even number of the remaining
23 bits turns on). This is called ODD Parity. This bit must be properly set

when writing the instruction into Control Memory.
*%% SYSTEM ERROR (PECM aaaa dddddd) **#*

Where: aaaa
dddddd

The address of the instruction with bad parity.

The instruction located at aaaa. The instruction is
reread when displayed and thus may not be the same as

when the error occurred.

This error implies that bad parity was detected while the system was

trying to execute an instruction from Control or BOOTSTRAP Memory.

Whenever the system detects bad parity in Control Memory (PECM message)
during an instruction fetch, a branch is made to Control Memory address 8000
(HEX), located in the BOOTSTRAP PROMs. The BOOTSTRAP then performs its
designated error routine and displays PECM aaaa, dddddd.

Bad parity may be the result of:

a) dropping of bits by Control/BOOTSTRAP Memory
b) picking up of bits by Control/BOOTSTRAP Memory
e¢) writing bad parity to Control Memory

d) defective parity-checking logic

This error should be serious enough to warrant the executing of a Control
Memory diagnostic. However, it may be possible to resume execution of the
currently loaded system program. If-the error is reported again, a Control

Memory diagnostic should be run to locate the defective memory chip.
%%% SYSTEM ERROR VECM aaaa *¥%*

Where: aaaa = An address in the section of Control Memory that does

not verify correctly.

Case 1 (aaaa = 0000 thru TFFF)

This error implies that the load of Control Memory from the disk was not

successful. However, bad memory locations cannot be entirely ruled out.

This error is reported prior to a system program being given control and

is the result of the program not being loaded properly into Control Memory.

The operator should attempt to reload that particular system program.
However, should successive failures be reported, a Control Memory diagnostic
should be run to determine if there are any bad memory chips. If no chips are
reported defective, a CPU instruction may be failing, requiring a CPU

diagnostic to be run.

'Y

Should the error be reported in low memory (i.e., address between 0000
and OFFF) it may be necessary to change memory boards in order to load the

diagnostic into memory.

Case 2 (aaaa = 8000 thru 83FF)

This error implies that the BOOTSTRAP Memory is not as expected.

This error may be caused from dropping or picking up bits by one or more
of the three PROMs that make up the BOOTSTRAP.

Try to power on again, and if the problem still persists replace the
BOOTSTRAP PROMs and perform a MASTER INITIALIZATION. If the error continues,

the board may have failed or in some cases a microinstruction may have failed.

3.2.3.2 DATA MEMORY ERRORS

In Data Memory, a ninth bit allocated for each 8-bit byte is used in the
same manner as described above. However, the CPU hardware determines the

required state and sets this bit whenever a write is executed in Data Memory.

¥%% SYSTEM ERROR (PEDM ss.aaaa)¥#*

Where: sSs = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #U4)
aaaa = Data memory address (i.e., the current value of the

PC's) at the time of the error. This is probably, but
not necessarily, the address of the memory location

with bad parity.

This error implies that bad parity was detected during a read of Data

Memory.

Whenever the system detects bad parity in Data Memory (PEDM message)
during a read from Data Memory, a branch is made to Control Memory address
8002 (HEX), located in the BOOTSTRAP PROMs. The BOOTSTRAP then performs
another error routine and displays PEDM ss.aaaa.

Bad parity may be the result of:

a) dropping of bits in Data Memory
b) picking up of bits in Data Memory
c) defective parity checking logic

This error should be serious enough to warrant the executing of a Data
Memory diagnostic. However, it may be possible to resume execution of the
currently loaded system program. If the error is reported again, a Data

Memory diagnostic should be run to locate the defective memory chip.

%¥%% SYSTEM ERROR (VEDM ss.aaaa)¥**#

Where: Ss = Memory bank containing the error (00 = bank #1; Bo =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Address of the data in error

This error implies that the area of data memory used for system constants
(verb tables, match constants, messages), was not loaded properly when BASIC-2

was loaded. However, bad memory locations cannot be entirely ruled out.

This error is reported prior to a system program being given control.
The operator should attempt to reload BASIC-2. However, should successive
failures be reported, Data Memory Diagnostics should be run to determine if

there are any defective memory chips.
3.2.3.3 DISK ERRORS
%¥% SYSTEM ERROR DISK 00XX ##
There are several possible DISK errors that may occur while BOOTSTRAP is

trying to load a particular system program. The only recovery procedure that

should be taken is to attempt to reload the particular system program.

&

The possible disk errors are:

DISK 0082

Error:

Cause:

Recovery:

DISK 0088

Error:

Cause:

Recovery:

DISK 0090

Error:

Cause:

File not in catalog
The file to be loaded does not reside on the platter specified.

Make sure that the proper platter is properly mounted, that
the proper disk drive was specified, and that the proper
special function key was pressed. Press RESET, as

prompted, and select the appropriate special function.

Wrong record

Occurs during a load when the format of the record read does not

conform to the bootstrap format.

Make sure that the proper platter is properly mounted, the
the proper disk drive was specified, and the proper special
function key was pressed. Press RESET, as prompted, and

select the appropriate special function.

Disk Hardware Error

The disk did not recognize or properly respond to the system at
the beginning of a read or write operation (the read or write
has not been performed).

DISK 0091

DISK

DISK

Error:

Cause:

Recovery:

0092

Error:

Cause:

Recovery:

0093

Error:

Cause:

Recovery:

Disk Hardware Error
A disk hardware error occurred; i.e., the disk is not in
file-ready position. This could occur, for example, if the disk
is in LOAD mode or power is not turned on.

Ensure that the disk is turned on and properly set up for

operation. Set the disk into LOAD mode and then back into
RUN mode, with the RUN/LOAD selection switch.

Disk Hardware Error
The disk did not respond to the system at the beginning of a
read or write operationn in the proper amount of time

(time-out). The read or write has not been performed.

Run program again. If error persists, reinitialize disk.

Disk Format Error
A disk format error was detected during a disk read or write.
The disk is not properly formatted. The error can be either in

the disk platter or the disk hardware.

Format the disk again.

DISK

DISK

DISK

0094

Error: Format Key Engaged

Cause: The disk format key is engaged (the key should be engaged only

when formatting a disk).

Recovery: Turn off the format key.

0095

Error: Seek Error

Cause: A disk-seek error occurred; the specified sector could not be
found on the disk.

Recovery: Run program again. If the error persists, reinitialize

(reformat) the disk.
0096
Error: Cyclic Read Error
Cause: A cyclic redundancy check error occurred during a disk read
operation; the sector being addressed has never been written to

or was incorrectly written.

Recovery: If the disk has been formatted, rewrite the bad sector or

reformat the disk.

DISK 0097
Error: Longitudinal Read Error

Cause: A longitudinal redundancy check error occurred when reading a
sector.

Recovery: Make sure the SYSTEM PLATTER is properly mounted in the
operator specified disk unit. Key RESET, as prompted, and

try to reload. If the error persists, try a backup platter.

DISK 0098
Error: Disk Addressing Error
Cause: The disk sector being addressed is not on the disk.
Recovery: a) Make sure that the disk is ready and the SYSTEM
PLATTER is pfoperly mounted in the operator specified

disk unit. Key RESET, as prompted, and try to reload.

b) If the problem persists, then BOOTSTRAP may be bad or
the disk may have a problem.

NOTES

NOTES

3-20

SECTION U4

SYSTEM GENERATION

4,1 GENERAL

NOTE:
Any future changes in the Operating System that affect

the system generation procedure will be documented in

category IV.C.L.

When the 2200LVP is powered on, an operator at terminal #1 has the
responsibility to "Master Initialize" the system and to load/execute the

partition/peripheral configuration suited to the current application(s).

The process of Master Initialization (loading the BASIC-2 Operating
System) creates a preliminary single-partition system that is controlled
exclusively from terminal #1. No devices connected to the system--other than
terminal #1 and the system disk--are available until total system
configuration takes place. Configuration is performed either by execution of
the BASIC-language system utility called @€GENPART, or by the BASIC statement
$INIT (discussed in later text). As a part of Master Initialization, the
system microcode (BOOTSTRAP) automatically loads and runs 6GENPART, which is a
file stored on the system disk. If @GENPART is not on the system disk, a
READY message is displayed at terminal #1.

A system configuration created by either the standard @GENPART utility or
by a customized version of @GENPART (using the $INIT statement) remains in
effect until the system is reinitialized. Note that @GENPART is always
assumed (by the BASIC-2 Operating System) to be the name of the system

generation/configuration utility, whether Wang-written or user-written.

When @GENPART is initiated, parameters from the previous configuration
(called 'current') are automatically loaded. If the Wang version of @GENPART
is used, a list of user-selectable options and previously-saved configurations

is displayed.

On completion of Master Initialization and System Generation/
Configuration, terminal #1 functions like all other terminals connected to the
LVP Central Processor. (Up to this point, terminal #1 functioned as the
"system console".)

After configuring the system, at least one backup copy of the system disk
should be made. By taking this step, a user might prevent system "down time"
that could result from accidental damage to the original system disk. The
COPY or MOVE statements are used for duplication of the system disk. (A
detailed explanation of the COPY and MOVE statements is given in the Wang
BASIC-2 Disk Reference Manual, WL #700-4081F (III.A.0).

4.2 POWER-UP, MASTER INITIALIZATION, AND SYSTEM GENERATION

The following explanation should provide the reader with enough
information to power-up, Master Initialize, and configure ("generate") the

system.

4.2.1 POWER-UP

To begin, switch AC power ON in Workstation #1 and in the Central

Processor. After power is applied to the system, the prompt appears:

MOUNT SYSTEM PLATTER
PRESS RESET

The system disk contains the BASIC-2 Operating System, as well as a
variety of hardware diagnostics. When the disk drive achieves the ready
state, steps may be taken to load the Operating System or hardware diagnostics

via Special Function Keys on terminal #1.

Mount the system disk, then press the RESET key (located in the
upper-right corner of the keyboard). The following prompt is displayed:

KEY SF'?

4.2.2 LOADING THE OPERATING SYSTEM

A Special Function Key must be depressed to specify the address of the
disk drive in which the system disk is loaded.

The following options are available:

Key SF '00 to load BASIC-2 from the disk
Key SF '01 to load BASIC-2 from the disk
Key SF '02 to load BASIC-2 from the disk
Key SF '03 to load BASIC-2 from the disk
Key SF '04 to load BASIC-2 from the disk
Key SF '05 to load BASIC-2 from the disk
Key SF '08 to load BASIC-2 from the disk
Key SF '09 to load BASIC-2 from the disk € address B50 (Hex).
Key SF '10 to load BASIC-2 from the disk @ address 360 (Hex).
Key SF '11 to load BASIC-2 from the disk @ address B60 (Hex).
Key SF '12 to load BASIC-2 from the disk @ address 370 (Hex).
Key SF '13 to load BASIC-2 from the disk @ address B70 (Hex).

address 310 (Hex).
address B10 (Hex).
address 320 (Hex).
address B20 (Hex).
address 330 (Hex).
address B30 (Hex).
address 350 (Hex).

D D D ®d® DD Dd» D D® D

NOTE:
Normally, the fixed-disk drive is assigned address 310
(HEX), and the DSDD diskette drive (removable) is
assigned address B10 (HEX).

Approximately 15 seconds are required for the BASIC-2 Operating System to
be loaded into Control Memory. While this takes place, the following message

will appear on the display screen of terminal #1:

Loading: 2200LVP BASIC-2 Release X.X

When loading is complete, the system displays the "READY (BASIC-2)
PARTITION 01" message, unless the @GENPART partition-generation program is
resident on the system disk. If such is the case, the @GENPART Partition
Generator is automatically loaded after the BASIC-2 Operating System is
loaded. (The @GENPART data file is normally on the system diskette.)
Terminal #1 should then be ready for limited use, the other terminals are

enabled only after configuring the system as desired with @GENPART or $INIT.

If the wrong SF Key is depressed (i.e., if the system disk is mounted at
address 310, but the operator depresses SF Key 02), an error message will be

displayed:

¥%* SYSTEM ERROR (DISK OO0XX) **#¥
PRESS RESET

Recovery from such errors may be accomplished by simply pressing RESET,
followed by the correct Special Function key. If RESET fails, turn the
Central Processor OFF then ON again. If this latter step is required, Master

Initialization will be repeated.

In some instances, the Special Function key code is displayed. This may
indicate that an incorrect disk address was specified, or that a disk
controller has failed. Check the controller address, or replace the

controller if that board is suspected to be defective.

4y

4,2.3 PARTITION GENERATION

Configuration parameters must now be passed to the Operating System. As
stated previously, the @GENPART program is automatically loaded and executed

when it is resident on the system disk (no operator intervention required).

If such is the case, immediately following Master Initialization (RESET, KEY
SF'?) the @GENPART menu will be displayed at terminal #1, instead of the READY
message. (The "READY (BASIC-2) PARTITION 01" message will appear once
@GENPART has finished execution.) If so desired, the user may elect to
customize the BASIC language @GENPART program, thus providing more suitable

display prompts (etc.) for his specific needs.

Basically, using either method of partition generation (@GENPART or
$INIT), the operator at terminal #1 has control over the following

(explanations follow in subsequent text):

--Number of partitions

--Size of each partition

--The terminal associated with each partition

--The "programmability" of each partition

--The "bootstrap" program for each partition
--Addresses of the peripherals connected to the system
--Access to peripherals

--The "system message"

Standard Partition Generation:

The standard Wang "@GENPART" program has two important provisions for

user convenience:

1) If partition-generation modules have been previously defined, a list of
those module names will be displayed on the @GENPART menu screen. The
user can select and load one of these modules using the following

procedure:

4-5

a) First, type in the name of a previously-saved
then press RETURN.

b) Depress Special Function key '15, causing the

configuration module,

system to begin

execution with the presently loaded partition-configuration module.

2) If the user wishes to define a new partition module, he can do so by

depressing any of the other Special Function keys; this action initiates

partition generation.

NOTE:
It may be useful to depress the large FN

(HELP) key in

the upper-left part of the workstation key pad;

descriptive information will be automatically provided

on the screen that explains the partition generation

process. (Depress the RETURN key to see

screenloads of instructions.)

When the BASIC-2 Operating System is fully loaded,

should appear:

successive

the @GENPART menu

¥¥% WANG 2200MVP PARTITION GENERATION PROGRAM #*¥#

LIST OF STORED CONFIGURATIONS (#PARTITIONS) SF'00
current (X) SF'01
SF'02

SF'o4

SF'05

SF'06

SF'08

SF'09

SF'10

SF'15

FN

Configuration 'current' loaded. Name of configuration

4-6

LIST OF OPTIONS:

- clear partitions

clear device table

- divide mem. evenly

- edit partitions

- edit device table

- edit $MSG

- load configuration

- save configuration

- delete configuration
- execute

- help

to load?

DESCRIPTIONS OF @GENPART SPECIAL-FUNCTION OPTIONS

SF' 00 - clear partitions:

Clears partition-configuration parameters currently in memory, allows the
user to specify the total number of terminals and the total number of
partitions in each bank, then automatically advances to SF'O4 (Edit
Partitions). The Master Device Table (ref: SF' 05 - edit device table:) is
not altered when this function is selected. Any number of partitions between
one (1) and sixteen (16) that will not exceed the available memory capacity is
allowable. (Note that since the smallest each partition can be is 1.25K (16
partitions, max.) and since there is a 3K Operating System overhead space to
account for, the minimum User memory size that would accommodate 16 partitions
is (1.25K x 16 partitions) + 3K = 23K. (The nearest RAM size to this,

physically available, is 32K.)

SF' 01 - clear device table:

Clears Master Device-Table parameters currently stored in memory, resets
default peripheral addresses to HEX 215 (printer), 310 (primary disk/disks),
and 320 (secondary disk/disks), allocates these devices to all users
(specifies common access), then advances to SF'05 (Edit Device Table).

(Default device addresses can be edited, if necessary, using SF' 05.)

SF' 02 - divide mem. evenly:

Divides remaining User Memory equally among the number of partitions
specified with SF' 04.

SF' O4 - edit partitions:

Displays and allows editing of partition parameters such as size,
terminal assignment, programmability, and name of bootstrap program. SF'O4
does not allow addition or deletion of defined partitions in an existing

configuration. Descriptions of edit functions follow:

Number of partitions:

From one (1) to sixteen (16) partitions may be created.

4-7

Size of partitions:

Any size greater than--or equal to--1.25 kilobytes is allowable.
This specification is made in 256-byte (1/4K) increments. The maximum
allowable size is 61K (64K minus 3K for housekeeping) in bank #1, and 56K

(64K minus 8K that is not user-accessible) in bank #2.

The terminal associated with each partition:

Any terminal number from O to 5 is valid; terminals 1 to 5 are the
actual user-terminals connected to the system; terminal number 0 is a
non-existent "dummy" or "null" terminal. All partitions must have a
terminal assignment, even if the 0 (null; non-existent) terminal is
specified, and even if there are partitions that will contain "background
jobs" that, practically speaking, never print on the CRT or require
keyboard entry. 1In general, any singular partition may be placed in
assignment with any singular terminal; however, a singular terminal may
be specified to be in assignment with several partitions, in order to
create a multiple-partition "personal" system. In general, the
lowest-numbered partition(s) to be placed in a state of assignment with a
terminal should contain the foreground (interactive) jobs for that
terminal. Background jobs should be placed in the higher-numbered
partitions within that assignment. Only the terminal that has been
specified to be in a state of assignment with a particular partition can
list or modify the program in that partition. Finally, note that while
it is possible for partitions to access global program text and modify
global variables, it is not possible for non-global partitions to list or

modify program text in a global or universal-global partition.

Programmability of partitions:

Any partition can be specified for the "disabled programming" mode,
whereby that partition is inhibited from certain operations. Terminals
attached to "disabled programming" partition(s) are inhibited from
entering or modifying program text, or from performing certain other
system operations. Thus, the operator is prevented from inadvertent or

unauthorized use of protected or restricted programs and data.

Bootstrap programs for partitions:

Any program that resides on the system disk can be loaded into a
partition and run automatically when a configuration is executed. When
no bootstrap program is specified for a partition, the 'READY' display

will appear on the CRT once the configuration has been executed.

SF' 05 - edit device table:

Displays and allows editing of device addresses for all peripherals. All
peripherals connected directly to I/0 controllers must be specified in the
Master Device Table, which is located in the System Overhead section of
memory, (this, of course, excludes terminals and local printers connected to
them). Console device addresses (i.e. HEX 005--CRT, 001--keyboard, 204--local
printers) are not specified in the Master Device Table, nor may they be
specified using SF'05; these are specified in each partition device table,
which is located in the Partition Overhead section of memory. Partition
Device-Table specifications and modifications are discussed later in this

section.

By default, all system peripheral devices listed in the Master Device
Table are available to all partitions. However, devices can be given
exclusive assignmment with one partition until the next system configuration
is executed. This is accomplished by entering, in the Master Device Table,
the number of the partition that is to have control of the selected device.
For disk controllers that respond to more than one address, only the primary
address must be specified in the Master Device Table (i.e. HEX 310 but not
B10, 350, 390, etc.). For all other multi-address controllers, all valid

addresses must be listed.

SF' 06 - edit $MSG:

Displays and allows editing of a user-defined broadcast message that will
be displayed on each terminal's CRT whenever the READY message is displayed.
The user-defined message is displayed on line 0 of the CRT, immediately above
the "READY" message.

SF' 08 - load configuration:

Loads a named configuration from the Configuration File, which is located
on the system disk. To modify and/or execute any previously-defined

configuration other than 'current', this option must be used.

SF' 09 - save configuration:

Save a system configuration in the Configuration File under a
user-specified name (up to eight characters in length). If the user specifies
a configuration name already used, @€GENPART will verify that the user desires
to replace the old configuration on disk file with the configuration currently

in memory.

SF' 10 - delete config.:

Deletes a configuration from the Configuration File on the system disk.

SF' 15 - execute:

Allows the operator to review first, and then to execute, a
configuration. This configuration will be automatically saved in the
Configuration File under the name 'current' when the configuration is
executed. Once a configuration has been executed, the system may be

reconfigured again only after the Master Initialization procedure has been
repeated.

FN - help:

Displays @GENPART operating instructions.

4-10

4.2.4 GENERATING A SAMPLE CONFIGURATION

The following example illustrates how, typically, @GENPART can be used to
configure a system. In this example, a 2200LVP with 128K bytes of User
Memory, three terminals, and telecommunications option are to be configured.
The configuration (named "SAMPLE") will have four partitions. A 15K-byte
telecommunications program will be designated for automatic bootstrapping, as
a background job sharing terminal #1. Disabled programming will be specified
for this partition so that it cannot be modified inadvertently. Remaining

memory will be divided equally among the other three partitions.

In general, the order of executing @GENPART options is: (1) SF'08--to
load a configuration, (2) SF'00--to modify this configuration by adding or
deleting partitions, (3) SF'O4--to create the new partition parameters, (4)
SF'05--to create the Master Device Table, (5) SF'06--to create the broadcast
message, (6) SF'09--to save the configuration with a name other than
'current', and (7) SF'15--to execute the configuration. Therefore, in the
example that follows, these options are discussed in their probable order of

use.

Load a configuration (SF'08)

(When @GENPART is first executed, this display occurs without pressing
SF'08):

%%% WANG 2200LVP PARTITION GENERATION PROGRAM ¥*¥¥

LIST OF OPTIONS:
LIST OF STORED CONFIGURATIONS (#PARTITIONS) SF'00 - clear partitions
current (xX) SF'01 - clear device table

SF'02 - divide mem. evenly

SF'04 - edit partitions

SF'05 - edit device table

SF'05 - edit $MSG

SF'08 - load configuration

SF'09 - save configuration

SF'10 - delete configuration

SF'15 - execute

FN - help

Configuration 'current' loaded. Name of configuration to load?

The last configuration executed (called 'current') is automatically

loaded. To load any other configuration, enter its name, then press RETURN.
Since, in this example, a completely new configuration is to be created, press

SF'00--clear partition.

Clear Partitions (SF'00)

The program responds with a display that requests the total number of
terminals that are to be configured into the system and the number of
partitions that will be created. Available User Memory is automatically
calculated and displayed. Note that the 3K of Operating System overhead space
in bank #1, and the 8K in bank #2 are automatically deducted from the
available-memory quantity. Remaining memory is updated and displayed as

memory is allocated to the partitions.

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K

No. of terminals?

In this example, there will be 3 terminals; enter 3 in response to the

"No. of terminals?" prompt, and then key RETURN. The following will be
displayed:

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K

No. of terminals? 3
No. of partitions in bank 1 ?

In this example, there will be four partitions--two in each bank; enter 2
in response to the "No. of partitions in bank 1 ?" prompt, and then key
RETURN. The following will be displayed:

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K
No. of terminals? 3

No. of partitions in bank 1 ? 2
No. of partitions in bank 2 ?

4-12

Edit Partitions (SF'04)

This option displays default parameters for all partitions and initiates a
cycle of prompts for the altering of these parameters. The cycle recurs until
another option is selected. The user is thus allowed to modify parameters for

each partition. The display is updated each time an item is entered.

PARTITION SIZE(K) TERMINAL PROGRAMMABLE PROGRAM
- 1
- 2
- 3

1

F Wi -
KKKl <

Edit which partition (default = 1)?

In this example, the telecommunications program will be run in partition
#2. Begin, therefore, by editing the parameters for partition #2. Enter 2,
then key RETURN. An asterisk (*) appears beside the number of the partition
whose parameters are being edited, and the following series of prompts will be

displayed in succession at the bottom of the screen:
Partition size (default = 0 K)?

Any value greater than 1.25K and less than the amount of remaining User
Memory is a valid response. Note that the default value (zero kilobytes) is
not a legal value.

The telecommunications program that is to be run in this partition will
require 15K. To allocate 15K of User Memory to partition #2, enter 15, then
key RETURN. The following prompt should be displayed at the bottom of the

screen:
Terminal (default = 2)?
The telecommunication program will be a background Jjob controlled at
terminal #1. To establish assignment between this partition (partition #2)

and terminal #1, enter 1 and key RETURN. The following prompt then occurs.

Enable programming (Y or N) ?

By default, programming is allowed for all partitions; however, to prevent
inadvertent modification of the telecommunications program, "disabled
programming” will be specified for partition #2. To specify disabled
programming mode for this partition, enter N, then key RETURN. The name of a ‘)
program to be automatically loaded into this partition is nrow requested as
follows:

Name of program to load?

The name of the telecommunication program that will be run in partition #2 :
is "TELE-COM". Enter TELE-COM and then key RETURN. When the configuration is
executed, the telecommunications program will be automatically loaded from the

system disk into partition #2, and will then begin running.

At this point, editing of the parameters for partition #2 is complete.
Partitions #1, #3, and #4 require further modification. Remaining memory is
to be divided evenly between those remaining partitions. Press SF'02 (divide

mem. evenly) and the following prompt will be displayed:

Divide memory evenly in which bank (default = all)?

Key RETURN and the remaining 46K in bank #1 will be assigned to partition
#1; the 56K in bank #2 will be divide evenly between partitions #3 and #4.
The system returns to the initial "Edit which partition (default = 1)?"

prompt.

All that remains is to establish assignment between terminal #2 and
partition #3, and between terminal #3 and partition #4. Enter these values

into the table for partitions #3 and #4. Upon completion of this operation,

the table should appear as follows:

PARTITION SIZE(K) TERMINAL PROGRAMMABLE PROGRAM -
1 46.00 1 Y
2 15.00 1 N TELE-COM
3 28.00 2 Y
y 28.00 3 Y ~

Once all partitions have been edited, SF'05 is used to leave the "Edit
Partition" cycle and then invoke the "Edit Master Device Table" option
(SF'05). Note that it is legal to exit the Edit Partition Cycle (SF'0l4)
without answering all prompts; in this case, the specified default values are
used by @GENPART and the Operating System.

Edit Device Table (SF'05)

This option displays the default values resident in the Master Device
Table. Notice that by default, every device specified is available to all

users.,

DEVICE PARTITION DEVICE PARTITION
1. /215 all 17.
2. /310 all 18.
3. /320 all 19.
y, 20.
16. 32.

Edit which entry (default = 1)?

In this example configuration, a fourth device (telecommunications
controller) is used, in addition to the three default devices. The device
address of this controller is HEX 01C. To specify this device in the Master
Device Table, enter "U", then key RETURN. An asterisk (*) will appear beside
the number 4 in the table. Several prompts are displayed in succession at the
bottom of the screen; the table is updated each time an item is edited. The

user is requested to enter the device address with the following prompt:
Device address (default = /000, /000 to delete entry)?
Enter /01C, then key RETURN. Another prompt now appears, and the user is
requested to specify assignment for the peripheral device with one or more

partitions:

Allocate device to which partition (default = all)?

For this example, enter a "2", then key RETURN to allocate the peripheral
and its controller to partition #2. This display cycle will continue, in
order to allow the user to edit all entries in the Master Device Table. When
the parameters for all peripheral/partition allocations have been specified,

the user can select another S.F. option to exit the "Edit Device Table" mode.

Broadcast Message (SF'06)

When SF'06 is depressed, the following display occurs at the bottom of the
CRT display.

Broadcast message:

NOTE:
The system is in EDIT mode during entry of the
.broadcast message. While in EDIT mode, all S.F. Keys
revert to their system-defined EDIT functions. The
S.F. Keys cannot be used for their @GENPART-defined
functions until the entry of the broadcast message is

complete and the system leaves the EDIT mode.

Any message in which the number of characters and spaces does not exceed
the number of dashes displayed on the CRT is valid. For this example, enter *
* % THE SYSTEM WILL GO DOWN AT NOON * * ¥, Now key RETURN. When the
broadcast message has been entered, all partition-generation parameters for
the example configuration have been specified. This configuration can now be
saved for later use (SF'09) or executed (SF'15). Pressing SF'09 allows the

operator to save this configuration on disk under a unique name.

Save Configuration (SF'09)

When SF'09 is depressed, the following display occurs at the bottom of
the CRT display.

Check configuration to save. Configuration name? current

4-16

4

NOTE:
In order to save a configuration, the system diskette
must be write-enabled (i.e., unprotected; the
write-protect notch must be covered). If the system
disk is a hard disk, note that the hard disk is always

write-enabled.

The'configuration currently in memory will automatically be saved under
the name 'current' (if the system platter is write-enabled). However, each
time a new configuration is executed, the new parameters replace the old
parameters in the 'current' file. In order to save a configuration so that it
can be retrieved for future use, it should be saved under a unique name. The
name to be used for this sample configuration is, appropriately, "SAMPLE".
Enter "SAMPLE", then key RETURN. The configuration is saved under the name
SAMPLE.

Execute Configuration (SF'15)

Once all parameters of a configuration have been defined, the system
configuration can be executed. To execute a configuration, press SF'15. The
configuration table will appear near the bottom of the CRT, along with a
prompt requesting the operator to verify the configuration parameters to be
executed.

Check configuration OK to execute (Y or N)?

If Y (RETURN) is entered, this configuration will be executed. If N
(RETURN) is entered, the system returns to the beginning of the "Edit
Partition" cycle (SF'04).

NOTE:
Once executed, a configuration can only be changed by
first Master Initializing the system, and then, by

specifying the new parameters.

Delete a Configuration (SF'10)

Since this exercise generates only a sample configuration, the
configuration should be deleted, in order to save more space for actual

configuration records. The following prompt will request which configuration
to delete.

Delete which configuration?

Enter SAMPLE, then key RETURN; the configuration will be deleted from the

system disk.

4.3 GENERATING EVENLY-DIVIDED PARTITIONS: A SAMPLE PROGRAM

Load the LVP BASIC-2 Operating System by keying the appropriate SF' key
on terminal #1. Approximately 15 seconds later, the following should appear
on terminal #1's display:

¥%¥ WANG 2200LVP PARTITION GENERATION PROGRAM ##*

LIST OF OPTIONS:
LIST OF STORED CONFIGURATIONS (#PARTITIONS) SF'00 - clear partitions
current (X)) SF'01 - clear device table

SF'02 - divide mem. evenly

SF'04 - edit partitions

SF'05 - edit device table

SF'06 - edit $MSG

SF'08 - load configuration

SF'09 - save configuration

SF'10 - delete configuration

SF'15 - execute

FN - help

Configuration 'current' loaded. Name of configuration to load?

Key SF'00 to initialize all terminals and clear the partitions. The

following will then appear:

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K

No. of terminals?

Answer the "No. of terminals?" prompt with the number of terminals on the
system, then answer the "No. of partitions in bank #1?" prompt. Enter the

appropriate number, then key RETURN.

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K

No. of terminals? 3
No. of partitions in bank 1 ? 2

Answer the "No. of partitions in bank #22?" prompt. Enter the appropriate
number, then key RETURN.

Available memory: 61.00 K 56.00 K
Remaining memory: 61.00 K 56.00 K

No. of terminals? 3
No. of partitions in bank 1 ? 2
No. of partitions in bank 2 ? 2

The "Edit Partition" screenload will automatically be displayed.

PARTITION SIZE(K) TERMINAL PROGRAMMABLE PROGRAM

1 - 1

2 - 2

- 3 - 3
4 1

o] Lol

Key SF'02 - Divide memory evenly. Key RETURN and the available memory
should be apportioned equally among the number of partitions entered in the
above step. The following should appear:

PARTITION SIZE(K) TERMINAL PROGRAMMABLE PROGRAM

1 30.50 1 Y
2 30.50 2 Y
3 28.00 3 Y
4 28.00 1 Y

. Edit which partition (default = 1)?

Finally key SF'15 (EXECUTE). A prompt will appear "CHECK CONFIGURATION.
OK TO EXECUTE (Y OR N)?". Enter "Y" and key RETURN if the configuration is
correct. All terminals should now display "READY (BASIC-2) PARTITION xx";

each terminal can now be used as an independent processor, a "personal" system.

4.4 CUSTOMIZED PARTITION GENERATION

The user may, if he so desires, write his own partition-generation
utility. Further description of this approach is given below; also, refer to ‘)
the 2200VP BASIC-2 Language Reference Manual, WL# 700-4080C (Iv.Cc.2), for a
detailed description of the $INIT statement.

Streamlining the @GENPART Program:

Once initially defined and stored on disk, configuration parameters in a
specified system configuration can be passed to the Operating System and
executed automatically during Master Initialization, with no operator
intervention. REM statements near the beginning of the @GENPART program tell

the user how to streamline the program to operate in this manner.

Use of the $INIT Statement:

When the Wang utility @GENPART.does not meet a user's needs, it is also
possible to create a customized configuration program using the BASIC-2
statement $INIT.

$INIT General Forms:

Program Mode Statement: (Pass initial configuration parameters to the

Operating System)

$INIT (alpha-1, alpha-2, alpha-3, alpha-4, alpha-5, alpha-5)

Where: alpha = literal-string
alpha-variable

Immediate Mode Statement: (Reconfigure system)

$INIT "password"

Where: password = System reconfiguration password; this must be a

literal string.

4-20

Once configured, the system can be reconfigured only by executing the
$INIT "password" statement at terminal #1. Control is passed to the system

bootstrap; the message

MOUNT SYSTEM PLATTER
PRESS RESET

is displayed, and the system can be loaded and reconfigured as if it had just
been powered-up. In order to protect against inadvertent reconfiguration,
$INIT can be executed at terminal #1 only.

Additionally, reconfiguration is password- protected. An error results
if the proper password is not included in the immediate-mode $INIT command and
reconfiguration does not occur. The default password is "SYSTEM"; thus, the

operator on terminal #1 would enter:

$INIT "SYSTEM"

in order to pass control to the system BOOTSTRAP. The password can be changed
via the 'alpha-6' parameter in the $INIT program statement (explanation
follows). The password can be from 1 to 8 characters in length. However, if
the system is powered off, or if an immediate mode $INIT is executed, the
password reverts back to "SYSTEM".

The user need not be concerned with the complex form of $INIT, unless a
customized partition-generator program is required. It is recommended that
the Wang-supplied utility, "@GENPART," or a modified version of it be used for
configuring the system, to ensure that the proper configuration parameters are
passed to the Operating System. If $INIT parameters are not properly set, the
system may be erroneously configured, produce unpredictable errors, and/or
lock out all terminals. In order to restore operation following any of these
error conditions, it may be necessary to power the CPU off and on

(reinitialize the system).

421

Configuration parameters are defined as follows:

alpha-1 = size of each partition.

Length of string = 17.
Size

binary value indicating number of 256-byte pages of memory
allocated for a partition.

Byte 1 = size of partition 1.

Byte 2 = size of partition 2.

Byte n = size of partition n.
Byte n+1 = HEX (00).

alpha-2 = terminal number for each partition.

Length of string = 16.

Terminal number = (in binary) of terminal assigned to a partition.
Byte 1 = terminal number for partition 1.

Byte 2 = terminal number for partition 2.

Byte n

terminal number for partition n.
Remaining bytes must = HEX (00).

alpha-3 = partition modes.

Length of string = 16.
Mode, bit 01

1 if and only if programming is not allowed on this
partition.
Mode, bit 02

1 if and only if a program is to be bootstrapped into
this partition.

Byte 1
Byte 2 = mode of partition 2.

mode of partition 1.

3

Byte n

mode of partition n.

422

@

alpha-4 = bootstrap program name for each partition.

Length = 128 bytes.
Bootstrap program name = 8-byte literal-string specifying the

program to be automatically loaded and run after partition generation.

1st 8 bytes = bootstrap name for partition 1.
2nd 8 bytes

bootstrap name for partition 2.

Nth 8 bytes

bootstrap name for partition n.

alpha-5 = device table.

Length of string = 99.

A device is specified by 3 bytes.
1st byte, low U-bits = device-type (disk must be 3 or B).
2nd byte = physical device-address.

3rd byte = number of the partition for which the device is to be

opened (0 if none).
1st 3 bytes
2nd 3 bytes

device specification for device 1.

device specification for device 2.

Nth 3 bytes = device specification for device n.
(N + 1) 3 bytes = 000000,

alpha-6 = reconfiguration password.
Length of string = 8
1st eight bytes are the password.
Example of Valid Syntax:
$INIT "SYSTEM"

10 $INIT (S$,T$,M$,N$(),D$)
20 $INIT (S$,T$,M$,N$(),D$, P$)

4-23

4.5 COPYING THE SYSTEM DISK
1. Be certain that the write-protect notch on the Operating System
diskette is uncovered (write-disabled) and insert the diskette into
the DSDD drive.
2. If the fixed-disk drive has not been formatted, do so by keying:
SELECT DISK B10 (RETURN) -- Selects diskette drive
LOAD RUN "@FORMAT" (RETURN) -- loads format utility program from

the Operating System diskette

3. Answer all screen prompts to format the fixed-disk drive at address

310 (HEX). (Formatting takes approximately 10 minutes.)
4. When formatting has been completed, enter
COPY RF (RETURN) or MOVE RF (RETURN)
to create a backup copy of the system diskette on the fixed-disk.
5. Remove the Operating System diskette from the DSDD drive and insert a
blank diskette (WL #177-0070) in its place. (Ensure that the
write-protect notch on the new diskette is covered (write-enabled).

6. If the blank diskette has not been formatted, do so by keying:

RUN (RETURN) -- runs the format utility that is already loaded

in CPU memory

T. Answer all screen prompts to format the diskette at address B10

(HEX). (Formatting takes approximately 1.5 minutes.)

8. When formatting has been completed, enter

COPY FR (RETURN) or MOVE FR (RETURN)

to create a backup copy of the Operating System on diskette.

4.6 MODIFYING DEVICE TABLE ENTRIES

Master Device Table Modifications:

Refer to the EDIT DEVICE TABLE function (SF'05) in the @GENPART

discussion given earlier in this section.

Partition Device Table Modifications:

Device Table entries can be modified either explicitly, with a SELECT
statement, or implicitly with a CLEAR command, the RESET key, or Master
Initialization of the system. In general, therefore, Partition Device Table

entries remain in effect until one of the following operations is performed:

--A SELECT statement is executed explicitly redefining one or more

specified entries
--A CLEAR command with no parameters is executed

--The system is Master Initialized (see below);

Whenever necessary, the Partition Device Table can be displayed for

debugging purposes by using the BASIC-2 statement LIST DT (List Device Table).

LIST DT displays, in hexadecimal notation, the device table belonging to
the partition that is attached to the requesting terminal. The Partition
Device Table is displayed at the requesting terminal. More detailed
information concerning partition device-table modifications can be found in
the 2200VP BASIC-2 Language Reference Manual, WL#700-4080C (IV.C.2).

4-25

u'7

4.7.1

10

SPECIAL PROGRAMMING CONSIDERATIONS
TIME-DEPENDENT SOFTWARE

The execution time of a given program varies from one machine to

another. Execution on the LVP depends upon the current load of the CPU.

2236DE CRT refresh speed is much slower than in 2226 CRTs. Thus,
programs written to update the entire screen may affect the operating

speed of the system.

LINPUT rather than KEYIN is recommended for data entry, since response

time with KEYIN will vary, and LINPUT requires no CPU processing between
keystrokes.

Using FOR/NEXT loops for delaying, (e.g., maintaining a message on the
screen for a specified amount of time) uses excessive CPU time. Delay
time varies depending upon the current work load of the CPU. Use of the

SELECT P statement is recommended.

Instrumentation that is critically timed by the program may not work

properly.

4.7.2 PERIPHERALS

1.

For line printers, plotters, 2228B and any other device that must be
allocated to a specified user for a period of time, new $0PEN and $CLOSE
statements are provided. Other than making certain that these statements

are added, the programmer need not change the body of a program.

All Console Input, INPUT, and LINPUT statements utilize 2236MXD
controllers. Therefore, these statements may not be used with the
telecommunications-control boards. This means, further, that the echo

characters may not be sent to the line printer.

4-26

Y

4.7.3 $GIO RESTRICTIONS

1. CBS is not issued to the 2236MXD.

2. Input not allowed from 2236MXD (i.e., console keyboard).

3. Timeouts and delays are allowed for output; however, the timeout or delay
value is a minimum time. The value applies to the execution time
allocated to this program; if other programs are executing, the actual

delay time will be longer than specified.

y, There is an implicit timeout (with error) of 1 millisecond for input

(non-MXD). A timeout of up to 10 ms can be specified.
4.7.4 I/0 STATEMENT RESTRICTIONS
The following chart defines which devices the LVP Operating System

permits the statement to communicate with. ERR #48 results when a BASIC-2

statement addresses an illegal device.

2236DE

2236DE 2236DE TERMINAL DEVICES OTHER
STATEMENT TERMINAL TERMINAL LOCAL THAN 2236DE
OR OPERATION: KEYBOARD CRT PRINTER TERMINALS
Console Qutput® X X X
PRINT X X X
PRINTUSING X X X
HEXPRINT X X X
LIST X X X
PLOT X X X
Console Input X
INPUT X
LINPUT X
KEYIN X
$IF ON/OFF X
$GIO X X

SELECT ON (interrupt)
Disk Statements

>4 P4 >4 D4

* Console Output (keystroke echo, error, END, STOP messages, and LINPUT and
INPUT prompts) is always directed to the terminal CRT except for TRACE

output which can be selected to another device (such as a printer).

y-27

4,7.5 DEFAULT DISK ADDRESS
Unlike the 2200VP, whose default disk address is always /310 after
power on, the LVP's default disk address after power on is set to the

address of the disk from which the system was loaded. That is

SF'00 sets default address to /310

'01 /B10
'02 /320
'03 /B20

After partition generation, the default disk address for each partition
is set to the default disk address of partition #1 at the time of partition

generation.

4.7.6 CONTINUE

The LVP supports CONTINUE as an Immediate Mode statement rather than a
command. Thus, CONTINUE need not be the only statement on a line; however,
no statements may follow CONTINUE on the Immediate Mode line. This feature
of CONTINUE is useful when program execution is to be continued with the

terminal released to another partition. For example,

:$RELEASE TERMINAL : CONTINUE

4.8 PROGRAMMING THE 2209A ON THE 2200LVP

The present $GIO sequences, documented in table 4-1 of the 22094
manual, will lead to an input timeout error (I92) on the LVP. The LVP
cannot allow one partition to wait for an input strobe (8607) for a long
time, as this would be unfair to other users. The LVP hardware does not
permit the LVP to switch users once an 860X microcommand has begun, because
data may be lost in the process. The solution is to wait for the tape drive
controller to become ready (1020) before asking the board for input. Thus
the change to the $GIO sequence is to insert a 1020 microcommand after a CBS
(B4xx) that causes tape motion and before the single character input (8607)

that follows the tape motion commands.

As mentioned in the 2209A manual, it is not necessary to keep the tape
controller board enabled throughout an entire tape operation. The example
of a look ahead read is given. In the example, the $IF ON statement is an

acceptable substitute for the wait for ready micro-command (1020).

10 #GIO READ/O7B (4400 1020 8607 442A C220, A$) B$ ()
or
20 $GIO LOOK AHEAD READ /07B (L4400, A$)

30 $IF ON /07B, 500

.

500 $GIO READ CONTROLLER BUFFER /07B (1020 8607 uu2A C220, A$)

In the previous example, $IF ON.and the 1020 microcommand in line 500

are redundant.

Another important LVP change is the increased importance of Master
Reset (U459C). The reset key on the 2236DE console WILL NOT reset the tape
drive controller. If a reset from the console happens to occur in the
middle of the execution of a tape drive $GIO sequence, the tape drive
controller will be left in an unpredictable state. TIn such cases, it is
important that tape drive controller be reset by sending a CBS of HEX (9C)
without waiting for ready (459C).

The Status $GIO sequence is currently documented as allowable at any
time (CBS of 88 without waiting for ready). Experience has shown that
reading controller status during tape operations sometimes interferes with
proper controller operation. The status sequence should be used to read
tape drive status when the tape is not in motion (ULU8B rather than 458B).
$IF ON or the $GIO micocommand 1010 should be used to test for "tape

operation complete".

On the LVP, the $GIO sequence 1300 A000 is a faster multi-character
output than the A200 in the present tape drive manual.

To summarize, the new recommended LVP $GIO sequence for the 2209A tape
drive are listed below:

Backspace file
Backspace record
Forwardspace file

Forwardspace record

Read

Rewind

Write EOF

Write Gap

Write

Look Ahead Read
(Subset of Read)
Finish Read
(Subset of Read)
Buffer Write
(Subset of Write)
Finish Write
(Subset of Write)
Master Reset
Status

$GIO
$GIO
$GIO
$GIO
$GIO
$GIO
$GIO
$GIO0
$GIO
$GIO

$GIO
$GIO
$GIO

$GIO
$GIO

BSF /07B (4405 1020 8607, A$)

BSR /07B (4404 1020 8607, A$)

FSF /07B (L4402 1020 8607, A$)

FSF /07B (4408 1020 8607, A$)

READ /07B (4404 1020 8607 442A C220, A$) B$()
REWIND /07B (4Ll46 1020 8607, A$)

WEOF /07B (4403 1020 8607, A$)

WGAP /07B (4407 1020 8607, A$)

WRITE /07B (4429 1300 A0O0O L4401 1020 8607, A$) B$()
LAR /07B (4400, A$)

FR /07B (1020 8607 u42A C220, A$) B$ ()
BW /07B (L4429 1300 AOOO 4401, A$) B$ ()
FW /07B (1020 8607, B$)

RESET /07B (459C, B$)
STATUS /07B (448B, 1020 8706, B$)

4-30

NOTES

4-31

NOTES

4-32

SECTION 5
HARDWARE THEORY OF OPERATION

5.1 FUNCTIONAL STRUCTURE OF THE 2200LVP COMPUTER SYSTEM

Three basic components make up the 2200LVP computer system: 1) a Central
Processing Unit (CPU), 2) system memory, and 3) an Input/Output (I/0)

subsystem.

5.1.1 CENTRAL PROCESSING UNIT

The Central Processing Unit (CPU) controls the operation of the 2200LVP
computer system, and is basically comprised of: work registers, an
Arithmetic/Logic Unit (ALU), and control circuitry. The work registers are
normally used as temporary storage areas during program execution. The ALU
contains the circuitry necessary for performing all arithmetic and logical
operations required for program execution. The control circuitry allows the
CPU to execute a program automatically, by reading an instruction from memory,
decoding that instruction, and generating the proper control signals to
execute that instruction. When the execution of the present instruction is
complete, the control circuitry reads in the next instruction and the process

continues.
5.1.2 SYSTEM MEMORY

The system memory is a high-speed storage unit which is used to hold
executable instructions (a program), and the data/variables required for
execution of that program. Therefore, it is necessary to load the
instructions into memory before they can be executed. The data/variables must
also be in memory before they can be referenced by the program. Memory is
also used to hold computation results. The area of memory where these results

are stored is refered to as the "scratch pad".

5.1.3 INPUT/OUTPUT SUBSYSTEM

The Input/Output subsystem is comprised of peripheral devices used for
program and data input, data output, mass storage of high-volume information,
and remote CPU/memory-access. Several types of I/O devices exist. For

example: magnetic tape units, magnetic disk units, printers, and plotters.
5.2 FUNCTIONAL STRUCTURE OF THE 2200LVP CENTRAL PROCESSING UNIT

The primary objective or function of the 2200LVP Central Processing Unit
(CPU) is to fetch, decode, and execute instructions that reside in memory. In

the 2200LVP, instructions are executed sequentially.

The 2200LVP CPU consists of three interconnected functional units: 1) work

registers, 2) an Arithmetic/Logic Unit (ALU), and 3) control circuitry.
5.2.1 WORK REGISTERS

A register is a high-speed temporary storage area. Some examples of
registers in the 2200LVP CPU are: the "C" Register, the Instruction Register,
or the File Registers. Not all CPU registers can be accessed by an executable
instruction, but instead are used to sustain the operation of the CPU. One
such register is the Instruction Register, which holds the instruction
presently being executed, and thereby is involved in controlling the execution
of that instruction, and is not involved in the actual calculation or

operation that the instruction is performing.

The LVP CPU contains two main addressing-registers: the Program
Counter--which is used to address the location in (Data) memory at which data
is to be read or written (stored), and the Instruction Counter--which is used
to address the location in (Control) memory where the next executable
instruction is located. During program execution, the content of the memory
location addressed by the Instruction Counter is loaded into the Instruction
Register. The Instruction Register holds the. instruction presently being
executed so that the control circuitry can direct the CPU through the steps

necessary for performing the operation(s) indicated by the instruction.

5-2

L2

4

5.2.2 ARITHMETIC/LOGIC UNIT

The Arithmetic/Logic Unit (ALU), which performs the necessary math and
logic operations, is made up of two sections--registers, and a Logical
Adder/Multiplier. The registers temporarily hold or store the values
calculated by the Logical Adder/Multiplier.

5.2.3 CONTROL CIRCUITRY

The control circuitry can be divided into two areas. One of these areas
is Timing. The processor fetches an instruction, performs the operations
required, fetches the next instruction, and so forth. This orderly sequence
of events requires precise timing. This timing is supplied by a free-running
oscillator clock, and its support circuitry. The timing circuitry furnishes a
reference for all CPU actions. One basic unit of time for the CPU is the
instruction cycle, which is the amount of time required to fetch and execute a

single instruction.

The second area is the Instruction Decoder circuitry, which is comprised
of the Instruction Register and the Instruction Decoder. As previously
mentioned, the Instruction Register stores the instruction to be executed.
This instruction, through the Instruction Decoder, directs the CPU's
activities during the instruction cycle. The Instruction Decoder translates
the instruction into CPU actions. The timing circuitry controls the precise

occurrence of these actions.

5-3

INSTRUCTION| PROGRAM

COUNTER COUNTER
' = ¥
N
CONTROL BOOTSTRAP
MEMORY PROM’S !
L ' | DATA
Y MEMORY
INSTRUCTION
REGISTER
/
INSTRUCTION _ CH |cCL
DECODER REG. | REG.
TO REST JOF CPU I
(A BUS) =
(B BUS)
]
ALU
(C BUS)
\ Y
FILE UMM STATUS “K > /
REGS. EG. REGS. REG. || /O
/+ j Y
(B BUS)

FIGURE 5-1 2200LVP BLOCKDIAGRAM (BASIC)

-

5.3 2200LVP CPU BLOCK DIAGRAM THEORY--BASIC (ref: FIGURE 5-1)

This section is intended to introduce some of the major concepts
necessary for developing an overall understanding of the flow of information

through the 2200LVP. CPU components covered in the following text are:

--BOOTSTRAP PROM's --Instruction Counter --Instruction Register
--Instruction Decoder --Control Memory --Data Memory
--Program Counter --CH and CL Registers --Dummy Register
--File Registers --Status Registers --"K" Register

--ALU

The 2200LVP CPU is a versatile high-speed device with all the necessary
functional units required for classification as a central processor. The
initial instructions that control the Central Processor immediately after it

is powered on are contained in the BOOTSTRAP PROM's. When power is applied to

the Central Processing Unit, an initial address of 8003 (HEX) is loaded into
the Instruction Counter. This action results in the CPU fetching the first
instruction from the BOOTSTRAP PROM's.

The Instruction Counter points to (addresses) the location (in Control

Memory) of the next instruction to be executed. The instruction addressed by

the Instruction Counter is loaded into the Instruction Register. Once the

instruction has been fetched, the Instruction Decoder directs the actions of

the CPU through the rest of the instruction cycle.

The CPU continues to execute instructions from the BOOTSTRAP PROM's until
such time as the system operator instructs the CPU to load a program (from a
source such as a diskette drive) into Control Memory. Once an operating
system program such as BASIC-2 has been loaded, the BOOTSTRAP PROM's transfer

control (alter the Instruction Counter) to that program. The program begins
execution at the appropriate location in Control Memory. The CPU always
fetches and executes the next sequential instruction in Control Memory unless

an instruction is decoded that directs it differently.

5-5

Data Memory, which in the LVP may be up to 128K bytes, can contain a
variety of information, which is to be processed by the CPU. This information
may be in the form of input data or BASIC-2 language instructions. Locations

in Data Memory are addressed by the Program Counter. The information

contained in Data Memory can be made available to the CPU under instruction
control. When a Data Memory READ instruction is performed, the information
contained in the location addressed by the Program Counter is transferred to

‘the CH and CL Registers as directed by the instruction. To store information

in Data Memory, a memory WRITE operation must be performed. The information

is transferred to the Data Memory location addressed by the Program Counter.

There are several registers that are available under instruction control
to allow the micro/machine language programmer to manipulate data within the

CPU. One internal register of the CPU is the Dummy Register. This register

is not a storage location. The Dummy Register, as its name implies, appears
to be a register but is actually the source of a NULL byte, that is, the Dummy
Register always contains all zeros. The Dummy Register is normally used as a
a source-register for setting the contents of other registers to zero. A byte
(a byte being eight bits) of information can, under instruction control, be
sent to the Dummy Register. When this type of instruction is executed, the
information sent to the Dummy Register is lost, because the Dummy Register,

when read, always contain zeros.

The File Registers are a group of general purpose registers primarily

used to hold intermediate arithimetic or logical operation results. There are
eigth (8) File Registers, numbered zero (0) thru seven (7). Without File
Registers, the CPU would have to write each portion of a calculation into
memory and then read that partial result back from memory when the next

portion of the calculation is to be performed.

The Status Registers (SH and SL) sense or indicate the state of various

CPU and I/0 operations. The SH Register is an eight (8) bit register that
senses or sets various arithmetic, I/0, and keyboard status conditions by
means of the microprogram and/or hardware. The SL Register is another eight
(8) bit register which can be set only by the microprogram, and which

indicates the phase of processing, mode and other conditions.

5-6

The "K" Register holds the data that is to be transfered to/from a

peripheral device. The "K" Register is also used to hold the eight (8) high

order bits read from or written to Control Memory.

The ALU is designed to accept two (2) eight bit binary words (from
registers) as inputs to be manipulated. The two sources or inputs to the ALU
are routed to the ALU via the "A" and "B" Busses. The output of the ALU is

sent or routed to a register via the "C" Bus.

5.4 2200LVP CPU BLOCK DIAGRAM THEORY--DETAILED (ref: FIGURE 5-2)

This section explains the Detailed Block Diagram of the 2200LVP CPU.
The approach taken in this section is to divide the block diagram into
sections, then into blocks, and then explain the purpose of each block and its

interaction with other blocks (circuits) in the section.

Prior to the description of each section is a list of the hardware

components that are covered in that section.

5.4.1 CONTROL MEMORY

--Trap Decoder --Instruction Counter
--Bootstrap PROM --Control Memory

--Memory Selector --Read/Write Control Logic
--Instruction Register --Control Memory Parity Logic

--Instruction Decoders

The Trap Decoder forces the Instruction Counter to one of four addresses
(HEX 8000 to HEX 8003) when one of the following conditions exist: 1) a Parity
Error is detected in Control Memory (PECM), 2) the reset button is depressed
(RESET), 3) a Parity Error is detected in Data Memory (PEDM), or 4) Power-On

Reset is initiated (POR). When one of these trap address conditions occurs,

the Instruction Counter Source Selector is directed to pass the trap address
(8000 - 8003) on to the Instruction Counter. The Instruction Counter will then
contain an address above 8000 (HEX)--32K (Decimal).

The BOOTSTRAP is located in this area of Memory (above HEX 8000). The
BOOTSTRAP, which is made up of three 1K by 8 bit PROM's forming a 24-bit
instruction word, contains the microinstructions that control the initial
operation of the CPU. The program contained in the BOOTSTRAP PROM's performs
certain diagnostic routines, displays memory parity error faults, and allows
the operator to load an operating system program (from an Input/Output device
such as a diskette drive) into Control Memory. Once an operating system has
been loaded into Control Memory, the BOOTSTRAP transfers control to the

program contained in Control Memory. Control Memory, like the BOOTSTRAP
PROM's, contains 24-bit instructions. Actually, twenty-three bits comprise

the instruction; the twenty-fourth bit is a parity bit.

The Memory Selector circuitry supplies memory block select signals to
Control Memory. These block select signals enable a YK (4096) block of

memory. There are eight memory select lines (MS1-MS8), each selecting a 4K
block of memory, thus making it possible for the LVP to access up to 32K (HEX
0000-7FFF) locations in Control Memory. The remainder of the address
necessary to access the desired location in the selected 4K block of memory is

supplied by the Instruction Counter.

Memory Select Address block Decimal Equiv.
(HEX) (DEC)
MS1 0000 - OFFF 0000 - 4095
MS2 1000 - 1FFF 4096 - 8191
MS3 2000 - 2FFF 8192 - 12287
MSh 3000 - 3FFF 12288 - 16383
MS5 4000 - UYFFF 16384 - 20479
MS6 5000 - SFFF 20480 - 24575
MS7 6000 - 6FFF 24576 - 28671
MS8 7000 - TFFF 28672 - 32767

The Memory Select Decoder also generates the signal ROMS when an address
of 8000 (HEX) or above is contained in the Instruction Counter. The signal
ROMS selects the BOOTSTRAP PROM's, and slows the CPU to one half its normal
operating speed to compensate for the slower memory access time of PROM

memories.

The Read/Write Control Logic generates the control signals (R/W)

necessary to transfer information to and from Control Memory. Control Memory
can be read under two conditions. One condition occurs during the normal
instruction fetch cycle performed by the CPU; the other condition occurs under
instruction control. The micro/machine language programmer can instruct the
CPU to read an instruction from Control Memory, and place it in registers K,
PH, and PL.

Information can also be written to Control Memory under instruction
control. Again, the micro/machine language programmer can instruct the CPU to
write an instruction contained in registers K, PH, & PL into a location in
Control Memory. This operation normally happens during the initialization of
the system--under control of the BOOTSTRAP.

The Instruction Register holds (stores) the instruction to be executed by

the CPU. The Instruction Register is loaded during the instruction fetch
cycle of the CPU. After the instruction is loaded into the Instruction

Register, the Control Memory Parity Logic checks for correct odd parity. If

there is a parity problem, PECM is generated and the Instruction Counter is
forced to the trap address of 8000 (HEX) in the BOOTSTRAP, and the location of

the error in Control Memory is displayed on the "system console".

After the instruction contained in the Instruction Register has been

checked for correct parity, it is up to the Instruction Decoder to control the

actions or operation of the CPU to see that the instruction is executed.

5.4.2 DATA MEMORY

--Program Counter Source Selector ~--Program Counter Register
--Data Memory Address Register ~--Select Decoder

--Data Memory Input Register . ==Parity Input Logic
--Data Memory --Read/Write Control Logic
--CH and CL Registers --Data Memory Parity Logic
--Refresh Counter --"A" and "B" Bus Selector

The Program Counter Source Selector routes information from a specified

source to the Program Counter Register. The Program Counter Register is a

16-bit register which addresses locations in Data Memory. The Program Counter
Register is divided into two eight-bit registers called PH (H means high

order) and PL (L means low order).

Program Counter Register bits PL 1 thru PL 7 and PH O thru PH 6 are
passed (clocked) to the Data Memory Address Register, on the Data (RAM) Memory

board, where they are used to help locate the particular piece of data

requested.

The Select Decode circuitry selects the Data Memory board the information
is to be read from or written to. With address lines PL 1 thru PL 7 and PH 0

thru PH 6, up to 32K locations can be selected. PH 7, which is not sent
directly to the Data Memory board, is used in the generation of the Data
Memory Select signals (DMS1 & DMS2).

The Data Memory Input Register holds (stores) the results of an ALU

operation so that it can be written to (stored in) Data Memory.

The Parity Input Logic ensures that the data being written to Data Memory

has odd parity by developing the correct parity bit (9th bit).

An LVP can have up to 128K bytes of Data Memory for holding data to be
processed by the CPU. The data can be of many types. When an operator writes
a User program in BASIC-2, that program resides in and will be executed from
Data Memory. Also, any data that is to be processed by that BASIC-2 program
will, sooner or later, reside in Data Memory. All of Data Memory, except for

a small portion used by the CPU microprogram, is available for use by the
operator.

The Read/Write Control Logic is similar to that used to read or write to

and from Control Memory. Writing to Data Memory during Register Instructions
and most Mini Instructions can be accomplished in two ways. One way is by

performing a "Write 1". During a "Write 1", the information contained in the
Data Memory Input Register is stored in the Data Memory location addressed by

the Program Counter .Register when PLO is equal to zero.

The second way is to perform a "Write 2" which stores the information
contained in the Data Memory Input register in the location addressed by the

Program Counter Register when PLO is equal to one.

When a Data Memory Read operation is performed, sixteen bits of

information are transferred from Data Memory to the CL and CH Registers.

Actually, two eight-bit data words are read as one sixteen-bit data word. The
first word (DMO O - DMO 7) in the Data Memory location addressed by the
Program Counter Register is loaded into the CL Register when PLO equals zero.
The second word (DMO 9 - DMO 16) in the Data Memory location addressed by the

Program Counter Register is loaded into the CH Register when PLO equéls 1.

The CH and CL Registers hold information read from Data Memory so that it

can be analyzed and manipulated by the CPU. Once the information from Data
Memory is in the CH and CL Registers, it can be accessed by the ALU and other
circuitry so that it can enter into calculations or decisions to be made by
the CPU.

When the information from Data Memory is loaded into the CH and CL
Registers, it, just like an instruction, is checked for correct odd parity.

Information being read from Data Memory is checked by the Data Memory Parity

Logic circuitry.

The Refresh Counter is necessary due to the use of Dynamic RAM memory

devices in both Control and Data Memory. Dynamic RAMS must be "refreshed"
periodically, row by row, or the data stored will be lost. The Refresh
Counter keeps track of which row in each RAM chip is to be refreshed. One big

advantage of Dynamic Memories is their fast access time.

The "A" and "B" Bus Selectors allow the CH and CL Registers to be output
to either the "A" Bus or the "B" Bus.

5.4.3 REGISTERS

~-SH Register (SH) --SL Register (SL)
--"K" Register Source Selector --"K" Register
--Address Bus Register --Dummy Register
--30 msec Timer --File Registers

--"A" and "B" Bus Source Selectors

The high order Status Register or the SH Register is an eight-bit
register that senses or controls various hardware functions. (The SH Register
can also be used for arithmetic/logic operations.) One example of a hardware
sensing operation is: when the HALT key is depressed, SH Register bit 5 (SH5)
is set. Under program control, the CPU can monitor this bit to determine

whether the operator has depressed the HALT key.

SH Register Bit Function

SHO CARRY BIT (= 1 if CARRY)
SH1 ENABLE/INHIBIT INPUT

SH1 SFN (Special Function Key)
SH3 READY/BUSY

SHY 30 MSEC TIMER

SH5 HALT

SH6 PEDM

SH7 TRAP if PEDM

(generates DMPI)

The low order Status Register or SL Register is an eight-bit register
which cannot be set by hardware. The SL Register can be modified only under
program control. It can be used to indicate the CPU phase of processing, mode

or other conditions. It can also be used for arithmetic/logic operations.

The "K" Register Source Selector will select, under program control, one

of three possible sources for the data to be loaded into the "K" Register.
The three possible sources of inputs to the "K" Register are the Input Bus,

the "C" Bus, and Control Memory.

The "K" Register is another eight-bit register accessable to the CPU for
arithmetic/logic operations. The "K" Register, unlike other registers, is

also used to send data to and receive data from I/0O devices. It is used as
the I/0 Input Bus (IB0-IB7), the I/O Output Bus (0B0-OB7), and holds data to
be transferred to the I/0 Address Bus Register (ABO-AB7). When performing
read and write operations with Control Memory, the "K" Register is used to

hold the eight most significant (high order) bits to be written to or read

from Control Memory.

The Address Bus Register holds the I/0 device address for output to the

Address Bus. The Address Bus Register is an eight-bit register.

The Dummy Register supplies the CPU with a convenient register that can

be used as a source for a null byte (zeros), or as a register that can receive

the undesired results of an operation so that the contents of another register

are not altered.

-

*

The Thirty Millisecond (30 msec) Timer is used in the 2200LVP for time

sharing of the system between multiple users. The 30 msec Timer "sets" SHY to

let the operating system know that the 30 msec time slice allocated to the

operators program presently being serviced has expired.

The last group of registers are the File Registers. The File Registers

are temporary storage locations that can be used to hold a variety of
different types of data. One use of the File Registers is storing
intermediate results of arithmetic operations. There are eight 8-bit File
Registers available which can be used as either source and/or destination

registers for operations by the CPU.

The "A" and "B" Bus Source Selectors control the connection of the

various registers to the "A" and "B" busses.

5.4.4 ALU
--Binary ALU --Decimal ALU
~=Multiply/Shift ALU and Mux -="C" Bus Source Selector and Register

The Arithmetic Logic Unit section, known as the ALU, provides the CPU

with the ability to perform arithmetic calculations and Boolean logic

functions.

The ALU is basically divided into three sections: a Binary ALU, a Decimal
(adjuster) ALU, and a Multiply/Shift ALU.

The Binary ALU performs the function specified by the instruction on two
eight-bit source words. One eight-bit word is supplied to the ALU via the "A"
Bus; the other eight-bit source is supplied to the ALU via the "B" Bus. The
eight-bit data inputs are operated on by the ALU, and the results are output

via the "C" Bus selector and the "C" Bus Register.

The Decimal ALU converts binary values to an equivalent BCD (Binary Coded
Decimal) number. When a Decimal Add operation is performed, the ALU adds the

two binary values, supplied by the "A"™ and "B" Busses, and then converts it to
BCD.

The Multiply/Shift ALU is capable of multiplying, or performing a shift

function on two 4-bit binary words. A shift function occurs when either the
high or low four bits of the "A" and "B" Bus are combined for output (via the
"C" Bus) to a destination register or Data Memory. The Multiply circuitry can
only multiply half of the two selected source registers at a time. To
multiply two eight-bit source words together requires the execution of more
than one multiply instruction. Also, as indicated on the block diagram,
immediate data contained within the instruction itself can be entered into the
ALU via the "A" Bus.

5.4.5 AUXILIARY REGISTERS AND SUBROUTINE STACK

--Aux Reg/Subr Stack Source Selector --Instruction Counter

--Program Counter --Auxiliary Registers/Subroutine Stack
--Stack Address Register --Stack Address Selector

--SAB7 Flip Flop (F/F) --Mini Instruction Decoder

There are two inputs to the Aux. Reg/Subr. Stack Source Selector. One of

these two inputs is the Instruction Counter Register, which contains an

address that is one count higher than the address contained in the Instruction
Counter. It was mentioned earlier that a CPU is normally setup to execute the
instructions contained in Control Memory in sequential order. When a program
is written, not all the operations that the CPU is to perform are going to
occur in sequence. A computer is capable of making decisions, under program
control of course, and the paths taken to solve a particular problem are going
to vary depending on the information given to the computer. Depending on the
operation being performed, a branch to another portion of the program may be
necessary to handle that operation. This is known as branching to a
Subroutine. If this branch is only temporary, the CPU will return to the

point in the main program where it left off.

-t

«

For this to be accomplished, the address to return to (IC + 1) must be saved.
Storing this subroutine return address is the function of the Subroutine
Stack. Remember, that in order to fetch any microinstruction contained in
Control Memory, the Instruction Counter has to be changed to the address of
the memory location containing that instruction. If the address in the
Instruction Counter is changed to get to the subroutine, then the address of
the next instruction in the main program routine must be put back into the

Instruction Counter in order to return from the subroutine.

The Program Counter is the other input to the Aux. Reg. & Subr. Stack

Selector. The Program Counter contains an address that is always one count
higher than the address contained in the Program Counter Register. The
Program Counter Register, which addresses Data Memory, is used by the
microprogram to address the location of the next BASIC-2 Language instruction
in Data Memory. When a BASIC-2 language subroutine is called, the Program
Counter Register (PC+ 1) must be saved so that when the subroutine has been

completed, a return to the main BASIC-2 program flow may be accomplished.

The Auxiliary Registers/Subroutine Stack is a 256 by 8-bit RAM memory

used to form 96 Subroutine Registers and 32 Auxiliary Registers. Each of the

Auxiliary and Subroutine Registers is capable of holding a sixteen bit
address, which means that two eight-bit RAM locations are required to store

the information.

The Stack Address Register addresses the next available location in the

Subroutine Stack when a microcode subroutine branch instruction is performed,
so that the contents of the Instruction Counter can be saved prior to the
branch operation. The Stack Address Register also has the responsibility of
locating the correct address information to be loaded back into the
Instruction counter when a subroutine return microinstruction is executed.

The Subroutine Stack Register works on a Last-In First-Out (LIFO) addressing
scheme. 1In other words, the last address loaded into the Subroutine Stack, by
a subroutine branch (SB) operation is the first address that will be read out

when a subroutine return (SR) operation is performed.

Addressing of the Auxiliary Register is accomplished by (bits 4 thru 8

of) the microinstruction. The micro/machine language programmer must specify

which Auxiliary Register is to be used.

The source of the address supplied to the Aux. Reg./Subr. Stack is
controlled by the Stack Address Selector.

When the Stack Address Register addresses the Subroutine Stack Registers,
or when the Auxiliary Registers are addressed via the microinstruction, only
one eight bit location is accessed. Remember, that 16 bits of information are
stored in the Auxiliary/Stack registers. The SAB7 Flip Flop (F/F) is used to

supply the highest order address bit to allow access to the other eight bits

of information that were stored. (The SAB7 F/F adds a count of 128 to the
original address.)

The Mini Instruction Decoder is mainly used to decode and control the

execution of microinstructions involving the transfer of information to and

from the Auxiliary Registers, Subroutine Stack and Program Counter Register.

5.4.6 INPUT/OUTPUT CIRCUITY

--Address Bus Strobe - ==Output Bus Strobe
--Control Bus Strobe -=Input Bus Strobe

The I/0 Control section is responible for generating three output pulses:
an Address Bus Strobe (ABS), an Output Bus Strobe (0BS), and a Control Bus
Strobe (CBS). These three pulses or signals are necessary for the transfer of

data to/from one of many peripheral devices.

The Address Bus Strobe clocks the address contained in the Address Bus

Register onto the Address Bus. This address selects the appropriate
peripheral device.

The Output Bus Strobe clocks the output data, which is contained in the

"K" Register, to the selected peripheral device.

The Control Bus Strobe requests the selected peripheral device to

generate an Input Bus Strobe to the CPU.

Data is clocked from a peripheral device to the CPU by the Input Bus
Strobe (IBS). The Input Bus Strobe is generated by the peripheral, and clocks
the data to be transferred to the CPU into the "K" Register.

9@

5.5 DISK PROCESSING UNIT

The Disk Processing Unit (DPU) is a Z80A based microcomputer responsible
for controliing all disk drive (DSDD diskette and fixed-disk) activities, and

for supervising data transfer between the LVP CPU and the disk drives.

The DPU is comprised of three logic boards: 1) WL #210-7696
Microcomputer and Memory, 2) WL #210-7694 2200/Disk Interface, and 3) WL
#210-7695 Disk Controller. The specific duties of each board, and the
circuitry of each board are explained in the following text. A basic block
diagram of each board is provided, and should be referenced to allow for

easier understanding of the DPU hardware operation.
5.5.1 MICROCOMPUTER AND MEMORY (ref: FIGURE 5-3)

The Microcomputer and Memory board is a Z80A based controller dedicated

to the 2200/Disk Interface and Disk Controller boards.

Z80A-CPU--

Directs all other logic circuitry--the heart of the DPU. The main
components of the Z80A are: an Arithmetic/Logic Unit (ALU), sixteen 8-bit
general purpose registers, four 16-bit special purpose registers, an
instruction register, address bus and data bus control circuitry, and

instruction decode and CPU control circuitry.

Z80A-CTC--

Performs all Z80A timing and counting functions. The CTC (Counter Timing
Circuit) is a programmable component with four independent channels that may
be selected to operate in the timer mode or the counting mode. Each channel
is comprised of two registers, two counters, and an interrupt vector. An
interrupt occurs when the counter reaches zero, or when a trigger pulse is
received from an I/0O device requesting service. When an interrupt occurs, the
Z80A enters an acknowledge cycle during which the CTC places a vector address
on the address bus (low-order byte). The high-order byte of the address is
supplied by the interrupt register of the Z80A to form a pointer to an

interrupt service routine located in memory.

5-19

EPROM--

Contains the microcode program that controls the Z80A. Four 2K X 8-bit
2716 EPROM's comprise the Read Only Memory. ‘4‘

Select decode circuit-- '

Monitors certain Z80A address-bus bits to determine which of the four
EPROM's will be selected. When an address indicating a location in EPROM is
detected, the data contained in that location is made available to the 7804,
via the data bus, for processing. The 7Z80A reads in the program instruction

and then processes that instruction to achieve various pre-defined results.
RAM--

Stores information such as quantities, values, or status, which the
microcode program needs to perform its specific task. RAM is also used to
store data that is to be transferred between the LVP CPU and the disk drives.
Eight 16K X 1-bit 4116 Dynamic RAM's comprise the Random Access Memory.
Dynamic RAM, by nature, is a volatile memory, in that, if the RAM's are not
"refreshed" in every 2 msec time period, the data contained in them will be ~<‘

lost. The Z80A provides automatic refreshing for RAM.

RAM address register--

Supplies the address (location) in RAM where data is to be read/written.
The lower-order bits of the Z80A address bus pass through the address register
as the "row address"; the higher-order bits pass through as the "column

address".

Parity generating/checking circuit--

Ll

Generates a parity bit and writes it into a ninth RAM (parity RAM)
whenever data is written to RAM. When data is read from RAM, a parity bit is
once again generated and tested against the parity bit that was written to
ensure data integrity. (The parity bit that was written is read along with
the data.)

5-20

DMA controller--

Transfers data between the LVP CPU and RAM, and between the disk drives
and RAM. The Direct Memory Access (DMA) controller is a UY-channel, 16-bit
9517-1 device. Although the DMA controller has four channels, only three are
used. Channel 0 (highest priority) transfers data between the disk drives and
RAM; Channel 1 transfers data from the LVP CPU to RAM; Channel 2 transfers
data from RAM to the LVP CPU. By utilizing DMA, LVP-to-disk (and vice versa)
data-transfer microprocessing time is cut in half (as compared to utilizing
the Z804).

DMA high-address latch--

Supplies the upper-address byte (to RAM) during DMA transfers; the
lower-address byte is supplied by the DMA controller.

I/0 port address decoders--

Determines which input or output port (latch) has access to the Z80A data
bus. (This is necessary due to the fact that all DPU data travels on a bus
line.) The Z80A address-bus bits are monitored by the decoders, and depending
on the bit configuration, the desired ports are enabled (or strobed) by the

decoder outputs.

Data bus buffer--

Interfaces the Z80A data bus and the 2200/disk interface and controller
boards. All data passes through this buffer prior to going to (coming from)

the interface and controller boards.

Diagnostic selection switch--

Allows a desired DPU diagnostic test (resident in PROM) to be run.

5-21

>

>

CONTROL

Z80A-CPU

CON$ROL

Z80A-CTC

FOUR 1K X 8-BIT

EPROM

2708-45 EPROM SELECT

now BT

MEMORY

DECODER

DMA HIGH

ADDRESS
LATCH

CON’{ROL

now NnEXOD R

9517-1
CIRCUITRY

I CONTROL CONTROL

EIGHT 16K X 1-BIT
4116 RAM
MEMORY

RAM
ADDRESS
REGISTER

Z80A-CPU + CTC

1/0 PORT
DATA 2200/DISK
INTERFACE/ ADDRESS
O BUFFER CONTROLLER DECODER
XTAL
DIAGNOSTIC
‘: SELECTION
SWITCH
8.0 MHZ
L] MEMORY
CONTROL
LOGIC
FIGURE 5-3 MICROCOMPUTER/ MEMORY BLOCK DIAGRAM

5-22

L

4

5.5.2 2200/DISK INTERFACE (ref: FIGURE 5-4)

The main functions of the 2200/Disk Interface board are: 1) provide an
interface for LVP CPU communications, 2) provide an interface for disk

communications, and 3) provide circuitry for separating read data and read
clock.

Address switch--

Represents the disk drive address selected by the user. The outputs of

the switch are applied to the address compare circuit.

Address compare circuit--

Compares the specified disk address (sent from the LVP via the CPU
address bus) with the setting of the address switch. If the two compare, the
select flip/flop is set.

Select flip/flop--

Enables the CPU strobe/status latch, which in turn allows data to be
received from the CPU.

Output bus latch--

Receives the data sent to the DPU from the LVP.

Output bus buffer--

Transfers input data from the output bus latch to the Z80A data bus. The

data is then sent to RAM under control of the DMA device.

Input bus buffer--

Sends data to the LVP CPU from the DPU. The data passes from the Z80A
data bus through the buffer and onto the CPU input bus.

5-23

Drive status latch--

Transfers disk drive status information onto the Z80A data bus. From
there, the information is scrutinized by the microprogram to determine the
exact state of the disk drives. Some examples of disk drive status are write

protect, drive ready, and seek complete.

Disk control latch--

Accepts disk drive control information from the Z80A, via the data bus,

and applies the information to the drive control buffer.

Drive control buffer--

Sends the disk control information (received from the drive control
latch) to the drives. Some examples of drive control are head load, drive

select, and step.

Interrupt latch--

Accepts various interrupt signals generated by the control circuitry, and
presents those signals to the Z80A via the data bus. The interrupt signals

instruct the Z80A to perform the required service routine.

Read/write clock oscillator--

Generates the clock frequencies required by the read/write circuitry, the

VCO, and other circuitry.

Phase locked loop--

Is a variable controlled oscillator (VCO) that synchronizes with read
data/clock to allow for data/clock separation. The VCO is required due to the
fact that every bit cell does not have a clock pulse--which is the nature of

MFM encoding.

5-24

@

Data/clock separator--

Identifies and separates read data from read clock bits.

Address mark detect circuit--

Compares the read data bits with a one byte address mark, which is
preloaded into a register from the Z80A data bus. When eight consecutive bits
of read data match the address mark bits, an address mark found signal is
generated. This circuit is used to find the beginning of a sector, and then

the beginning of the data field in that sector.

5-25

NVIOVIA ID0Td ADVAIALINI NSIA/00Z7 ¢S AIANOIL
IR
103LAd
MAVIA
SsaYaAaAy
TOYLNOD
¥D0TD ‘
4 <«——] Yo1vavdas ¥D0D JOLVTTIISO
AL N0 [«——/VLVd ¥D0TD Soins
avay /VLVA aviy TLIAM/AVIA
]
|
(0DA) dOOT a/d LIND¥ID “
aido1 < TAVIINOD
ASVHd LIS SSIUAAY_[*
ss3gaav "
! “
, HOLV1
TOYLNOD HOLVT Hv TOYLNOD |
—_— -] SNLVIS
woud LdNYYILNI oL /490U1S Nd> |
|
-——- !
| S |
! yA14ng HOLV'T b yad4nd r_
le— 10uiN0D | TOYLNOD v sng >|
| AT AAINA L LNdNI |
aAnga | v
ASId | a |
! I
! I
! HOLV1 ya1ingd HOLV1
L SNLVILS A[sng e SN je—o
| AAIYA | | ILNdINO 1NdINo |

|SF-ye)

5-26

5.5.3 DISK CONTROLLER (ref: FIGURE 5-5)

The main functions of the Disk Controller board are: 1) convert parallel
write data to serial FM/MFM encoded data, 2) convert serial read data to
parallel, and 3) monitor and check address/data header information and CRC

bytes for errors.

Bit/byte counter--

Counts read/write clock bits, and generates a byte count every eight
bits. The outputs of the counter control (directly or indirectly) the
majority of circuitry on the disk controller board. The bit portion of the
counter (bit counter) provides input signals to the clock generator, supplies
select lines to the parallel-to-serial converter that is responsible for
writing address/data header information, and provides select lines to the
HEX(4E) filler-byte-code generator. The byte portion of the counter (byte
counter) increments the address to the Programmable Logic Array, indicates
what type of address error was detecﬁed (via the control buffer), and selects
(via the port 6X control mux) the appropriate location in the scratch pad
where the reference address/data header bytes are stored. (These bytes are

used for comparison during a read operation.)

Programmable Logic Array (PLA)--

Generates instruction commands to all read/write control circuits. The
PLA consists of two 2K X 8-bit 2716 EPROM's for control of the DSDD diskette
and the fixed-disk drives, and one 1K X 8-bit 2708 EPROM for controlling read
operations of single density diskettes on the DSDD drive. The locations in

the PLA are addressed by the byte counter. The outputs of the PLA are applied
to the PLA buffer.

PLA buffer--

Routes the instruction commands received from the PLA to the appropriate

read/write control circuitry.

5=27

Clock generator--

Provides timing signals for all read/write control circuitry. The active

output of the clock generator is enabled by the bit counter.

UE code generator--

Generates a HEX(4E) filler-byte code which is written on the disk
preceeding the preamble and following the last byte of information in the
sector. The byte counter selects the appropriate parallel inputs through the
parallel-to-serial converter in order to generate the LE code. At preamble
time, the generator is disabled and all zeros (preamble pattern) are forced

out. The output of the generator is input to the "W data" select circuit.

Control buffer--

Accepts inputs from the data bus, and outputs control signals specifying
the type of operation (read, write, or format) and the type of drive (fixed,
DSDD, or SDF--single density format). The control signals select the
appropriate PLA EPROM('s), and the location (address) in the PLA where the

desired instruction routine (read, write, or format) is stored.

Control latch--

Applies error-type (CRC, address, etc.) information to the data bus for
input to the Z80A. The byte counter inputs specify the exact type of address

error.

Sceratch pad--

Is a 16-word memory used to store address/data header information. The
information is written into the memory via the data bus. The location in
memory is specified by the port 6X control multiplexer. The scratch pad

outputs go to the scratch pad buffer.

5-28

4

Port 6X control multiplexer--

Provides address (location) select signals to the scratch pad memory.
The Z80A address bus inputs represent the address when writing into the
scratch pad; the byte counter inputs represent the address when reading from
the pad.

Scratch pad buffer--

Accepts the output from the scratch pad, and routes that data to the
address compare circuit (read operation), and to a parallel-to-serial

converter (write operation).

Address compare circuit--

Compares address/data header information that is read from the disk with
‘reference header information that is stored in the scratch pad. If the
reference and read data are identical, the read operation continues; if the
information differs, an address error is flagged by the address error
flip/flop.

Parallel-to-serial converter (header)--

Converts the address header and data header, received from the scratch
pad, to serial data for transmission to the disk drive (write operation). The
byte counter selects the appropriate parallel inputs through the converter to

generate the serial data.

Serial-to-parallel converter--

Receives serial read data from the data/clock separator, and converts it
to parallel data. If the data received is header information, it is sent to
the address compare circuit for checking; if the data is the actual data

field, it is sent to the FIFO input multiplexer, and the CRC device.

5-29

FIFO input multiplexer--

Provides the FIFO stack with data read (from serial-to-parallel

converter), or data that is to be written (from the data bus).

FIFO stack--

Is a first-in, first-out (FIFO) memory for temporary storage of
read/write data that is transfered between the DMA controller and the disk
drive (disk controller).

FIFO buffer (read)--

Applies the read data received from the FIFO stack to the data bus for
input to the DMA controller.

FIFO buffer (write)--

Accepts write data from the FIFO stack, and sends it to a

parallel-to-serial converter.

Parallel-to-serial converter (data)--

Converts the parallel write data received from the FIFO buffer to serial

data. The serial data is then sent to the "W data" select circuit.

"W data" select circuit--

Determines what type of write data is to be routed to the FM/MFM encoder
for transmission to the disk drive. The "W data" circuit selects the HEX(4E)
filler-byte code, the HEX(00) preamble code, the actual data field, or the CRC
bytes. The desired write data is then sent to an OR gate prior to encoding.

At the same time, the write data is input to the CRC device.

5-30

OR gate--

Routes either "W data" or address/data header information to the FM/MFM
encoder.

FM/MFM encoder--

Takes serial write data from the OR gate, and converts it to FM/MFM prior

to transmission to the disk drive.

CRC device--

Accepts write data and generates a two-byte check character for that
data. The CRC bytes are written on the disk along with the data. When
reading, the data is fed through the CRC device generating another check
character which is compared with the CRC bytes for the data read. (The CRC
bytes are read along with the data.) If the CRC written (then read) and the
CRC generated during the read operation do not compare, a CRC error is flagged
by the CRC error flip/flop.

8.0 MHZ crystal oscillator/counter--

Generates all timing signals for the DPU. A counter breaks the 8.0 MHZ
frequency down into three other clock frequencies. The specific clocks and

the circuitry they control are:

8.0 MHZ - Memory control logic

4.0 MHZ - Z80A-CPU and CTC
2.0 MHZ - DMA controller
1.0 MHZ - Disk control circuitry

5-31

vivd
LM

AVIOVIA ID0Td JdATIOUINOD JSIAd S-S JANDIA
; .
(@vau
YOLVHINTY
aqonay [©SUd yading
VIVD)
LIND¥I) YALIIANOD (ALI4M) NOVIS
YIAOONT o 1 71VD HO» 10dTdS Tviwas o [« ddddng 0dld
IWAW/WA LVIVA My TATIVEVd odud
—
XNW
a/4
4DIAAA LNdNI A,}
youud viva
s M e Mi¥d odld
4/4 1INJ¥ID AILEIANOD
youud AAVANOD THTIVEV
ssqdaav SSTHAAY OL TVI¥S
viva
avay
) ¥4dng
HILITANOD e avd
TVINAS OL HOLV Y HOLVYDS
L narivavd -
XN
¥344n4 REEEnL HOLVT
v1d vid it TO4LNOD 1041NOD
[HALNNOD ND0TD
AOLVUINTD -
N0 / mmmhb“__ ALAEG/LIE 'Yl

Qdm< BON

L

(avay
YIWa

(ALIIM)
VIa

5-32

NOTES

5-33

NOTES

5-31

SECTION 6
SITE PREPARATION

For information concerning preinstallation site planning and preparations,
refer to the corporate "Customer Site Planning Guide" WL #700-5978, its

updates, and CE documentation category I.A.T.

NOTES

6-2

SECTION 7
INSPECTION, UNPACKING, AND CABINET LEVELING

7.1 TOOLS REQUIRED

Heavy duty wire cutters -- WL #726-9416
Adjustable wrench -- WL #726-9425

7.2 PRE-UNPACKING INSPECTION

Before unpacking the 2200LVP, check the packing slip to ensure that the
proper equipment has been delivered. After checking the packing slip,
visually inspect the container carefully for any indications of possible
shipping damage (crushed edges or corners, puncture holes, tears, ete.). If
any shipping damage is noted, file an appropriate claim promptly with the
carrier involved and notify the WLI Distribution Center (Department 90),
Quality Assurance Department, of the nature and extent of that damage, making

arrangements for equipment replacement, as necessary.

7.3 UNPACKING INSTRUCTIONS (ref: FIGURE 7-1)

1. Using heavy duty wire cutters (WL #726-9416), cut the two straps that

secure the cardboard box cover to the shipping pallet.

N
.

Remove the cardboard box cover, and the protective cardboard filler.

3. Using an adjustable wrench (WL #726-9425), remove the three shipping
bolts from the underside of the shipping pallet. (There is one bolt

in the front of the unit, and two bolts in the rear of the unit.)

}. Carefully lift the unit off the shipping pallet. (Although it may be
possible for one person to 1ift the unit off the palate, it is

recommended that two people perform this step.)

5. Store the shipping pallet, cardboard box cover/filler, and shipping

bolts for possible future reshipment.

%

— CARDBOARD
BOX

L

CARDBOARD
KZ FILLER

’ﬁ@?/
L

ey

2200LVP

\

I |

PLYWOOD
PALLET

9/16‘° BOLTS

(HEX HEAD) << %‘

FIGURE 7-1 2200LVP PACKAGING

7-2

7.4 CABINET LEVELING PROCEDURE

Cabinet leveling and subsequent equipment power-on checkout procedures

should not be performed until the unit is in its final operating location.

Cabinet leveling consists of adjusting the four leveling-pad screw bolts

(1located on the under side of the cabinet assembly, next to each wheel

caster--ref: FIGURE 7-2) as necessary to support the unit off its wheel

casters and in level alignment with adjacent peripherals. A bubble level is

desirable to confirm the final level setting but is not necessary for adequate

performance of this procedure.

1.

Move the unit to its permanent location.

Turn the leveling pads counterclockwise (down) until they support the

full weight of the unit, which must be held off all wheel casters.

Coarse-adjust the leveling pads to align the unit with adjacent

equipment, ensuring that the unit remains off all wheel casters.

Once the coarse-adjustment alignment appears satisfactory,
fine-adjust the leveling pads as necessary to further level the unit
to a solid, maximum-stability condition, with no rocking motion
detectable when pushed. If any sort of bubble level is available,
place the level on the top cover of the cabinet assembly and then

level the unit, both front-to back and side-to-side.

7-3

BOTTOM OF LEVELER WHEEL
CABINET CASTER

FIGURE 7-2 LEVELING-PAD SCREW BOLTS

NOTES

7-5

NOTES

7-6

section.

SECTION 8

INSTALLATION

Following is a list of documentation categories referenced by this

In many cases, documentation from these categories is required to

ensure correct installation of a 2200LVP system.

MODEL 2236MXD MULTIPLEXER/CONTROLLER -- IV.B.1

MODEL 22C32 TRIPLE CONTROLLER -- IV.B.1

I/0 CONTROLLERS: SETTING DEVICE ADDRESS SWITCHES -- IV.B.1
I/0 CONTROLLERS: PART #'S & I/0 CABLE CONNECTION -- IV.B.1
I/0 CABLE CONNECTOR INSTALLATTION -- I.B.O

2236DE INTERACTIVE TERMINAL -- III.D.1

DISK DRIVES -- IIT.A.11 AND III.A.12

PERIPHERALS -- Appropriate categories

PRE-INSTALLATION INSPECTION

1.

Be certain that the customer site has been prepared according to the
guidelines referenced in SECTION 6, and then place the LVP unit in
its assigned physical location, and perform the cabinet leveling

procedure (ref: Section 7.4).

Remove the top cover from the cabinet assembly (ref: SECTION 11).

Remove the cover from the CPU chassis subassembly (ref: SECTION 11).

Inspect the CPU chassis and the entire cabinet assembly for damaged
or loosened aasemblies. Also check for loose hardware or debris. If
any shipping damage is noted, notify the WLI Distribution Center
(Department 90), Quality Assurance Department, of the nature and
extent of the damage, making arrangements for equipment replacement,

as necessary.

Ensure that the unit is thoroughly clean. Use a soft bristle brush
and a vacuum cleaner to remove dust from the inside of the unit. Use
a mild detergent and a soft cloth or sponge to remove dirt and grime

from the cabinet. Do not use abrasive or corrosive chemicals.

8.2 INITIAL SETUP
This section consists of:
-- photographs in which the major components of the 2200LVP are pointed

out--to familiarize the Customer Engineer with the physical aspects
of the LVP.

-- photographs of the circuit boards (CPU and DPU) showing PROM numbers
and locations, switch settings, and component loading for the various

versions of the same board (memory).

-- an explanation (with photographs) of the units internal cable

connections.

-- references to the appropriate documentation categories that deal with

equipment associated with (normally included with) the LVP system.

Section 8.3 (Installation and Power-On Procedures) helps link together

the various information items contained in this section.

8-2

POWER-ON FIXED-DISK DRIVE
INDICATOR (BEHIND FRONT PANEL)

DSDD
DISKETTE AC POWER
DRIVE SWITCH

FIGURE 8-1 2200LVP (FRONT VIEW)

8-3

EXPANSION 31/0 CPU/DPU
CAPABILITY SLOTS

BACK POWER AC POWER
PANEL SUPPLY CORD

FIGURE 8-2 2200LVP (REAR VIEW)

8-4

FIXED-DISK EXPANSION DSDD
DRIVE CAPABILITY DISKETTE
DRIVE

FIGURE 8-3 2200LVP (INSIDE VIEW)

8.2.1 2200LVP CIRCUIT BOARDS (W/LAYOUT)

FIGURE 8-4 WL NO. 210-7587-1B DATA MEMORY (32K)

BOTH
ROWS
LOADED

FIGURE 8-5 WL NO. 210-7587-1A DATA MEMORY (64K)

ALL
ROWS
LOADED

FIGURE 8-6 WL NO. 210-7587-3A DATA MEMORY (128K)

ool ammEmal
SR RN RRDl | .

ROWS
LOADED

FIGURE 8-7 WL NO. 210-7588-1A CONTROL MEMORY (32K)

8-7

BOOTSTRAP PROMS

L2Y L28 L27 .
WL NO. WL NO. WL NO.
378-2047R2 378-2046R2 378-2045R2

PROM REVISIONS SHOULD
BE R2 OR ABOVE

FIGURE 8-8 WL NO. 210-6789-A MEMORY CONTROL

8-8

6790 INSTRUCTION COUNTER

FIGURE 8-9 WL NO. 210

6791 STACK

210-

-10 WL NO.

FIGURE 8

8-9

FIGURE 8-11 WL NO. 210-6792 ALU

FIGURE 8-12 WL NO. 210 -6793-1 REGISTERS

-

SWITCH NO.

ADDRESS

DEVICE
SWITCH

C—T e

N —

C—T—s
SW1

10
20
40
80

FIGURE 8-13 WL NO. 210-7694 2200/DISK INTERFACE (DPU)

8-11

L3

WL NO.
378-2560
(SINGLE
DENSITY
DISKETTE)

L2

WL NO.
378-4225
(DOUBLE
DENSITY
DISKETTE)

L1

WL NO.
378-4224
(FIXED-
DISK
DRIVE)

FOR POWER-ON DIAGNOSTIC—MUST BE ON =

SWITCH
SIGNIFICANCE

SWITCH
SETTING

-3 ON

L —T 11 +4-on

OFF IF 8 MB FIXED DRIVE=4= [T 12 —4— SEE SIGNIFICANCE
FOR POWER-ON DIAGNOSTIC—MUST BEON == [T __]3—4—ON
OFF IF 2 OR 4 MB FIXED DRIVE == [T —7 4 4— SEE SIGNIFICANCE
UNUSED-MUST BEON—— [T 150N
OFF IF DSDD DRIVE IN UNIT— T 16 +—oOrr
UNUSED—MUST BEON—— C—T] 7—4—ON
ON TO CERTIFY FIXED PLATTER(S) DURING FORMAT == [C—T 18 4+ON

(IF OFF, ONLY OPERATION THAT CAN BE PERFORMED

IS FORMAT WITHOUT CERTIFICATION)

L29

WL NO.
378-4220

(2 OR 8§ MB
DISK DRIVE)

L29 L.28

WL NO. WL NO.
378-4221 378-4222
(4 OR 8§ MB

DISK DRIVE)

L27
WL NO.
378-4223

L26

WL NO.

378-
(POWER-ON
DIAGNOSTIC)

(1183 ¢d

SW1

FIGURE 8-15 WL NO. 210-7696-A MICROCOMPUTER/MEMORY (DPU)

8-13

7698-R0

COMPONENT
SIDE

J5 U4 U3 "
=== il
L’i—:’.‘:‘ ‘:__'? 424V
g G " '

l]HE_(:IS

)
3
2
=
3
S
A

"

T om:

L]] ome

»

N
2
F

B e IYR

T v
S

n

v

e

T T e e

Lo

v

“

i

1.

1]

e

[[—: —

L

TN

=
=7

", 5

POWER SUPPLY DC VOLTAGE
TEST POINTS (ACCESSIBLE
FROM CIRCUIT SIDE OF PCB)

FIGURE 8-16 CIRCUIT BOARD LAYOUT AND VOLTAGE TEST POINTS

210-7694
210-7696-A
210-7695-A
210-6793-1

210-6792

210-6791

210-6790
210-6789-A
210-7588-1A
EXPANSION
210-7587-\\
EXPANSION

8.2.2 2200LVP POWER SUPPLY-TO-CPU-TO-DISK POWER CABLE CONNECTIONS

CPU Motherboard-to-Power Supply DC Power Harnesses

The harness (WL #220-1428) connected to CPU motherboard jacks J3-J5
(ref: FIGURE 8-17) attaches to the 6-pin Mat 'N' Lock connector on the
power supply (ref: FIGURE 8-18).

The harness (WL #220-1427) connected to CPU motherboard jack J1 (ref:
FIGURE 8-17) attaches to the 10-pin Molex connector on the power supply
(ref: FIGURE 8-18).

CPU Motherboard-to-Disk Drives DC Power Harness

The harness (WL #220-1405) connected to CPU motherboard Jack J2 (ref:
FIGURE 8-17) attaches to jack JS5 on the DSDD diskette drive (ref: FIGURE
8-19), and to jack JS on the fixed-disk drive (ref: FIGURE 8-19). (Both
drive connector ends of the cable are identical--they may be

interchanged.)

Disk Drive AC Power Cords

The two disk drive ac power cords (WL #220-0251) from the power
supply (ref: FIGURE 8-20) attach to jack JU4 on the DSDD diskette drive

(ref: FIGURE 8-19), and to jack J4 on the fixed-disk drive (ref: FIGURE
8-19).

Fan Cord

The fan cord (WL #220-1425) from the power supply (ref: FIGURE 8-18)

attaches to the fan cord (WL #220-1424) from the CPU chassis (ref: FIGURE
8-18).

8.2.3 DISK DRIVE I/0 CABLE CONNECTIONS

A 50-pin ribbon

connector 1 to jack

A 50-pin ribbon

connector 2 to jack

A 20-pin ribbon

connector 3 to jack

cable (WL #220-3119) connects CPU motherboard
J1 on the DSDD diskette drive (ref: FIGURE 8-21).

cable (WL #220-3119) connects CPU motherboard
J1 on the fixed-disk drive (ref: FIGURE 8-21).

cable (WL #220-3118) connects CPU motherboard
J2 on the fixed-disk drive (ref: FIGURE 8~21).

-

CPU MOTHERBOARD-
TO-DISK DRIVE

DC POWER HARNESS (J2)
WL NO. 220-1405

»

(J3-J5) Jnp NOTE: UNIT SHOWN ON
WL NO. 220-1428 WL NO. 220-1427 END FOR CLARITY

CPU MOTHERBOARD-
TO-POWER SUPPLY DC
POWER HARNESSES

FIGURE 8-17 CPU MOTHERBOARD POWER CABLE CONNECTIONS

*FAN CORDS
WL NO. 220-1424
WL NO. 220-1425

10-PIN
MOLEX

6-PIN
MAT 'N’ LOCK

CPU MOTHERBOARD-
TO-POWER SUPPLY DC
POWER HARNESSES
WL NO. 220-1427

WL NO. 220-1428

*FAN CORD CONNECTION IS MADE ON
BACKSIDE OF CPU CHASSIS—NOT
FRONTSIDE AS MAY BE INDICATED.

FIGURE 8-18 POWER SUPPLY CABLE CONNECTIONS

8-18

(I HOLIIANNOD
MAVOdYIHILOW
Nd) WOdAD)
611€-077 "ON "IM
(1) 414V 0/1

(T AAVO4AAHLOW
Nd) WO
SOVI-0TT "ON 'IM
(5r) SSUNYVH
dAMO0d Dd

SNOLLIANNOD ATdVD O/1 ANV dAMOd AATIA MSIA 61-8 AANODIA

ALIAVID 404 ANA NO NMOHS SAATIA “ALON

(T AYVOHATHLOW
Nd) WO¥A)
SOV1-07T "ON TM
(S1) SSANYVH
AAMOd DA

(A'1ddNS YIMOd INOYD)

JATdA IST0-077 "ON "IM
ALLINSIA rr) Ad0D
aasa JIMOd IV

(€ JOLIINNOD

IAVO4YTHLONW
ndd WO¥A) \
811€-077 "ON "TM . ,._\v_mc
@) 414V 0/1 ASTA-AAXI1A

(A'Idd NS YIMOd WOUA)
1§70-07T "ON "IM

(rr) Ayod

YAMOd IV

(THOLIANNOD
(TIVO4YIHLOW
Nd) WOdA)
611€-077 "ON 'IM
(Ir) 114V 0/1

bra4

SATAV) ATddNS ¥AMOd 07-8 HANODIA

“077 "ON 'IM
YOI NVI

SMAYDS
ONINALSVA
JOLVINHAY

3

1570077 "ON "TA
SAYO0I YIMOd OV
JATIA ASIA

(Sr-11) SNOLLYANNOD
JOLVINDAI-OL-ATddNS
YAMOd TYNIALNI

FINED-DISK
DRIVE

J1

MOTHERBOARD
CONNECTOR 3

20-PIN

RIBBON

CABLE

WL NO. 220-3118

50-PIN

RIBBON

CABLE

WL NO. 220-311Y

DSDD
DISKETTE
DRIVE

J1

50-PIN

RIBBON

CABLE

WL NO. 220-3119

MOTHERBOARD
CONNECTOR 1

MOTHERBOARD
CONNECTOR 2

FIGURE 8-21 DISK DRIVE I/0 CABLE CONNECTIONS

8-21

8.2.4 2200LVP POWER SUPPLY AC INPUT VOLTAGE SELECTION

There are two models of the 2200LVP power supply--one for 50 hertz
applications and one for 60 hertz applications. The ac input voltage for both
power supplies is switch selectable. The 115/230 input voltage selection
switch is located on the rear of the power supply assemblies (ref: FIGURE

11-1). Be certain that the switch is positioned correctly for the supplied ac
voltage.

8.2.5 2236MXD MULTIPLEXER/CONTROLLER

Refer to documentation category IV.B.1 for information concerning switch

settings, PROM loading, etc.

8.2.6 22C32 TRIPLE CONTROLLER

Refer to documentation category IV.B.1 for information concerning switch

settings, PROM loading, etc.

8.2.7 1I/0 CONTROLLERS

Refer to documentation category IV.B.1 for information concerning switch

settings, PROM loading, etc.
8.2.8 2236DE INTERACTIVE TERMINAL
Refer to documentation category III.D.1 for information concerning

unpacking, initial setup, adjustments, off-line diagnostic tests, system

interconnection etc.

Refer to documentation category IV.B.1 for additional information

concerning system interconnection.

8.2.9 DISK DRIVES

Refer to documentation categories TIII.A.11 and III.A.12 for information

concerning initial setup, adjustments, off-line diagnostic tests, etc.

8-22 °

9

8.2.10 PERIPHERALS

Refer to appropriate documentation categories for information concerning

unpacking, initial setups, adjustments, off-line diagnostic tests, system

interconnection etc.

Refer to documentation category IV.B.1 for additional information

concerning system interconnection.

8.3 INSTALLATION AND POWER-ON PROCEDURES

1.

3.

Ensure that the CPU power supply ac input voltage selection switch is

positioned correctly for the supplied ac voltage (ref: Section 8.2.4).

Check to see that all power supply-to-CPU-to-disk power cables are

firmly attached to the appropriate connectors (ref: Section 8.2.2).

Be certain that the CPU ac power switch (ref: FIGURE 8-1) is OFF, and
then plug the CPU ac power cord in.

Check to see that all circuit boards are properly seated in their
appropriate locations, and that all switches are set correctly (ref:

Section 8.2).

Ensure that the DSDD diskette drive and the fixed disk are connected
to the appropriate I/0 jacks on the CPU chassis motherboard (ref:
Section 8.2.3).

Remove the shipping diskette from the DSDD Diskette Drive. (Save the

diskette for use when reshipping the drive/unit.)

Remove the shipping clamp that secures the Fixed-Disk Drive ac
spindle motor. (This clamp is located on the side of the drive
opposite the circuit board.) Save the clamp for use when reshipping

the drive/unit.

8-23

10.

11.

11.

12.

13.

14,

Remove the spring clip that prevents the Fixed-Disk Drive head
actuator damper from rotating. The spring clip fastens the tab on
the actuator damper to the track 00 photocell. The damper can be
readily identified by the yellow CAUTION label attached to it. Save

the clip for use when reshipping the drive/unit.

Turn the CPU ac power switch ON, then check and adjust, if necessary,
all CPU power supply voltages (ref: SECTION 11).

Turn the CPU ac power switch OFF.

Attach all system terminals and peripherals (ref: Section 8.2).

NOTE :

If peripheral I/0 cables are routed through conduit,
ceilings, walls, or floors, it will be necessary to
install amphenol connectors on the ends of those
cables. The procedure for amphenol connector

installation is documented in category I.B.O.

Turn the terminal ac power switch(es) ON; turn the CPU ac power

switch ON; turn the ac power switches of all peripherals ON.

At this point, the terminal connected to MXD channel #1 should have
the "MOUNT SYSTEM PLATTER--PRESS RESET" prompt displayed (ref:
SECTION 3). If this message is not displayed (possibly due to a
malfunction), turn the CPU ac power switch OFF. After 2 or 3
seconds, turn the switch back ON. If the message is still not
displayed, refer to SECTIONS 3 and 12.

After the power-on prompt is displayed, insert the 2200LVP Operating
System diskette (WL #704-0002) into the DSDD diskette drive, and then

press RESET on the keyboard of terminal #1.

The prompt "KEY SF'?" should now be displayed (ref: SECTION 3). If
this message is not displayed, refer to SECTIONS 3 and 12.

8-24

15.

16.

17.

18.

19.

20.

21.

22.

23.

After the "KEY SF'?" prompt is displayed, load and run the LVP User
and Field Service diagnostics (ref: SECTION 9). If the system will
not load diagnostic programs, refer to SECTIONS 3 and 12. If any

diagnostic errors occur, refer to SECTION 12 for interpretations.

After successful completion of all Microcode diagnosties, load
BASIC-2 (ref: SECTION 3), and configure the system such that all
terminals evenly share the available user memory (ref: SECTION 4).

(Edit the Master Device Table so that it is correct for the user's

peripherals.)

When the system configuration has been generated, load and run the

BASIC-2 Language diagnostics (ref: SECTION 9).

Upon completion of the BASIC-2 diagnostics, load and run the
appropriate peripheral diagnostics (ref: SECTION 9).

After all peripherals are proven to be operational, format the
fixed-disk drive by loading and running the format utility program

"@FORMAT" (resident on the Operating System diskette).

When formatting has been completed, load and run the disk diagnostiecs

(ref: SECTION 9).

Check all DSDD Diskette Drive adjustments/alignments to ensure that

they are correct (ref: documentation category III.A.11).

Verify that all DPU adjustments are correct (ref: Section 11.3).

The system is now ready for customer use.

8-25

NOTES

8-26

SECTION 9
DIAGNOSTICS

Following is a list of documentation categories referenced by this
section. Diagnostic information in these categories is required to fully test
a 2200LVP system.

2200LVP CPU, any disk drives, and any peripherals -- IV.C.1
DPU -- IV.A.3

2236DE Terminal -- III.D.1

CPU Diagnostics

There are three classes of diagnostic tests available for the 2200LVP
CPU: 1) "BOOTSTRAP" diagnostics (resident in the 2200LVP firmware), 2)
Microcode diagnostics (contained on the 2200LVP Operating System diskette),
and 3) BASIC-2 Language diagnostics‘(available on diskette). Refer to SECTION
3 of this manual for an explanation of the BOOTSTRAP diagnostics. Refer to
documentation category IV.C.1 for information concerning the Microcode and

BASIC-2 Language diagnostics.

DPU Diagnostics

The Disk Processing Unit has a built-in power-on diagnostic. If a
failure is detected, the activity LED in the door latch release button of the
DSDD Diskette Drive will blink on and off. As of July, 1980, the diagnostic
program and the DPU boards are not finalized. Refer to documentation category

IV.A.3 for later developments on this system element.

Terminal Diagnostics

Refer to documentation category III.D.1 for information concerning 2236DE

Terminal power-on diagnostics.

Disk Diagnostics

Refer to documentation category IV.C.1 for information concerning Disk
diagnostics.

Peripheral Diagnostics

Refer to documentation category IV.C.1 for information concerning

Peripheral diagnostics.

9-2

aH

NOTES

9-3

NOTES

9-U4

-

SECTION 10
PREVENTIVE MAINTENANCE

To ensure trouble-free operation the 2200LVP must have periodic
preventive maintenance (PM), consisting of inspection, cleaning, and
ad justments. Since the DSDD Diskette Drive requires PM once a year minimally,
that becomes the minimum criteria for the LVP mainframe. Certain peripherals
attached to the LVP mainframe may require more frequent PM. Therefore, refer

to documentation category I.A.4 for information concerning PM for the 2200LVP
CPU.

10-1

NOTES

10-2

SECTION 11
REMOVAL/REPLACEMENT AND ADJUSTMENT PROCEDURES

11.1 RECOMMENDED TEST EQUIPMENT/TOOL LIST

1.

Digital Voltmeter (WL #726-9595), with an accuracy of at least + 1%
of full scale, and 1 mv resolution factor. Analog Multimeters have

accuracy and resolution factors that are unacceptable for certain
critical measurements.

Acceptable Type/Equivalent: FLUKE #8000A
Multimeter, 20,000 ohms/volt (minimum); 2% or better full scale
accuracy; for less critical measurements.

Acceptable Type/Equivalent: TRIPLETT VOM #630NA

Oscilloscope, with two X1 probes and two X10 probes.
Acceptable Type/Equivalent: TEKTRONIX #465

Heavy duty magnetic screwdriver with well-insulated handle (WL
#726-9411).

Small screwdriver with insulated shank (WL #726-9406).
5/16" nut driver (WL #726-9473).
Nut driver handle (WL #726-9478).

A lU-inch length of jumper wire.

11-1

11.2 CPU VOLTAGE CHECK/ADJUSTMENT PROCEDURE

1. Turn the CPU ac power switch OFF.

N
.

Remove the cabinet top cover (ref: Section 11.4.1).
3. Turn the CPU ac power switch ON.

4. Check the dec voltages with a digital voltmeter for the values listec
in TABLE 11-1. (The test points for monitoring the voltages are
shown in FIGURE 8-16. The test points are accessible from the
circuit side of the motherboard. To check +24V, monitor J5 pin 1 of
both the diskette and fixed-disk drives (ref: FIGURE 8-19). The
yellow wires in the CPU motherboard-to-disk drive de power harness
connect to those pins.) Adjust the trimpots where indicated in

FIGURE 11-1 to obtain correct voltage levels where necessary.

Be sure to connect the COMMON lead of the voltmeter to
a + OV connection, NOT the chassis or I/0 controller
rail. Erroneous readings will result if chassis
ground is used as the voltmeter reference. The
oscilloscope ground clip should also be attached to +

0V, NOT chassis ground.

5. Using an oscilloscope, with the vertical sensitivity set at 5V/cm,
and a X1 probe, measure the ripple at the points indicated in FIGURE
8-16. No ac ripple should be observed. If any voltage or ripple
measurement is out of specification, troubleshoot the CPU power

supply.
6. Note that when increasing RAM capacity by field conversion, or when

adding extra I/0 capabilities to the CPU, all voltages must be

rechecked and readjusted when necessary.

11-2

TABLE 11-1 DC VOLTAGE SPECIFICATIONS

VOLTAGE LIMITS

+5V1 * +4.95 to +5.05

+5V2 ** +4.95 to +5.05

+12V +11.95 to +12.05
+24v +21.60 to +26.40
-5V -4.95 to -5.05

=12V **x% -11.50 to -12.50

®* If +5V1 drops below +4.7V de, +2U4V will be shut off.

¥* 45V2 is only used in the 9 I/O-slot version of the LVP-- +5V2
supplies the last 6 I/0 slots. This voltage does not have to be
correct for the 3-slot version of the LVP.

¥%¥% _12V is not adjustable.

ST

VOLTAGE
ADJUST
POTS.

+5V2 = . .
+5V1 ¢
+12V ®-
-5\7 v

+24V
NOT USED

e,
.
T \ e

VOLTAGE
POWER SUPPLY SELECTION POWER SUPPLY
SWITCH FASTENING SCREW

FASTENING SCREW

FIGURE 11-1 POWER SUPPLY REGULATOR ADJUSTMENT POTENTIOMETERS

11.3 DISK PROCESSING UNIT ADJUSTMENT PROCEDURE

This section explains the procedure for adjusting the phase-locked loop
in the Disk Processing Unit (DPU). This adjustment should be performed

whenever a disk read/write problem is suspected.

1. Check and adjust (if necessary) the CPU power supply voltages (ref:
Section 11.2), and then turn the CPU ac power switch OFF.

2. Remove the cabinet top cover, and the CPU chassis cover (ref: Section
11.4).

NOTE:

Do not place the 210-7694 2200/Disk Interface board on

an extender board when performing this adjustment.

3. Using a U4-inch length of jumper wire, connect L8 pin 3 on the 210-7694
board to +0V (ref: FIGURE 11-2).

4. Connect the Channel 1 probe of the oscilloscope to L5 pin 1 or 2 on the
210-7694 board (ref: FIGURE 11-2).

5. Set the oscilloscope such that a +3.0V dec level can be observed. Be sure

to ground the oscilloscope probe.
6. Turn potentiometers R7 and R8 on the 210-7694 board to their midrange

points, and turn potentiometer R16 on the 210-7694 board fully
counterclockwise (ref: FIGURE 11-2).

11-5

L5
PIN3 TOV PIN 1 RS R7

L8

R16

455 %

YT ETT

FIGURE 11-2 DPU ADJUSTMENT TEST POINTS AND

-7694 BOARD

POTENTIOMETERS ON 210

11-6

7. Turn the CPU ac power switch ON.

8. Adjust R16 to obtain a +2.5V to +3.0V (preferably +3.0V) dc level (ref:
FIGURE 11-2A). Some oscillation (noise) may be noticed. Adjust R16 until
the oscillation is minimized and the dec level is between +2.5V and +3.0V.

(Lowering the dc level reduces the amount of oscillation.)

FIGURE 11-2A +3.0V DC LEVEL

9. Carefully remove the jumper wire from L8 pin 3.

10. Connect the oscilloscope external trigger probe to 32 (INDEX) on the
210-7694 board (ref: FIGURE 11-2). (82 can be reached on the circuit

side of the motherboard.)

11. Set the oscilloscope as follows:
Trigger Source: External
Trigger Mode: Normal (DC)
Trigger Slope: Negative
Time Base: 100 usec/div
Vertical Sensitivity: 2V/cm
Input Coupling: DC

Ground Reference Point: Center Line

11-7

13.

14.

15.

16.

17.

Insert an Operating System diskette into the DSDD drive, and depress RESET

on the system conscle.

Depress SF'01 on the system console to load the Operating System from B10

(removable disk).

While watching the system console screen, adjust R8 until the "Loading

BASIC-2" prompt is observed (if it is not already).

13 as needed.

Repeat steps 12 and

If the Operating System will not completely load, fine tune R8 to obtain a

waveform similar to FIGURE 11-2E (located in the R8 adjustment section

following). Repeat steps 12 and 13 as needed.

FIGURES 11-2F and 11-2G

(also located in the R8 adjustment section following) show typical

waveforms when R8 is turned too far counterclockwise (FIGURE 11-2F) or too

far clockwise (FIGURE 11-2G).

NOTE :

It may be helpful to listen to the diskette retries

(heads stepping back to track

0 on a reseek) while

trying to load the Operating System. By fine tuning

R8 to reduce the number of retries, the Operating

System should load. Continue

Operating System does load.

adjusting R8 until the

After the Operating System is loaded, remove the diskette, and enter the

following program on the system console:

10 VERIFYF(X,X):PRINT".";:GOTO 10

where X

16319 if the Fixed-Disk Drive
32639 if the Fixed-Disk Drive

Depress RETURN, RUN, RETURN to load and
program verifies the last sector on the
"period" on the system console when the

message is displayed if a read error is

11-8

8127 if the the Fixed-Disk Drive is SMB

is 4MB
is 8MB

run the verify program.

(The

Fixed-Disk Drive, and prints a

operation is completed.
detected.)

An ERROR

18. Adjust RT to obtain a waveform similar to FIGURE 11-2B. Adjust RT7 to
minimize noise, as in FIGURE 11-2B. FIGURES 11-2C and 11-2D show typical
waveforms when R7 is turned too far counterclockwise (FIGURE 11-2C) or too

far clockwise (FIGURE 11-2D).

NOTE:
If R7 is adjusted properly, FIGURE 11-2B will be
observed, and the "periods" (.) from the verify
program in step 16 will be displayed at a constant
rate of speed. If R7 is turned in either direction
(CW or CCW) until a verify ERROR occurs, either FIGURE
11-2C or 11-2D will be observed (dependent on
direction). Watching the rate at which the "periods"
(or the "ERRORs") are being displayed may help in
setting R7 correctly. It may be helpful to
purposefully create errors (by turning R7 to its
extremes) in order to see what the waveform (noise)

looks like when R7 is maladjusted.

19. When it appears that R7 is adjusted properly, change the oscilloscope

Vertical Sensitivity to 1V/cm.

FIGURE 11-2B R7 ADJUSTED PROPERLY

FIGURE 11-2D R7 SET TOO FAR CLOCKWISE

11-10

Ll

20.

21.

22.

23.

24,

25.

Carefully (slightly) turn R7 in both directions (CW and CCW) taking note

of the exact amplitudes where the signal starts to become noisy. (There

will be about a .6V difference between the amplitudes.) Adjust RT7 such

that the waveform amplitude is in the middle of this .6V range.

After RT is set properly, verify the entire fixed disk to ensure complete
operation of the DPU. (Actually, the only way to guarantee complete
operation is by formatting--with certification--the fixed disk. IF, AND
ONLY IF, THE CUSTOMER WILL ALLOW THIS, then do so.

CAUTION:
If R7 appears to be adjusted properly (ref: FIGURE
11-2B), yet verify ERRORs still occur, the fixed-disk
drive--or the disk sector that is being verified--is
probably bad. Verify some other sectors on the
fixed-disk to determine whether the drive or the

platter is bad.

Insert a known-good, formatted diskette into the DSDD drive, and then

enter the following program on the system console.

10 VERIFYR(3977,3977):PRINT".";:GOTO 10

Depress RETURN, RUN, RETURN to load and run the verify program. (The
program verifies the last sector on the DSDD Diskette Drive, and prints a
"period" on the system console when the operation is completed. An ERROR

message is displayed if a read error is detected.)

Set the oscilloscope Vertical Sensitivity to 2V/cm.

Adjust R8 to obtain a wave form similar to FIGURE 11-2E. Adjust R8 until
noise on the waveform is slight, as in FIGURE 11-2E. FIGURES 11-2F and
11-2G show typical wave forms when R8 is turned too far counterclockwise
(FIGURE 11-2F) or too far clockwise (FIGURE 11-2G). (It may be possible
to adjust R8 such that a waveform that has less noise than the one shown
in FIGURE 11-2E is obtained. However, errors may occur at this setting,
because the adjustment of the loop will be too close to the "noise

limit"--the point where the clean waveform begins to break up).

11-11

NOTE:
If R8 is adjusted properly, FIGURE 11-2E will be
observed, and the "periods" (.) from the verify
program in step 22 will be displayed at a constant
rate of speed. If R8 is turned in either direction
(CW or CCW) until a verify ERROR occurs, either FIGURE
11-2F or 11-2G will be observed (dependent on
direction). Watching the rate at which the "periods"
(or the "ERRORS") are being displayed may help in
setting R8 correctly. Again, it may be helpful to
purposefully create errors (by turning R8 to its
extremes) in order to see what the waveform (noise)

looks like when R8 is maladjusted.

26. After R8 is set properly, verify the entire diskette to ensure complete
operation of the DPU.

FIGURE 11-2E R8 ADJUSTED PROPERLY

11-12

]

FIGURE 11-2F R8 SET TOO FAR COUNTERCLOCKWISE

[—— T —————— T T

| Qoontt

S— N S

L)

RSN S S Sl

]

FIGURE 11-2G R8 SET TOO FAR CLOCKWISE

11-13

11.4 REMOVAL/REPLACEMENT PROCEDURES
1.4 CABINET TOP COVER

1. Using a 5/16" nut driver (WL #726-9473), remove the two screws (ref:
FIGURE 11-3, items A) from the rear-underneath sides of the top cover.

2. Lift the top cover out of the two snap locks (ref: FIGURE 11-4) and
off the unit.

11.4.2 CABINET BACK PANEL

Remove the four screws (ref: FIGURE 11-3, items B) securing the back

panel and remove that panel.
11.4.3 CPU CHASSIS COVER

Remove the four screws (ref: FIGURE 11-3, items C) securing the CPU

chassis cover and remove the cover.
11.4.4 CPU CHASSIS
1. Remove the cabinet top cover (ref: Section 11.4.1).
2. Disconnect the fan cord (ref: Section 8.2.2).
3. Disconnect the power-on LED cable.

4. Disconnect the three disk drive I/0 ribbon cables (ref: FIGURE 8-21)
from the CPU motherboard.

5. Disconnect the two CPU motherboard-to-power supply dc power harnesses

(ref: FIGURE 8-18) from the power supply.

6. Disconnect the CPU motherboard-to-disk drive de power harness (ref:
FIGURE 8-17) from the CPU motherboard.

T. Remove the four screws (ref: FIGURE 11-3, items D) securing the CPU

chassis and 1ift the chassis out of the cabinet.

11-14

11.4.5 POWER SUPPLY
1. Remove the cabinet back panel (ref: Section 11.4.2).
2. Disconnect the fan cord (ref: Section 8.2.2).

3. Disconnect the two disk drive ac power cords (ref: FIGURE 8-19) from

the disk units.

4. Disconnect the two CPU motherboard-to-power supply dec power harnesses
(ref: FIGURE 8-18) from the power supply.

5. Remove the two screws (ref: FIGURE 11-1) from the rear sides of the
power supply and pull the power supply (from the rear) out of the
cabinet.

11.4.6 POWER SUPPLY COVER

Remove the screws securing the power supply cover and remove the

cover.

11.4.7 POWER SUPPLY REGULATOR

1. Remove the power supply and power supply cover (ref: Sections 11.4.5
and 11.4.6).

NOTE:

There are two 3-pin connectors (J3 and J5) on the
regulator board. Note the orientation of the two
cables connected to these jacks before performing the
following step. When installing a regulator, refer to
the interconnection diagram in Appendix C to ensure

that the correct cable is connected to each of these
jacks.

2. Disconnect the power harnesses attached to regulator board Jjacks
J1-J5 (ref: FIGURE 8-20).

3. Remove the screws (ref: FIGURE 8-20) securing the regulator board to
the power supply chassis and remove the regulator board.
11-15

11.4.8 DISK DRIVES

NOTE :
Refer to documentation categories III.A.11 (SA851) and
ITI.A.12 (SA1000) for information concerning disk

drive handling procedures.

1. Remove the cabinet top cover (ref: Section 11.4.1).

2. Disconnect the two ac power cords (ref: FIGURE 8-19) from the disk

drives.

3. Disconnect the dc power harnesses (ref: FIGURE 8-19) from the disk

drives.

y, Disconnect the I/0 ribbon cables (ref: FIGURE 8-19) from the disk

drives.

CAUTION:
Be careful not to damage the motherboard when

performing the following step.

5. Remove the 5/16" screws (ref: FIGURE 11-5) from the rear of the drive

mounting plates and 1ift the drives back, up and out of the cabinet.

6. When replacing a disk drive, insert the plastic mounting/guide block,
located on the bottom of the drive, into the mounting hole in the
cabinet shelf, and then push the drive toward the front of the

cabinet until the drive is seated properly and the fastening-screw
holes line up.

11-16

FIGURE 11-3 FASTENING SCREW

11-17

FRONT OF
TOP COVER

SNAP-LOCK STUD

FIGURE 11-4 TOP COVER SNAP-LOCKS

11-18

-

FASTENING
SCREWS

FIGURE 11-5 DISK DRIVE FASTENING SCREWS

11-19

NOTES

11-20

12.1

SECTION 12
TROUBLESHOOT ING

GENERAL

This section provides troubleshooting aids that will be helpful in

identifying the more common 2200LVP faults. Use a logical approach to

troubleshoot the system: observe the problem symptoms carefully, and then

isolate the problem by logical deduction.

NOTE:

Be certain to verify or install all required ECN's.

From a system standpoint, troubleshooting the CPU involves a relatively

simple procedure. The following steps should be performed.

1.

Remove all peripheral controllers from the CPU. Check the address
switch settings (ref: SECTION 8). Ensure that all cables from
peripherals to controllers are correct and secured. Replace only the
2236MXD and the disk controllers(s). Check all voltages for proper
levels (ref: SECTION 11). If the problem persists, continue with
ROUTINE A (in Troubleshooting Flowchart to follow in this section).

Otherwise continue with step 3.

If the problem persists, replace each board presently in the CPU (and
I/0) with a known good board (latest E-REV) until the problem
disappears (never rule out the possibility of mutiple problems). If

the problem still persists, there may be a software problem.

Once the problem has been removed, run all System and BASIC-2
Diagnostics. If any further errors are discovered from these
diagnostics, follow the procedures outlined in the 2200LVP

Troubleshooting Flowchart (following). Otherwise, continue with step
5.

12-1

4. Replace only the suspected bad peripheral controller with a known
good one in the CPU. 1If the problem recurs and appears to be in the
peripheral, troubleshoot that peripheral according to the procedures

given in the specific maintenance manual for that peripheral.
5. Plug all peripheral controllers into the CPU and recheck all

voltages. Run all system and peripheral diagnostics to ensure that

the system operates properly in its final configuration.

The 2200MVP Troubleshooting Flowchart, starting on the next page,

presents a logical approach to troubleshooting the system.

12-2

2200 LVP TROUBLESHOOTING FLOWCHART

ROUTINE A

For any SYSTEM ERROR message, go Go to ROUTINE B

directly to ROUTINE B.

Does the system power-on message

(MOUNT SYSTEM PLATTER CR/LF PRESS No Go to ROUTINE C.

RESET) appear?

Does each file load and run when

selected by the SF’ key in response No Go to ROUTINE D. >
to the KEY SF’ message?

Yes
Does the BASIC-2 diagnostic load No Go to ROUTINE,_Ei,

and run?

If problem does not fall into one

of the above general conditions,

then continue with step 2 (page 12-1).

12-3

ROUTINE B

Yes

Is this a PECM error? Note the failing location and go to

ROUTINE 1.

Is this a PEDM error? Note tne 1ai1ng iocation and go to

ROUTINE 2.

Is this a VECM error? Note the failing location and go to

ROUTINE 3.

No

Y

Is this a DISK error?

Yes Note error number and follow the

recovery procedures for that error
(ref: Section 3.2.3.3). If error
No

persists, go to step 2 (page 12-1).

Y
There are no other SYSTEM
ERRORS. Reappraise the

problem and return to

To ROUTINE A

12-4

ROUTINE C

Does any portion of the MOUNT

Y
SYSTEM PLATTER CR/LF PRESS e Go to ROUTINE 4.
RESET
message appear?
Is display filled with Yes Go to ROUTINE 5 -~

miscellaneous characters?

Troubleshoot display unit and

return to ROUTINE A.

To ROUTINE A

-

12-5

ROUTINE D

Make sure the address

for the SF' key and

Replace 7592 PC in 2236DE terminal.

If trouble persits, change 6793-1.

Does SF' key number

If trouble still persists,
appear on CRT?

troubleshoot keyboard and go to step

2 (page 12-1).

< To step 2 (page 12-1)

Does file load (comment displayed) ? I

Yes No

No

Does the'KEY SF'?!

message reappear?

Replace disk controllers/

Make sure correct SYS-

TEM PLATTER is properly troubleshoot disk (disk

mounted in disk and key not being enabled) and

the desired function

return to ROUTINE A.
N
key again. If trouble
persists, replace disk

controllers/troubleshoot disk.

Y

Go to step 2
Does file run ? No

(page 12-1)

Follow procedures for

that file and return

to ROUTINE A.

To ROUTINE A <&

< |

12-6

ROUTINE E

Make sure the BASIC-2 diagnostic
platter is properly mounted in

the desired disk drive.

No
| Does the file load ?

Yes

Y

N
I Does the file run? I 0

Yes

Troubleshoot the disk and return

to ROUTINE A.

Y

If any of the tests fail, go

to step 2 (page 12-1), otherwise

go to step 5 (page 12-2).

To Step 2 or Step 5
(page 12-1. or 12-2)

-

To ROUTINE A

-

12-7

ROUTINE 1

Is failing location between

8000-83FF?

Y

Replace the 7588 CM board.

No

Turn power off, then on. If
trouble persists, change the 6789 PC

board. If problem still persists, go

to step 2 (page 12-1).

Return to ROUTINE A.

Does error still occur?

Load and run Control Memory

diagnostics.

y

Go to step 2

. No
l Did any errors occur? l

Yes

y

Follow error recovery pro-

cedures for that diagnostic

and return to ROUTINE A.

-«
To ROUTINE A

-

(page 12-1).

12-8

ROUTINE 2

Replace the 7587 DM board

Does PEDM still occur? No

Return to ROUTINE A.

Load and run Data Memory

diagnostics.

Did any errors occur?

No

Go to step 2
(page 12-1).

-€

Follow error recovery procedures for
that diagnostic and return to ROUTINE
A.

To ROUTINE A
-€

12-9

ROUTINE 3

Is failing location between Turn power off, then on. If

8000-83FF? trouble persists, change the 6789 PC

board. If problem still persists, go

to step 2 (page 12-1).
- R

Change the 7588 CM board.

To Step 2

-
(page 12-1).

Try to reload the file.

Does problem still exist? Return to ROUTINE A.

Load and run Control Memory

diagnostics.

Did any errors occur? Follow error recovery procedures

for that diagnostic and return to

ROUTINE A.

Load and run the CPU

diagnostic.

Y

Go to step 2
I Did any error occurs? } Yes .
(page 12-1).

No

Y

Replace disk controller. If

trouble persists, troubleshoot
To ROUTINE A

disk and return to ROUTINE A.

12-10

L]

ROUTINE 4

Does 'MO' appear on CRT?

Does "MOU' appear on
CRT?

Does ' MOUN' appear on
CRT?

Does "MOUNT ' appear
on CRT?

Does 'MOUNT (space)'
appear on CRT?

Does '"MOUNT S' appear
on CRT?

Does '"MOUNT SY' appear
on CRT?

Does '"MOUNT SYS' appear
on CRT?

Does 'MOUNT SYSTEM '
appear on CRT?

Does '"MOUNT SYSTEM'
PLATTER CR/LF PRESS
RESET’ appear on CRT?

Replace 6789, 6790, 6791.

Replace 6791, 6790.

Replace 6792, 6793-1, 6789.
This is a multiple problem
condition.

Replace 6793-1.

Replace 6790, 6791.

Replace 6791.

Replace 6792.

Replabe 6791.

Replace 6792.

Replace 6792.

v

Return to ROUTINE A.

7 If problem persists,
go to step 2 (page 12-1).

Does KEY SF' appear
when RESET is pressed?

Yes
Return to ROUTINE A.

Replace 7697.

If problem persists, troubleshoot
-« RESET lines.
-

12-11

ROUTINE 5

Is the keyboard Ready/Busy

No Assuming lamp is okay, check the

lamp on? (No keyboard access) 210-7592 in the 2236DE Terminal.

Does problem still persist ?

Replace 7697 regulator.

(Recheck voltage in CPU). Replace the 6793-1 and the 210-
7592. If trouble persists, go to
step 2 (page 12-1).
To step 2
(page 12-1).
[' R ROUT .
l Does problem persist ? F No : eturn to ROUTINE A I
Yes
Y :
Verify 2236 M XD controller address
on controller or replace 2236 M XD
controller.
Does problem persist ? No Return to ROUTINE A.)

l Replace the 6793-1 PC board. l

I. Does problem persist ? I No Go to ROUTINE A. — -

Yes

Go to ROUTINE 6.)

To ROUTINE A

-

12-12

ROUTINE 6

Is the display partially filled

with random characters but also
contains: "***SYSTEM ERROR (PEC
XXXX)*** PRESS RESET”’, where the

Parity Error changes each time

U power is turned on?

Replace 6790 (IC) Board.

Does problem still persist ?

For random displays, I/0 controiters
are most commonly at fault; the more

obvious symptoms for problem recogni-

tion are explained in ROUTINE 7A.

Replace 6791 (Stack) Board.

Does problem still persist?

Go to step 2

(page 12-1).

To ROUTINE A

Go fo ROUTINE 7A. >
No Go to ROUTINE A. >
No Go to ROUTINE A. >

-

12-13

ROUTINE 7A

AB2 may be held @+0OV.
(repair)

Can the Display be accessed?
(Symptoms of random display
characters)

Does problems still presist ?

Go
Can keyboard be accessed ? agga?re)ld ¢Lov. to
(When SF'? is displayed,
the keyboard is locked out ROUTINE
and the busy light is on -
if not accessible.) Does problem still § Yes 7B
persist? A A
'
Can disk be accessed? Ia,gl}alilsld e1ov.
(Keyboard busy light comes
on and will not extinguish
when access is attempted.) Does problem St | Yes
——— pel'SiSt ?
Yes No
Go To ROUTINE 7B.

< Return to ROUTINE A. Y

12-14

ROUTINE 7B

be accessed) ?

When power is turned on, is the following displayed ?

..... (54 exclamation points)..!!
Also, after keying RESET, is KEY!SG'?'displayed (plus, disk cannot

— —
No
(all above events occur)
OBj held @ + OV (repair)
Y
IRar_g_(_lpm_ display? Is RRGSS RGSGYV displayed when RESET is keyed'
Yes
No
| OB held @ +OV (repair) I——»
Y

16 $ characters
(Busy light is on)

Is the first line of display as follows?

$$$$535355$SSSSSTVEWWSVEWETS$SS... (37 § characters)..$$$

-< Return to ROUTINE A

¢Yes
No I
l OB3 held @ +0V (repair).}—-b

Y

No

Does problem still persist ?_J

Yes

Go to continuation of ROUTINE 7B
(next page).

L o

ROUTINE 7B) (continued)

Random display? After keying RESET one or more times, are there several
lines of ('characters along with:"***('Y /MM (MZZOZ ((XMKM (8889) (***
in display? (Busy light remains on)

Y

I OB4 held @ +OV (repair) l——»

Is the first line of display as follows ?

"0000000000000000QZPRUSSORUSLIT Z000...(32 0's)...00"

16'0 s

Y

| OBs held @ +OV (repair)l__>.

Is the first line of display as follows ?
"1*press reset-*-"

" *press reset - *No. Key SF'?_"

After keying RESET, is the following displayed ?

|0B6 held@ + OV (rj)a_ir)}—»

Return to ROUTINE A. No

y

—

Does problem still persists ? I

Yes

Go to continuation of ROUTINE 7B
(next page).

12-16

7B (continued)

Is the first line of display as follows ?
"CMOUNT'SYSTEM pp?=2"

(16 'characters)

After RESET is keyed, is the following displayed ?
mrrrververnnr AJPRESS RESETMJ ''''(32 characters...'' "

Y

| OBshelde +OV (repaﬁj——>

ESET Is keyed,"KEY SF’? is displayed but disk cannot be accessed.

Yes
No

li.*** SYSTEM ERROR (PECM 80XX) *** PRESS RESET displayed? Iil
R

Y

lOBg held@ +OV (repz:iil—»

Yes

Random display? No other symptoms.

l

| OBS held@ +0V (repair)l————>

Y

GOOD LUCK-Return to
Step 2 (page 12-1).

- Return to ROUTINE A.

Does problem still persists?_J

No

12-17

12.2 SYSTEM ERRORS

This section details all system errors (with the exception of system disk
errors) regardless of whether they normally would appear during system
initialization, the RESET function, the loading of a program, or the running
of memory diagnostics. To clarify, some system errors described in this
section (AECM, BECM, AEDM, BEDM, and REDM) do not appear in the discussion of
system errors in SECTION 3 because they normally will not occur during

initialization, RESET, or program loading.
12.2.1 CONTROL MEMORY ERRORS

When the system detects a Control Memory failure, one of the following

error messages is displayed:

AECM -- Addressing Error in Control Memory
BECM -- Bit Error in Control Memory
PECM -- Parity Error in Control Memory

VECM -- Verify Error in Control Memory

1) AECM aaaa bbbb xxxxxXx

Where: aaaa = The address of the instruction in error
bbbb = The conflicting address
XXXXXX = An XOR of the expected and actually-read instruction

This error indicates that writing to Control Memory location bbbb seems
to modify location aaaa. The "1" bits in the xxxxxx field of the display
indicate which bit(s) have been modified. The error could also occur if a

chip at location aaaa had a marginal failure.

2) BECM aaaa XXXXXX

Where: aaaa

The address of the instruction in error

XXXXXX = An XOR of the instruction actually read from memory

with the instruction that was expected to be there.

12-18

This error implies that a bit error was detected while reading Control
Memory. The "1" bits in the xxxxxx field of the display indicate which bit(s)

are incorrect.

3) PECM aaaa dddddd

Where: aaaa = The address of the instruction with bad parity.
dddddd = The instruction located at aaaa. The instruction is
reread when displayed and thus may not be the same as
N when the error occurred.

This error implies that bad parity was detected during execution of the

diagnostic. Bad parity may be the result of:
a) Bits dropped
b) Bits picked up
¢) Bad parity written
d) Bad parity-check logic

L) VECM aaaa

Where: aaaa = An address in the section of Control Memory that does

not verify correctly.

Normally, this error will only be reported when the loading of a system

program from disk into Control Memory is not successful.

12-19

12.2.2 DATA MEMORY ERRORS

When the system detects a Data Memory failure, one of the following error

messages is displayed:

AEDM -- Addressing Error in Data Memory
BEDM -- Bit Error in Data Memory

PEDM -- Parity Error in Data Memory
REDM -- Read Error in Data Memory

VEDM -- Verify Error in Data Memory

1) AEDM ss.aaaa ss.bbbb xx

Where: ss Memory bank containing the error (00 = bank #1; 40 =

bank #2; 80 = bank #3; CO = bank #U4)
aaaa = Address of the data in error
bbbb = Conflicting address
XX = XOR of the expected and actually-read data.

This error indicates that writing to location bbbb seems to modify
location aaaa. The "1" bits in the xx field of the display indicate which
bits have been modified. The error could also occur if a chip at location

aaaa had a marginal failure.

2) BEDM ss.aaaa xXyy

Where: Ss = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Address of the data in error
XXyy = XOR of the data actually read from User/Data memory
with the data that was expected to be there.
XX = Corresponds to the byte at location aaaa
yy = Corresponds to the byte at location aaaa+1

12-20

This error implies that a memory error was detected while reading
User/Data Memory. The "1" bits in the xxyy field of the display indicate
which bit(s) are not correct. If all the bits are zero, one of the two parity

bits associated with the pair of bytes read is incorrect.

3) PEDM ss.aaaa

Where: ss = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Data memory address (i.e., the current value of the

PC's) at the time of the error. This is probably, but
not necessarily, the address of the memory location

with bad parity.

This error implies that bad parity was detected during a read of 8-bit

User/Data Memory. Bad parity may be the result of:

a) Bits dropped

b) Bits picked up

c¢) Bad parity written

d) Bad parity-check logic

NOTE:
In order to determine which bit is bad, a technician
may ground L41 pin 3 on the 6789 board; this action
disables parity-error logic. If this is performed, a

different error message will be displayed.

4) REDM ss.aaaa XX

Where: sSs = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Address of the data in error
xx = XOR of the data in memory with the data that was

expected to be there.

12-21

This error implies that a memory error was detected while reading
User/Data Memory. The "1" bits on the xx field of the display indicate which
bits are not correct. If all the bits are zero, a bit in the other byte of

the pair of bytes is incorrect.

5) VEDM ss.aaaa

Where: Ss = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #U4)
aaaa = Address of the data in error

Normally, this error will only be reported when the loading of system

program constants from disk into Data Memory is not successful.

12-22

12.3 MEMORY DIAGNOSTIC ERROR INTERPRETATION

This section contains charts and explanations of how to decode the memory
diagnostic error messages (ref: Section 12.2) to point out exactly which RAM
(WL #377-0345) has failed. There is a chart and an error example for both

Control and Data Memory.
12.3.1 CONTROL MEMORY
EXAMPLE: error message--BECM 02D7 0C0000

The error was a Bit Error in Control Memory.
The address of the failing location was 02D7 (HEX).
The XOR of the expected and actually-read data was 0C0000 (HEX).

FIGURE 12-1 shows that the failing location is contained in the top two
rows of RAM's (error was between 0000 and 3FFFF (HEX)).

By inserting the XOR result (0C0000) into the blocks depicting the ROW
SECTIONS, it can be seen that row section E (located in the second row
from the top of the board) contains the faulty RAM's.

The bits that failed were 4 and 8 (from XOR--HEX(C) is equal to bits 4
and 8 ON); therefore, the bad RAM's are in the second row from the top of
the board, and are the fifth and sixth RAM's from the right side of the
board.

If the failing address was between 4000 and 7FFF (HEX), the procedure for

determining which RAM was faulty is the same as described above, except
the RAM would be located in the bottom two rows.

12-23

NOILLVLIAJUILNI 4O YT DILSONIVIA AAOWAN TOYLNOD I-71 AINOIA

SSAAAAYV INITIVL 40
d NOIL)IS MOY NI LId avd

\ (ADVSSTI
[#]9]ofr]o]o]|e——"Hu0uua woun
SNOILDAS MOY——=vVv § O a 4 d LINS3Y 40X

d44L - 0Q0F
d44€ - 0000
LHOTIM
L4
SISSTIAAV

-,
[fZes0r0c

L

12.3.2 DATA MEMORY
EXAMPLE: error message--BEDM 40.A3CY4 8204
The error was a Bit Error in Data Memory.
The failing address is located in bank #2 (40.).
The address of the failing location was A3CU4 (HEX).

The XOR of the expected and actually-read data was 8204 (HEX).

FIGURE 12-2 shows that the failing address is in the top two rows of

RAM's (error was in bank #2).

The figure also shows that the failing location is contained in the top
row of RAM's (error was between 8000 and FFFF (HEX)).

The failing address was even (A3C4); therefore, the faulty RAM('s) is

somewhere on the left side of the top row of RAM's.

The bits that failed were 2 and 80 (from first two digits of XOR--HEX(82)
is equal to bits 2 and 80 ON); therefore, the bad RAM's are in the top
row, and are the second and eighth RAM's from the left side of the board.

In this example there is one additional RAM that failed.

The last two digits of the XOR (04) indicate that bit U4 in location A3C5

(address + 1) also failed.

The corresponding RAM is in the top row, seventh from the right side (odd

address) of the board.

12-25

) ” .

NOILVLIYJITLNTI HOU YT DILSONIVIA AYJOWAIN VLIVA T-7TI 34NOIA

(I "'ON YNVH)
d44L - 0000

(I 'ONMNVY)
d444 - 0008

(T 'ON MNVH)
d44L - 0000

(T 'ON YNV
d444 - 0008

SASSIIAaAv

P

m% ;ae

.

fi

i, S, & ; ; LHOTAM

8 ov 0 0L 8 v T I d 08 o0 0Z O 8 V¥ T | —-——— L4

Aa‘dieLsel AOV89PT0
SASSIIAAY Ado SASSAIAAY NAAT

12-26

NOTES

NOTES

12-28

SECTION 13
CONVERSIONS

Refer to documentation category I.B.2 for information concerning

data-memory, and fixed-disk-drive capacity upgrades.

NOTES

13-2

SECTION 14

PARTS LIST

DESCRIPTION

Memory Control Board (CPU)
Instruction Counter Board (CPU)
Stack Board (CPU)

ALU Board (CPU)

Register Board (CPU)

Data Memory Board--32K (CPU)

Data Memory Board--64K (CPU)

Data Memory Board--128K (CPU)
Control Memory Board--32K (CPU)
2200/Disk Interface Board (DPU)
Disk Controller Board (DPU)
Microcomputer/Memory Board (DPU)
Power Supply Regulator Board
CPU/DPU Motherboard

Fixed-Disk Drive--2/4MB (60 Hz)
Fixed-Disk Drive--2/4MB (50 Hz)
Fixed-Disk Drive--8MB (60 Hz)
Fixed-Disk Drive--8MB (50 Hz)

DSDD Diskette Drive (60 Hz)

DSDD Diskette Drive (50 Hz)

DSDD Diskette (10-pack)

Fuse, 3.0A (230 VAC)

Fuse, 5.0A (115 VAC)

LED, Power-On

Bootstrap PROM #1

Bootstrap PROM #2

Bootstrap PROM #3

DPU PROM #1 (Power-On Diagnostic)
DPU PROM #2

DPU PROM i3

DPU PROM #4 (2 or 8 MB disk drive)
DPU PROM #4 (4 or 8 MB disk drive)
PLA PROM #1 (Fixed-disk drive)

PLA PROM #2 (Double-density diskette)
PLA PROM #3 (Single-density diskette)
RAM, 16K x 1-Bit Dynamic

Power Supply Chassis Assembly (60 Hz)
Power Supply Chassis Assembly (50 Hz)
Power Supply Heatsink Assembly
Transformer (60 Hz)

Transformer (60 Hz)

Transformer (50 Hz)

Transformer (50 Hz)

LVP Cabinet Assembly

CPU/DPU Card Case (3 I/0 slot)
Fan, Rotron WR2H1, 75CFM

Cable, 20-Pin Ribbon (Disk I/O)
Cable, 50-Pin Ribbon (Disk I/0)
Cable, AC Power (Disk)

Cable, Fan (From CPU/DPU Card Case)
Cable, Fan (From Power Supply)

WL #

210-6789-A
210-6790
210-6791
210-6792
210-6793-1
210-7587-1B
210-7587-1A
210-7587-3A
210-7588-1A
210-7694
210-7695-A
210-7696-A
210-7697
210-7698
278-4013
278-4013-1
278-4014
278-4014-1
278-4015
278-4015-1
177-0070-1
360-1031SB
360-1051SB
370-0031
378-20U45R2
378-20U46R2
378-2047R2
378-
378-4223
378-4222
378-4220
378-4221
378-4224
378-4225
378-2560
377-0345
270-0616
270-0616-1
270-0157
270-3153
270-3166
270-3165
270-3167
279-4122
279-0371
400-1013
220-3118
220-3119
220-0251
220-1424
220-1425

NOTES

14-2

SECTION 15

BILL OF MATERIALS

A preliminary Bill of Materials starts on the following page.

HOV3
HIV3
HOV3
HJIV3
HIV3
HJIV3
HOV3
HIV3

HJV3
HJOV3
HJV3
HI V3
HJIV3
HI V3
HJ VY3
HJIVv3
HIV3
H3V3

1334
HIV3

HJIV3
HIOVv3

1334
HIV3

HIV3
HOv3

W/ N

0000°1
600G°¢
0000°T1
0000°1
g000°¢
ggoo°t
0000°1
coo00°1

ggoo°t
0000°¢
0000°1
0000°1
0000°¢
g000°1
0000°1
000G°*1
0000°1
0000°T

0099°1
0000°¢
0gI0"
090
0000°¢

0099°1
0000°¢
0¢20°
peTt”
0000°1

ASSY Y3d
ALILNYNO

N

J

ZH09 3AT¥Q 0ASA Add074 HONI 8 MSIQ

SS 1I7dS 0096c* QIBIT* B8 HSVM
L205-H00014 4307TN0HS Y¥YIHSVM
810-00G08 3T1TIA3T1138 9NIY4S YIHSVM

SS SW Hd dH SSNYlL 8/¢X2¢-8
SS SW Hd 1IHd B8/S cg=9 43S
4X-0610~-2G% 3ISN 0S88GTJ3 S&O
ZHO9 XMSIOJ AddO0O714 QGSO dWl Q31S3L

ZH 09 93W & CISIY HINI 8 MXSIQ

SS 14 910° J05Lz°* JIwLi* 8 HSVA
L20G6-%000T14 430 TNOHS d3IHSVA
8T10-00S609 3T77IA3173d 9NIHHS YIHSVM
3¢-2T0-2H02T3 NVWIINNIL HSNa LNN

SS SW Hd 1IHd 8/= 2&=-9 43S
GWNHL d3TYNNM 1h* X SE=9 YIS

0605-v000T14d INIJdIHS %JI0T Lx¥d
GXx-0#0L-1S% 3SN AS88G133 Sd0
ZHO09 HIONIM MSIQ Q3XId4 sWb 031S3L

06/69¢z WE 378VvD Lv1d4 ONOD 0§

4v3 LW O/M 3903 Q¥vI SOd S2~GZ NNOD
TOYLINOD ALITVND 406471

SW3I1SAS~-dNS 408V1

2190-¢8%903 ASSV 3903 (dyvI ONGI 0§
N2/7G9¢ce# We OGNOD (2 Liv14*3738v3o

4VY3 LW O/M 3903 Q¥vI SOd $T-0T NNOD
T04LNOCD ALITVNY 504V

SW3ILSAS=-dNS ¥08Y1

¢190-¢84%900 ASSY 3903 QYvI ANOJ Q02

NOILdIN¥IS3a

d3dW NN

- =8800-4di
- =G084y-¢G9
=VYX=-2600-¢53
- =bE00-ta9
- =¢2Iy=-0G93
- =00c%-0S9
-3X=-0610-2G¢%
- =GQ1CY=-8L¢

- =9800-6G<L
- =000%-%59
-¥X-25C0~-259
- =6£l0-¢G9Y
-7010-255
-00c&-CG9
-0v1¢=-0G9
~dX=%G0L-1G%
=J)X-0h0L=-1GY
- =¢I0H=-8BLC

- =9500-0¢c¥
- -=¢¢H3-0G6¢
- =T100-2¢C9
- =400C-C0C¢C
- =611%-Cce

- -9130-32%
- -2gw0-35e
- -TI0C-0CO
-$000-000
-811£-022

LYvd
ININOJdWOD

NI
S4
S4
S4
5S4
S4
NI
NI

NI
S4
S4
S
S
S
S4
NI
NI
NI

NE!
NI
NI
NI
NI

NI

M NN NN)N

M N NN N NN

N N2

AP INAPIN DI B

M N NN

J¥NLINYLS
NOI LISOd

N

1334

HJV3
HJI V3

HJV3
HIV3
HIv3

HI V3
HOV3
HI V3
HIv3
1334
1334

HJIV3
HJ V3

HOV3
HIV3

HIV3
HIV3

HJV3
HJV3
HIV3
HJV3
1334
1334

HJV3
HI V3

HOV3
HIV3

0000°¢
00c0°
0660°
0000°T
0o0o0¢g*
000S°T
0600°1
6000°T

0000°T
0000°¢
goo00°1
0000°1
00c0°tT
0800°1
0910°

gg8o°

0000°1

0000°T1
goo0o0°t

0000°T
0000°T

0000°1
0000°¢
0000°T1
0000°I
c000°t1
0000°T1
0310°

0g8y9°

0000°T
g000°T1
0000°1

03ONVYLS NOT43L X179 V9 BT 3YIA

TO0YINOD ALITIVND yo08vn

SW3ILSAS-9NS ¥08V1

€¢0G613 0190-28+¥904
TOY¥INOD ALIVAD 40dv1

SW3ILSAS-GNS ¥049V1

Q¥v0dy3IHLIOW dA00ce VId

0/1 ¢ LYOHS 39VJ Q¥vI dAT 002¢

0-TL20L%-1 dWY 9NISNOH SOd 9 NNOD
$=8TTT9 dWVY(I1334)V9 HT-02 WHY3IL NId
dINYVYW LN3IAI dVyk-AlL

W=WIild AL=-NVd ¢3AL 3749V)

030NVYLS NOT43L 034 V9 81 JHIM
Q3ONVYLS NOT431 X118 v9 BI 3IYIM
TO0Y¥INOD ALITVNY y048v1

SW3L1SAS-6NS d408V7

0£90-284908 378V¥3 LHI9IT T3INVH LNOY4

L09GT3

0¥v08 YOLVIIANI dATI0022 83d
$92-4yWI ¥YININVLIIY Q3T d3Y¥Y dWV1

dW0J Q3XI4d %80T M¥/1 WHO 0Lb S3¥
dW0J Q3XId4d %67 m»/1T WHO 0LYv S3¥

0-1L20L%-T dWVY 9NISNOH SOd 9 NNCI
#-8TTT9 dWV(I33Y¥)IV9 »1-0C W31l NId
YINYYW LIN3QI dvd¥M=-AL

W=WILld AL-NVd ¢3AL 378VvI

J30NVYLS NOT431 O34 v9 8T 3YINM
G3ANVYLS NOT43L X179 v9 8T 3Y¥IM
TOYANOD ALITVNO 4y08v1
SW3ILSAS-9NS 308V

0GLGT3 0€90-284%909 3718VvI LHOIT T3INVd LNOYS

Qyvog d¥OLVIIANI d4A7002Z¢ vid
ASSVY L3NISYJ dA1 00c¢

L09G13

ASSY L1H9IT T3INvd LNOYS

0
=dh=-L%0c-0

-0000-1709
-1100-0C00
-%000-000
-gevi-0ce
-1100-000
-%300-CCO
-86914-01c¢
-TL¢0-56L2

-4311-4G69
4=-4911~-$HG9
-1101-G069
-9001-G09
-¢000-109
-0000-109
-1100-000
-9G600-000
-h9h1-0c<

-€09L-01G
-1200-0L¢
-ly3¢-0¢¢
£e

-h811-459
=991 1-%G69
-1101-6G609
-$001-509
-c000-109
-0000-109
-T110G=-00¢
-%005-000
-hhh1-022
-¢69L-012
-¢2lt-0lcd

. P .

NI
NI
NI
NI
NI
NI
NI
NI

NI
S4d
NI
S4d
NI
NI
NI
NI
NI

NI
NI

sS4
S4d

NI
S4d
NI
S4d
NI
NI
NI
NI
NI

NI
NI

[TQRNTOINTS)

T FI TS

)

HOv3
HIv3
HOY3
1334

1334
1334
1334

1334
1334
1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

HOV3
HOV3

HJV3
HJV3
HJV3
1334
1334
1334
1334

0goo°t
0000°6
0000°1
00Te"*

6000°T
0091°t
009T°1

0ooG°T
0091°1
009T°1
009T°1

0000°T
0091°T

0000°T
0091°1

0000°T
0091°1

0g00-°t
go091°1
0y90°
gcce*
0000°T

0090°1
0000°¢
0000°S
0000°¢
0000°¢
0000°¢
co00°¢

HI1EGT3 L190-28+908

L09S13

L09613
L09ST3

L09G6113

0-S8208%=-1 4WY 9NSH L3INJD0S SO0d 0T

b=LTTT9 dWV (133Y¥)°v9 HT-0Z 13INI0S

YIMNIVW LIN3IGI dvyM-AlL
AIvig 8/7¢€ 9NIENnt

I¥IM O30NVYLS 31iIHM V9 91
3YIM Q3INVYLS L3T0IA/3LIHM V9 31
N8 3JLIHM 9NV 9T 3IYIM

3YIM Q3ANVYHLS 3LIHM v9 91

JYIM OQ30NVYLS N3I3¥9/3ILIHM v9 91
034 3LIHM 9MV 9T¢3YIM

3¥IM Q3ANVYLS 3JLIHM v9 91

JYIM Q30NVYLS 31IHM V9 91
34IM d30NVYLS 3Nn78 V9 9T

JHIM Q3ANVYILIS 31 IHM V9 91
3JIN Q30NVYLIS 39NVH0 Vv9 91

3YIM Q3ANVYLS 31LIHM v9 91
JAIM Q3QNVYLS G3y ¥9 971

JYIM Q30NVYLS 3JLIHM VS SI
JYIM J3AaNVYLS XJIvig v9 91
TOYLINGD ALITVNO ¥049v7
SW3ILSAS-8NnS ¥y048v1

ASSY 378vD QJ9 YIHLOW

0-0Lc08%~-T dWv 9NISNOH 20S S04 9

b=LTITT9 dWV (133¥)°V9 H1-02 LINIOS

W-WILlld AL=-NVd ¢3A1 378VD
G30NVYLS NOTI43L LHM v9 BT 3JyIM
030aNVY¥LS NOT43L N8 v9 8T 3INIM
J30ONVYLS NOT33L G3¥ v9 81 3IYIM
G30NVYLS NOT431 Nd8 V9 81 3IYIM

-L81T1-%59
4=¢911-4G9
-T101-609
-¢010-G09

-600.-009
-L60.-009
-960.L~-009

-600L-0009
-G66.-009
-260.-003
-600.-009

-6004-007
-900.-009

-600.-009
-£00.~-0C9

-6004-009
-¢00L-0C9

-6006L-GCS
-000.-0¢C9
-T11G0-000
-%000-000
=Llch1-0c2

-S8T1~-4G9
d=¢911=-959
-%001-G09
-6000-169
-9000-109
-¢000-T093
-1600-109

NI
S4d
NI
S4d
S4d
Sd
sS4

sS4
S4
S4d
S4d

S4

S4

S
S4

S4d
S4

S4
Sd
NI
NI
NI

NI
S4
S4
NI
NI
NI
NI

O O O O 0w

O WO \C

O 0 v

(VeI Vo RV BV BEVs RN

HIV3
HIV3
HJIV3
1334

1334
1334
1334
1334
1334

HJIV3
HI V3

HOV3
HIV3
HJVY3
HOV3
HI V3
HOV3
HOv3
HJv3

HOV3
HI V3
HJVv3
1334

1334
1334

1334
1334

1334
1334

HJVv3
HI V3

0000°%¢
Gooo°¢
0000°0¢
0000°9

0000°1
0000°9

0000°1
0000°9
0000°81
0ooT*
0005°
00080°1

0000°S
0go00°Tt
0000°T
0000°T
ggoo°t
0000°11
0000°2I
0000°8T

0000°S
0000°1
0000°T
60t6°

g0000°T
0091°1

0000°1
0091°1

0000°T
009T1°1
0890°
00be*
gooo0°T

$0LH13
I€IGT3
I€IS13

1¢I613

1eIS13
I€T1G613

13¥1vd
13Y¥1vd

13Y1ivd
13Y1vd

13¥1vd

¢leGl3

YIE€S13

=L TTI9 dWv (T33¥)°Vv9 HI-0C 1
d3NuvW LN3IQI dV

W=WILTd AL=-NVd ¢3AlL

N 31IHM v9 81

N 3LIHM v9 81
N MONI34A V9 81
N 3LiIHM v9 8T
N ¢34 v9 81
an Xovig v9 81
T0YLNDOD ALITIVND
SW3ILSAS-8NS

68G0-284904d ASSVY 379v3J ¥3IMOd

I M30S
dM-Al
31&v2

JYIN

3YIM
3dIM

3YIM
EED S,
J¥INM
¥049v1
408v7
XSIQ

2-92¢%G dWV0EZ 3TVW LIVINOD

T-21208¢ dWV ¥Y3Qv3H NId

S0d 8

I-¢120GE dWV ASSY u3QV3H NId SOd ¢1
wS/T L Q3LVNIWVI®GNOD ¢ sSng ANNOYIO

QYV08Y¥3IHIOW dAT00C

¢ 83d

(HINIJ)3dALl d¥43070S NNOJ*J°d SOd vt
3dAl 10S 011-12¢¢ec-GC¢

3dALl ¥3070S NNOJ J3d OTT-T12ST

¢=-G<¢¢

C-268¢S dWV0EZ 3TVW LIV INOD
JINVIS LW/M SOd 9 9NISNOH NNOD

YINYVW AIN3TI dv

YyM=AL

XJIvid 2/1 9NIENnl

JYIM Q30NVELS 3JLIHAM
IHIM Q3ONVHLS 134

JYIM Q3QNVHLS 3LIHM
3¥IM Q3ANVYILIS MIvid

3YIM Q30NVYLS 31IHNM
J¥IM Q30NVYLS 43y
TOUINOD ALIOVND
SW3ILSAS-4HNS
9190-2849049

v9 91
v9 91

v9 ¢t
vo ¢l

Vo #1
Vo ot
yodavi
404v1

ASSY 379v) (08 Y3HLIOW

Y=-¢311-9%G9
-1101-G69
-%001-G09
-60606-009

-6000-009
-%000-009
-60u0-0G9
-2000-009
-000C-009
-1100-600
-%000-00C0
-G0vl-0c¢

-100¢-»S9
-0611-#G9
-CL11-%G9
-4G11-#G69
-869L-01§
-6¢00-0G¢
-1¢60-06¢
-1100-06G6¢

4-000¢-%G9
-066C-%G9
-1101-G09
-%010-609

-600L.-009
-%00L-009

-6019-009
-0019-00b

-6009-009
-2009-009
-1100-000
-%000-0600
-8cH1-0c2

S4d
NI
sS4
S4d

S4
S4d
S4d
S4d
S4
NI
NI
NI

NI
NI
NI
NI
NI
NI
NI
NI

NI
NI
NI
S4d

Sd
S4d

S4d
sS4

sS4
S4
NI
NI
NI

(VeI LYo RN]

[Ve IRV e IRV

w0 uWww

T}

[ToNTolTelNT2]

Wy uw e

HJv3
HJIV3
HIV3
HJV3
HJIV3
HJI 73
HIV3
HJV3
HIVv3
HIV3
HJ V3
HIv3
HJIV3
HOv3
HIVY3
HJIV3
HJV3
HJV3
HJV3
HOV3
HOV3
HJV3
HJIV3
HJvV3

HJIV3
HIv3
HJV3
1334
HJVv3
HJV3

HIV3
HIOV3

HJ V3
HJV3

0000°%
0000°T
0000°%
0000°L¢
gooo°2
0000°S¢
0000°0T
0000°9¢
0000°9
0000°Y
0000°%
0000°%
0000°S
g000°2
0000°%e
0000°¢
0600°9
0000°T
0000°%
00o00°T
0000°T
0000°¢
000G°t
go000°T1

LGTS13
LSTIGT3

0000°¢
0000°T
0000°Tt
0099°1
0o0o00"T1
0000°1
00zo*

0660°

0000°T

0000°¢
ggoo°t

3

¢g0c# 3IN3I349 Y399NY ¥3IdWNeg
b=dS¥S J3IIT3y¥ NIVYLS O0JA3H

LS 1L INI Qd088¢® QI0S1I°* 9 HSVTM
SS 74 910° gocIg® QIG2TI® 4 HS VM
1S 1l INI Q089¢* QgIgetl® 4 HSV M

GO0 8/7¢ X QI 8/1 NOTAN H°ON *YIHSYM
SS 1NN 3YvNOS 2g¢-8

SS Sd3% LNN=X301 0bh-4

SS Lvd 934 X3H INNOHv-4 1NN
00-008190-T1S Sd3IX LNN=-X301 2¢-9
SW3IS SS SW THd UH NV¥d 8/¢ X 2¢-8
SW3S TIHd QH Nvd #/¢ X 2E€-98y0S
SW3S SS SW THd GH Nvd 8/¢ X 2g&-9

SS SW Hd TIHd T 0b=% Y¥3S
SW3IS SS SW THd OH NVd #/7¢ X 0Ob=4
SW3IS SS SW THd OH Nvd ¢/T X 0b=+t

SS SW H Lv14 TIHd 8/% Oh=4 ¥JS
SW3S SS SW TTHd UH NYd 8/% X Ob-%
0GS-% LN3YYNI JIITON3IHL *¥Id4S
X=-%¥%0L.-TS% 3SN 05885123 SAH0
6105-00013 G4V¥2 LY0Hs X049
¢lT1-00892 Q3070W LNN*31Vd
SBOT~-00CSAMIVIEIwt QUYND NV 4

W34JIGL THCYM NOYLOy *NVd

P=8TTT9 dWY(TI33¥IV9 $TI-02 WY3IL NId
0-6T¢08%-T 9NISNOH NId

b2yl =022 WNN M8 MNIYHS LHM VIQu2/1
XJvid 31/6 9NIdnt

£¢05-400014d gyo02 31ivid
STY9T NV4 NOYLIOY Q¥0J ¥3MOd

TJOYLINOD ALITIYND 404V

SW3L1SAS-8NS ¥048V1

$190-284%9049 ASSY (Q¥0J Nv4
0-0L208%=T dWV 9NISNOH 20S SOd S
0.8c08b~T AWV INISNOH L3INJ0S SOd 2I

-1.cy-¢cs9
-BZZ1-%G9
-T100¢-¢53
-9002¢-¢59
-cCic-2s9
-¢U00-¢5

-100h-¢cG9
-G0%¢Z=-ca9
-060C-269
-2cgg0=-2¢a9
=0c19»=-0G9
=Ll972¢-0689
-021¢-0659
-0c%2-069
-0%#cc-0S9
-091¢-065
-1212-063
-0¢1¢-03

-I4#10-29¢

=JdX=-vh3i-1G¢
-3X=-008¢-14¢

=GGcl-544
~10i6-6th¥
-¢I01-00¢

4=9911-9G69
=LHT1-HGS
~4ch1-909
~¢010~-509

-VX=-161c~-25%

-G00T1-02¢
-1160-000
-4000-000
-hZyl-022

-G811-%59
=TL11-%59

NI
NI
S4
S4d
S
S4
S4
S4
S4
sS4
NI
S4
S4
S4d
S4d
sS4
S4

NI
NI
NI
NI
NI
NI

S4d
NI
NI
NE|
NI
NI
NI
NI
N1

NI
NI

Fe ISR T o RN To N TSN THINT S}

wn

¢¢¢¢¢¢¢¢¢¢¢¢Q’¢¢¢¢¢\T<¥¢¢¢Q‘

HOV3
HOv3
HJ3v3
HIV3
HOvV3
HJIV3
HOV3
HJVY3
HJIv3
HJIv3
HJV3

HOV3
HOV3
HOV3
HOv3
HOV3
HOv3
HOV3
HOVv3
HIV3
HO V3
HOV3
HOV3
HOV3
HOV3
HOV3
HOv3
HOV3
HOV3
HOV3
HOV3
HOV3
HOV3
HOV3
HO V3
HOV3
HOV3

0000°1
0000°1
00900°1
0000°1
0003°T1
0300°1
0000°1
ogoc°*t
0000°1
0000°1
gooo0°r

0000°2
0000°%
0000°Y
0000°t
0000°9
0000°8
0000°9¢
0000°%
0G00°8
0000°91
000G°9
0o00°t
0000°1
0000°1Y
0000°1
0000°T
0000°1
ggo0o0°1
0000°T
0000°1
6000°1
gooo°t
0000°T
gooo°t
0000°T
0000°t

08coLlo0

8¢06-4000TJ0 X08 A4vI 9NOT NNOJ 1MYH
LYGS=4000T3 HI A1ddNS ¥YMd LXE UNLY
LEOGS-4000TI3 HY A1ddNS Y¥Md LXM9 UNLY
6€0G-4000T3 G134 XSIQ OXId4 LX¥HE 91lW
#68GINDJ3 0%58G6133 S80

#68GTIND3 Q68133 $40

050G6-4000T3 (YAD TW) LN¥4 LY T3INV
#405-900071D T0YLiNOD 3NV
T#05-#000T0 (H¥AD OW) LIN¥4 1471 INd
#685TNI3 av686123 S80
(Q3070wW) LINOY¥4 ¥3A0D

971 wZX91-8/¢ ¥IT3AIN
NI3IN G¥/M HSNId Av/TT T177v8 d31SVI

S9¢05-4000T3

NIL #2- 40 9€-220-%68%-2 ¥¢J3y A4NLS

9)T0L NIL S6b=8=L#4-91T 4 ANLS 1IvY
SS Sd3¥ LNN=X201 Obh-4

212° X 2€/% d0d L3AIld

INIZ SW Y¥J01-ZIHM 3I9NVI4 8/EX2S-0T
SW3IS SS SW 1Hd OH NVYd 8/ X 2¢8-8

Hd OH Nvd 8/¢ X 2£-9 INd ¥IS

SW3IS SS SW THd QH N¥d 8/¢ X 2¢-9
SW3S SS SW THd GH Nv¥d #/1 X 2¢£-9
8405-7000TD ININI¥ISHIIS LNO¥4 Qv3d
IX=240L-1S% 3sSn 0S88G123 S&O
IX-T#0L-TSH 3ISN QS8B8GIII SHO
IX-TTT¢-TI5% 3ISN (05885133 sS40
gx-0T1Te-15% 3ISNn (058851233 sS40
IX-601¢-1G6% 3SN 45886123 sS40

9435 -#000T12 Sa¥yvog °*0°I ¥3A0D
9105-%00013 H1 INWQIM 30IS ¥3A0D
9105-400013 HY LNWOIM 30IS ¥3IA0D
#€03-%000TQ SAYV08 AMOW3IW ¥3IA0D
$205-%00013 (IN3IWGIIM) d0L ¥3IA0D
L10G6-4000TQ sve
£206-4%000T10 413HS
¥3A03 d4v3N LINIGVD

4x-89€0-6%% 3ISN AG88S123 SEO

-0X=-¢H0L-1GY
=JIX=2CHGL~-T1GH
=IX=190L-1Gy
-0X=-0%0L-1GH
-VX=-8¢J3e-1G+%
-V X=-Lg93¢-16¢
=0x=T1l¢=-1G»
-dX=-011g-1S%
=JIX-601¢-1G"%
-VX-¢C¢c-1G%
-4X=8ve d-6%th

-2.20-559
- -1:£00-659
- -9¢00-9G9
- -=Gg0O0-bS9
- -G002-259
- =904%0-159
- -2219-069
- -0214-059
- -GCIE-0G9
-021£-0S9
- -080¢-0S9
-9X-2022-2Gh
-gX=2h0L-1GH
-9X=-TH0L-1G4
-aX=-TT1E-15%
-JIX-011S-15%
-GX=60T1€-1G4
-YXx-0282-1G%
-J)X-81£2-1G+4,
-IX=L182-1Gh
-)X-91¢2-1G4
-JX-GIgg-15+%
-)X-8921-1G4
-aX-80+40-1G%
-gX-£€00-1G%
-3X-84¢0-6%"h

NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
N1

NI
NI
NI
NI
S4d
S
S4d
NI
S4
Sd
S4
NI
N1
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI

NN M MMM N NN DN NN NONN NN NN NN DN

L B B B IR B B B B I S

HJV3
HOV3
HJV3
1334
1334
1334

HJV3
HJv3

HIV3
HJ V3
Ho V3
HOV3
HJV3
1334

HIV3
HIV3

HJIV3

HJIVv3
HJV3
HOVv3
HIV3
HI V3
HJv3
HIV3
HIV3
HJv3
HJIv3
HOV3
HJv3

g0g00°¢C
g000°t
goo00°T
008G°
ooseL*
00SL”
0LT0°
og80°
0000°1

0000°¢
0000°I
0000°¢
0000°1
0000°T
0005°4
6L80"

oLEY®

6000°¢

gooo-°ty

6o00°2
0000°T
0000°¢
6000°8
0g00°1
0000°1
0000°T
0000°¢
0000°¢
goo0°¢
0000°1
0000°1

204833

9LLTI]
66¢833

66£8J3

08%1I4H0

[ASN-R]
1¢1613

08%140

0890¢0

088T4#0
Ie84H13
166513
6¢GG13

H=LTTT9 dWV (1334¥)°V9 4#I-02 L3IMNIOS
0-8T1¢08%~-T ONISNOH 13 %30S

BOOI-02C WNN X178 MNYHS LHM VIA w8/¢
INIGNL ¥V3ITJ ¢#

N 31IHM v9 81 3HIM

N XMIvI9 V9 81 3YIM

T04LNOD ALITVND ¥yoavi

SWILSAS-8NS YO0dv1

6L/440/M 0C-%6%98 ASSY 3I79VI NV 4 w6

3I1¥3S TVNOILVNY3ILNI ¥04 20S LIVINGD
S3I¥3S TYNOILVNYIINI SOd £ 9NISNOH
(133Y¥/X2) W9-49TVvE 034 9N NHY04 v#
(1334/%2)IW9-91TvE A3 3ININOL INI Y 9
1G20-022 WNN X178 XNIYHS L1HM VIQu8/¢€
LAS/M V9 8T ONOD € 378vI ¥3M0d
JOHLINOD ALITIVND ¥yogav

" SW3ILSAS-9nSs y09v1

6090-284%902 Qd¥0J ¥3IMO0d XNSIC

ZH09 ASSY SSVHO AlddNS dMd dA7T 002¢

¢G05-4¥00072 °3°d Y3INIvVLi3N
I-M9-dS O0JA3H 00€*® 43I73¥ NIVYLS
SLE*XY8g-TH09 LYSVYYLIIN 3900G cg=-01
1S dH HSN3 10 2lg°*X Ov=-H ONLS
0€€0-11930-0 AlddNS ¥3M04 1349V
YINYYW INIAI dviM=AL

#68S1TINJ3 dv686133 S40

ONITE 13 971 G29°* X 2¢-9 4d1LS

. NHL 13 97 21¢°® 0y~ 4QLS

¢¢=9 Tul X3H 8/¢ d/W J400GNVLS
9205-%00010 J113INSIA 91W 31vid
¢€03-4%000T2 X08 0uvJd HS NNDOJ 1My8

4

-8%11-4%69
- =8001-909
- =G100-509
-~ =6000-009
- =0000-009
- =1100-300
- =%00C-000
-8001-0c¢

y=-680c=-4%59
-8802~-+G9
4=2¢900-%S9
4=-0400-4S9
-1620-909
- =¢00T-0C%
- =1100-9000
- =%0C0-000
-16¢c0-0¢e

X=9190-0L2¢

“UX-%1606-099
- =6%c1-HS9
- =2010-cS59
- =8607T-169
=VX=-9841-519
- =TI01-509
-V¥X=9201-8L¢%
- =9L90-29¢
- =£Ll%0-29%
- =T.H0=29%
-4X-0610-25

=dX=990i-1SY

Yy-€911-%69 » S4

NI
NI
S4d
S4
S4
NI
NI
NI

NI
NI
sS4
S4d
NI
S4d
NI
NI
NI

NI

NI
NI
sS4
S4
NI
NI
NI
NI
NI
NI
NI
NI

MMM

NI M M0 N NG

L B B e B B I L B e e B]

HOV3
HJIV3

HJIvV3
1334

HOV3
HJV3

HIv3
HJIV3
HJV3
HIV3
1334
1334
1334

HOv3
HJV3

HJV3
HJO V3
1334
1334
1334

HJO V3
HJIV3

Hov3
HOV3
HJV3
HIV3

HJVv3
HOVY3

0g00°
0c10°®
0000°T

0000°T1
0Ger°t
gcoo°
0600°
0000°1

0000°¢
0000°1
0000°¢
0000°T
000c°c
00SL°*¢
00G6L°¢
09350°

otge*

0000°1

0000°%h
0009°T
00SL*2
00G2°¢
0062°¢
0bT0°®

0890°

0000°T

0000°¢
g0o00°T
0000°T
go00°1
0610°

0660°

0000°1

08v140

08H1H0

1¢1613
1e1613

08#0%0

TI€1613
I¢1613

08H0+0

08%040

T0Y¥LINOD ALITIVNO 408V 1
SW3ILSAS-48NS y¥08V1
991 Od ASSV 9071 B 3YIM

(1334/X%2) WI4-HTvE 3NT78 907 ¥dy04 9%
N Mov1d Y9 8T 3YIM

J0¥INOD ALINTYNO ¥yogv

SWILSAS-3NS Y03V

G9T Od ASSY 9N71 3 3YIM

#=8T1T9 dWV(I1334¥)Iv9o #1-0C WH¥3L NIg
0-61¢08b-1 INISNOH NId
2-6180G¢-SdWY N9 9T-HT WY3IL NOLSYS
YINYYW LN3IAI dVYM=-AlL

INIBNL ¥V3ITJ ¥

N 3LIHM V9O 8T 3YIM

N MIovi8 v9 8L 3WIM

TO0Y¥INQD ALITYND 404V 1

SW3ILSAS-9NS ¥0dv1

6090-28+908 ASSY Q30D ¥3IM0d IV
2-6180GE~-¢dWVY N8 9T-%T WY3L NOLSVS
dINYYW LN3CGI dvHM-AL

gNIgNL 4v3TJ ¢€R

N 3LTIHM v9 81 3dIN

N ¥ovlg v9 81 3HINM

T04LINOD ALITVNO 408v7

SW3LSAS-8NnS 048V

#090-28+%904 ASSY 374vJ JvV
¥98T-22 Q34 SNI 9NV 1Y 9N7 NO1SVd
(133Y/X%2)IW9-91TVv9 034 3ININOL ONIY 9#
00HT~-022 WNN X178 MNIYHS LHM VIQ S/1
9MV8Tl L4 0140400 ¥3MOd

TOYLINOD ALITIVND 404V

SW3LSAS-8NS ¥0dv1

1860-284%9049 ASSY Q402 ¥3MmO0d

1

-1100-000
-%000-000
-hivl-0cce

4=-8350-%G9
-0000-009
-1100-000
-4000-0C3C
-¢Ihi-0cc¢

=921 1-H59
=LyIT-9G9
d=#¢10-HG3
-T1101-G09
-GI00-%09
-6000-009
-0090-00%
-T1C0-0C30
-4050-000
-2Ilhi-0cce

Y=-4¢10-%G9
-T1101-G09
-S10C~-599
-6000-005
-0000-009
-1100-0060
-%000-0C0
=11r1-0c¢

Yy-L810-HG9
¥=-0600-9%G9
-00#T-9C9
-9601-02¢%
-1100-9000
-4000-0C0O
-00vt-0c¢

NI
NI
NI

S4
S4
NI
NI
NI

5S4
NI
S4d
NI
S4
S
S4
NI
NI
NI

sS4
NI
sS4
S4
S4
NI
NI
NI

NI
S4d
NI
NI
NI
NI
NI

N

2]

N M) M) N

MM MO NDN NN N

MMM NN 0N

NN NN

HJv3
1334
1334

HJIv3
HJV3

HOVv3

1334
1334

HOV3
HJIV3

HJV3
HJIV3

1334
1334

HOVv3
HI V3

HJv3
1334

HJV3
HIVv3

HOV3
1334

HJV3
HJIV3

HJV3
1334

5 .

0000°T
000G°¢
0000°¢
00co-*
0660°
0000°T1

0000°T

0000°T
006"
ogo00°
ggto0”
0000°T

0000°T
0000°1

goo0o0°1
00cLe
ggo00°
oLTO0°"
0000°2

0000°t¢
poge°t
0g00°
0L10°
0000°t

0ooo°t
006¢c°T
0co0g°
0600°
0g000°1

0000°1
006G¢e°1

; 3

LSTST3 G2H1-022 WNAN X9 MNIYHS LHM vIQua/T
AJvIg 91/8 9INIENL

LSTGT3 9.-440/Mm V9 81 Qd0D dIZ %aIvg
T08LNO0J ALITYNO 408Y7

SW3LSAS-49NS y0gv1

08%150 GT90-285908 ASSY NOILINILX3 0¥03 Nv4d

8GHST3 INSNI 3ININOL INIY 3INIMOTI-2T 9# wWy3l

JYIM Q3QONVYLIS 3LIHM v9 21

3YIM G3ANVYHLS XOv19 v9 21

TOHLINOD ALITYND 403v1

SW3LSAS-dnS ¥08v1

08¢CH0 0LT Od ASSY 9Nn71 3 3IYIM

c-£080S€~CdWVy Q3Y 22-81 WY3IL NOLSVA
(133¥/%2) W94-4TVE 3n19 9N Mu04 9¢

J¥IM J30NVYLS JLIHM V9 91

3YIM G3ANVYLS XOv19 v9 91

T0Y¥LNOD ALIVND 408v7

SW3ILSAS-8NnS d04v1

08L2s0 691 Od ASSY 9n71 3 34IM

(133¥/%2) WI4-+vTva 3INIE 9N7T N¥04 9#

N 3LIHM v9 3T IYIM

TOYINOD ALIVNO 408v1

SW3ILSAS-dNS ¥08v1

8% 140 BT Od ASSV 9Nn71 3 3yIM

(133¥/%2) W94d-+41IvE 3Nn18 9N ¥Y04 94

IN ¥IVIS V9 81 3IyIm

TOMINOCD ALITVND 4049V

SWILSAS=-d9NS H 04§V

08%TH0 L91 Od ASSVY 9N 3 3yIm

(133Y¥/%2) WI4-v1IVE 3018 917 WH04 9
N 3LIHM V9 8T 3YIM

-G¢cHh1-909
-¢c010-609
=L¢00-02%
-T160-06060
-%000-000
=Gch1-5¢22

4-81G0-+vG9

-6013-009
-0ul3-009
-1100-000
-%000-000
-8iv1-0c2

4=-¢¢1(0-459
¥=8900~-v549

-600.-0C09
-000L-005
-1106-000
=%000-000
=LI91-0c2

4=-8950-4G9
-6000-06C9
=1130-C00
=%000-290¢0
-91I#1-0c2

4=-8900-#G69
-0060-009
~T100-6G00
-%300-000
-SIvl-02¢2

4=-8900-H59
-6000-009

NI
S4d
S4
NI
NI
NI

S4

S4
S4
NI
NI
NI

S4
S4

sS4
S4
NI
NI
NI

S4d
S4
NI
NI
NI

S4d
S4d
NI
NI
NI

S
S4d

MIN) N, D

N N N

M e N

M NN N

NN 0

N

1334
1334
1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

HOV3
HO V3

HJIV3
HJv3
1334
HJV3

HJVv3
HJV3

HJV3

1334
1334

HIV3
HJ V3

HJv3
HJOV3
HIV3

03038°1
0052°1
00Ge°*1
g0sc*t

000GC°1Y
0062°1

000cC*1
00Ge°1

0000°1
00Gec*1

0000°T
00Ge°1
otneo®
0go0c*®
g00o0°T

0000°¢
0000°1
ooge*1
0000°T
0S106°

09L0°

0000°T

goog°t

0000°T
00c9*
0g00°
oLT0°
0000°1

0000°¢
0000°1
6000°¢

JY1M Q3IANVYLS 3ILIHM V9 91

J¥IM Q3IONVELS N3IJY9/31LIHM VI 91
03y 3JLIHM OMV 9T¢3YIM

JYIM Q3IANVHLS 3LIHA v9 S1

JYIM Q3IQNVYHLS 3LIHM V9 31
34 IM 03IONVYLS 3InTg v9o 91

3d4IM Q3IONVYELS 3LIHM v9 31
34IM C3IANVYLS 3I9NVY0 v9 91

JYIM Q3ANVYLS 3LIHM V9 91
IYIM Q3ANVYYLS (34 V9 91

JyIM G3ANVHLS 3JL1IHM v9 91

JdIM Q30NVYLS XMIvld v9 91

TOYINOD ALITVND ¥08v1

SW3LSAS-9nS 308V

08¢ZHy0 1290~-28H900 NOILINILX3 790 (09 Y3IHLIOW

(1334/M2) WI-491vE Q3d 9171 MH0d +H#

09T =022 WNN X8 MNIYHS LHM VIOQuwB/%

INIgNL ¥Yv3I1I ¢k

SIH9T NV4 NO¥IOYM Q¥0DJ ¥3MOd

TOYLINOD ALITIVNY 3048v7

SW3LSAS-9NS ¥0gv1

08€cHv0 LLH0-28%908 ASSY 318vJ NV4
YOhT-91 3INT3 SNI 9NV L¥ 9N NOLSVd

JYIM Q3IANVYLS 3JLIHM V9 91

3YIM Q3IANVYHLS XIVIG VI 91

TO¥LINOD ALITIVND 308V7

SW3ILSAS~-ENS ¥ 08V

08%1TH0 £LT Od ASSY 9071 3 3YIM
LSTIGT3 H=LTTT9 dWV (133¥)°V9 H1-0C L3INI0S
LGISTI3 0-81¢08%»~1 ONISNOH L3I %J0S
(N334/X2) WI9-491TVd Q38 9N MU0 4 4

-6006L-009
-660L-009
-¢60L-009
-600.-009

-606L.-009
-962.-009

-600.-309
-¢00.-009

-600L.-009
-200.L-009

-600.-309
-0080.-00°9
-116¢-009
-»000-0CG
-I¢y1-022

¥4=C¢900-%G9
-0eh (=903
-G100-909
-G0C01-0cH
-T100-000
-%000-000
-0gy1-0c¢

4-8810-4G59

-600.-00C9
-000L,-009
-T1100-C00
-%000-000
-6echl-0c2

d4-¢911-459
-8H11-9%459
4-2300-469

S4
S4d
S4
S4

S
S4

(720N %5}
W

S4
S4

S4
S4
NI
NI
NI

S4d
NI
S4
NI
NI
NI
NI

NI

S4
S
NI
NI
NI

S4
NI
S4d

M N My

v

M0

MM o

Lo oI, P

LI PN Pl

1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

1334
1334

HJIV3
HIV3
HJV3

HJv3
HJ V3
HJIV3
HJV3
HIv3

1334
1334
1334

J

gooo°t
ooeget

0000°1
009%°1

0000°1
0089°9g

0ooo°T
00t1g*c

0000°1
000G°8

0000°T
0000°S

0000°1
g0ce°*¢

0000°T
0000°%H
0o0GG*

00GSL°¢
0000°T1
CC00°1

3000°T
0000°6
0000°6
0000°T
0o000°¢

0000°T
00Ge°T1
00Gc°1

LSTIGT3

LSTIST3

LSTIGT3

LSTIST3

LSTIST3

LSTG613

LGTIGTd

LSTIST]

08€290

3

JYIM Q3AGNVYLS 3JLTHAM

JYIM Q30NVYHLS T34

JYIM Q3ANVYLS 3ILIHM
JYIM OQ3QNVYLS 3I9NVYHO

JYIM Q3ANVYYLS 3ILIHM

34IM G3AONVYLS
JyIm O30QNVYLS
J¥IM Q3ONVYHLS
3JYIM OQ3IANVYLS
3Y¥IM 03ANVYHLS
3¥IM Q3ANVHLS
JYIM CU3IANVYHLS

JYIA J3aNvYLS O3y

JiIHM
NMOYg

JLIHAN
AJvd

J1IHM
¥avig

JLIHN

YIN J30NVYYLS 3ONVYHO

3YIM TIANVYHLS JLIHNM

9090 -c8+%900

JdIM J30NVYLS Q34
TJOYLINOD ALIVND

v9 91
v9 91

V9 91
vo 91

v9 91
v9 91

Y9 91
v9 91

v9 91
v9 91

vo ¢l
vo 21

V9 #1
VO 41

Y9 b1
V9 #1
408v7

SW3ILSAS~-dNS ¥Y09v1
SSINYYH MNISLV3IH
ASSY JANISLVIH dAT 0G22

0-G8208%-T dWVY 9NSH L3INJIOS 3504 0T
b=8TTT9 dWV(I33YIVI H1-02 W31 NId
P=LTTT9 dWV (133¥)°V9 H1-02 L3INJIO0S
Y3INYYW LIN3QI dvym-AL
W-WILTd AL-NVd ¢3AL 378v)

JYIM Q3ANVYLS 3LIHM
JYIM Q3ANVAHLS L370IA/3LIHM V9 9T
N8 31THM 9NV ST 3YIN

vo 91

~-600,.-009
~900.-009

-600L-009
-¢00L-009

-600L.-009
-¢006L-009

-606.-009
-100.-009

-600L-009
~00GL-009

-6019-009
-0019-009

-6009-009
-¢009-005

-6003-009
-¢009-339
-1100-000
-%000-000
-491¢-0L2
=LS190-0L2

-L8T1-4%69
Y=H911-4%89
Y=€91T-%G9

-1161-609

-4001-509

-600.-039
-L60L-C29
-960.-009

S4d
sS4

S4d
S3

S4d
S4d

S4
S4

S4d
S4

S4d
S

S4
S4d

S4
S3
NI
NI
NI
NI

NI
S4d
S4
NI
NE

Sd
S4d
S4d

M N) NN 9}

LS

HJV3
HOv3
HIv3
HOV3
HJIv3
HJV3
HOvV3
HIV3

HJIV3
HJIV3
HJV3
HOV3
HIV3
HJVv3
HJIV3
HJv3
HI V3
HOv3
HIv3
HOV3
HOv3
1334

1334
1334
1334
1334
1334
1334
1334

1334
1334

1334
1334

1334
1334

0000°¢
0000°¢
0000°¢
gooc°¢
goo0g°t1
000C°¢
goo0°t1
0000°1

0000°9
0000°Y
00o00°1
gooo°t
c000°61
oooo°*¢
0000°¢
0oo00°t
gooo°t
6900°9
0000°T
0000°C
0000°%1
00GL°T

0000°T
000T1°c
goGl"T
goctet
006¢c°¢
pootr*2
00GL°1

0000°T
008G°T

0000°T
0osce°t

0000°T
goocet

c0ohlid
AR NR
cl06v13
c06413

206413
LSTIGI3

LGTIG13

IAS SR !
2lgs13d
LSIGT3

LGIG13
LSTIST3
LST1613
LSTGT3
LSTG13
LSTIST3

LSTIG1]

LSTIGT3

LSIST3

G603 S 1234 vSE A0S VEGTINI 0Ia
%00 S 1J33¥ vel ACOT VOOCINI 0Id
SYOLSTX ¥3IMOd ¥O04 (394V7T) YHSM VIIW
T-WL ¥Y3SSIMI3IM LINNOW UOLX HOLVINSNI
=01 NdN S M00E GBIGNZ YOLSISNVHL
€0L S NdN dv AO% MOO0Z TOESNC ¥islt
GNI-NON MM %g MY WHO 0<¢0° S3y
ONI-NON MM %S MES WHO 900° S3Y

¢-268%S dWVdz 3ITVW LIOVINOD

JINYTS LW/M SOd 9 ONISNOK NNOJ
0-0L208Y-T dWVv 9NISNOH J30S SCd 9
0.8¢08%-1 dWy 9NISNOH 13IXJ0S SO0g CI
=LTTT19 dWv (133¥)°V9 #1-0C L3INI0S
0-¢0€08%=-T SNISNOH L3I XJ0S

INSNT 3N9NOL INIY 3IYIMOT-ST 9# WY3L
Z-6180S8-FdWv N8 9T-%1 W¥3IL NOLSVd
NIW 0T1-01VE O7A O9NL 9NY OT#
(1334/%2) WI4-41Ivd 3N79 9NT ¥¥04d 9¢
YINYYW LNIQI dVY¥M=-AL

S¢ 31Vild 314 318vI °*9HI Ss3d

W-WIild Al=-NVd ¢3A1L 378VD

Ng 31IHM 9NV ST 3dINM

JYIM O3IANVYLS 3JLIHM VIO 91

JYIM Q3ANVYLS N33Y¥9/3LIHM V9 91
034 31IHM 9MVY 9T*3Y¥IN

NYE8 3FL1IHM 9MY 9T 4 IUIM

AIVId ILIHM 9MY 9T¢3H¥IM

A18/Nd0 Y0103 3Id¥IM v9 91

JYIM Q3IANVYLS 31IHM V9 91

3YIM G30NVYLS 31IHM V9 91
JYIM Q3GNVYLS AVY9 V9 91

3YIM Q3ANYYLS 31IHA V9 91
JY4IM Q3aNVYLS L13T0IA v9 91

JYIM G30NVYLS 31IHM V9 91
JYIM Q3ONVYLS 3N18 ¥9 91

=L00¢-082
-000x~-08¢
-0c06~-GL¢
-4106-5L%
-2LlL1=-6L¢
-8h(1-CL¢
-CE00-v¢¢
-T1€00-%C¢

4=000¢-4359
-060c-4S9
-GBT1-%G5
~TL11-4%G95
4=-2911-4G69
-0611-4G9
4-91G0-4HG9
d=h¢10-%589
¥Y=-GLG00-9G9
4-89900-4%G89
-1101-609
-9001-G09
-%00T7-42C9
-96CL-009

-600.-00°9
-G60L-C09
-260L-009
-160.-009
-060L-009
-0€0L-009
-600£4-009

-600.-009
-800L.-009

-600.-009
-L00.-009

-600L-009
-900.-009

N1
NI
NI
NI
NI
NI
NI
NI

NI
NI
NI
NI
S4d
NI
Sd
Si3
S4
S4
NI
S
sS4
S4d

S4d
S4
sS4
S4d
Sd
sS4
sS4

S3
S4

S4
sS4

S4
S4

T FIST I FITTTLTITITTF S

T T IS

MMM N NN

1334
1334

1334
1334
HIV3

HJI V3
HJIV3

HOVY3
HOV3
HJIV3
HJ V3
HJIV3
HJIV3
HJ V3
HJI V3
HJV3
HJVv3
HJV3
HJV3
HIV3
HJIV3
HIVY3
HIv3
HJIVv3
HIv3
HJv3
HJv3
1334
1334
HJ V3
HJ V3
HJv3
HOVv3
HJI V3

0000°T
00sL*

0000°T
00GL*®
0000°T
0840 °
0T b
0000°1

ottoe

gooo°¢
0000°c
0000°%
0000°2
0000°¢
0000°%
0000°2
0000°¢
0000°¢
0000°¢
0006°L
0000°6
0000°c
0000°9
0o0o0g°*c
0000°1
0000°¢S
0000°¢c
0000°¢
J00G6°¢
ge8d°¢e
0000°T
0000°¢
0000°¢
0000°¢c
0000°%

0LL%I3

0LLH13

08%0%0

TN 3LiIHM V9 81 3yiIm
17 MO113A v9 8T 341IM

N 3LIHM v9 81 3¥IM

N d3¥ v9 81 3IHIM
dN700¢¢ 1AW LAD dW4X
TOYINOD ALITIVND ¥y08v1
SW3ILSAS-dNS ¥0Av1
0653-28%900 ZH 0S5 ASSY SSINYVH uWdX

691-8906G2D

38Nl 20 %1)04CHMOQ ANNOLWOD TVWYHIHL
b=00 9NIHSNG ¥IAINCHS

HINI ¢/T1 378v3 *d4uWviD

9N7 GNNOY9 94

#-00 9N7 ONNOY¥9 ¥3Q10S

G-00 9N AGNN0Y¥9 ¥30710S

431 74 MHLS0°XQ0 TE*XQI LZ°¢HSVM

1S L INI QO08z#® QIL92° #/1 HSVM
SS 13 ¢¢0° J0005° QIS3IZ® #/T HSVM

LS 1L INI QOI8E* Qin02°0T HS oM
SS 74 2g0° Qa08¢h*® QIg0C® CT HSVY M
LS 1 INI Q0882°® QIQGI* 9 HSVM
SS 74 910° J0GLg* QIewI® 9 HSV M
SS Llvd 934 X3H JINNCE-0T ALNN
SS LVd TIVYWS X3H INNZE=-9 LNN

HL ST/¢ X*4°V 31/L LINN X3H 8Z-4/T1
SS SW Hd TIHd 8/S c¢-9 43S
SW3S SS SW Hd OH Nvd 2/1 X 2£-9
SW3S SS SW THd UH NVd4 8/% X 2g=-9

SS SW Hd TIHd 91/S ce=-9 43S
d4¥3710 918 9INIdNL

(1N) SNd 43dd03 A3INNIL V9 &1 3I4IM
0¢06-40001Q GY¥v03 934 MNISIv3H
CEI0VEYLE 9TuT XH #/1 d4/W 2€-9 4GLS
(Q3XY¥04) J4400NVIS Q3LVINSNI

(000 CIXHLEO0*XC0LEI*XAI6T® YHSM VOIW
(LOOE)IMHLIEON0°XA08B*XAI92°® 4HSM VIIMW

-600C=-009
-%0C6G-009

- -6000-009
- -2000-0C9
- -6910-014%
- -1100-000
- =$h000-030
- -851%-0LC

- =g2i9-999
- =61g1-%G9
- =9G21i-%59
- =5001-%59
- =~1610-%59
- =06I0-%CcS
- =200.4-2589
- =0009-¢G5
- =9009-%¢S9
- =1009-%59
- =0009-¢G9
- =100¢-2S9
- =-000g-¢55S
- =0009-¢G9
- =-%00¢-259
- =59%00-259
- =00c%-C69
-091¢-359
-021¢-059
-001¢-069
- =0085-509
- =G1g6-009
-dX=G20T1-8BLHh
- =9LlH0-29%
- =¢6l0-29¢
- =200s-08¢
- =1I006-y8E

S4
S4d

S4d
S4
NI
NI
NI
NI

S4d
NI
NI

NI
NI
NI
S4d
S4
S4
S4
NE]
S4
S4
S
>4
S4
S4
S4
S4
S4

NI
NI
NI
NI
NI

e PRR.PIN 3]

TN N NS N NN NG N N N

MM NN MY N D NS NG) N N I N

HJV3
HJv3
HIV3
HJv3
HJV3
HJ V3
HOV3
HJV3
HO V3
HJV3
HJVv3
HJ V3
HJV3
HOVv3
HOVv3
HIV3
HOV3
HJVv3
HJv3
HIV3
HJIV3
HJV3
HOY3
HJV3
HIV3
HJVv3
HJV3
HJIV3
HJVv3
HJV3
HJV3

HJ V3
HJV3
HJVv3
HOV3
1334

6000°0T
0009°.L1
0o00°1
0000°1
pooo*c
6000°T
0003°1
g000°1
0000°T1
0000°T
0000°T
0000°1
0000°T
0000°1
0000°1
0000°I
0000°1
3000°1
0o000°tT
0000°¢
g0oo0°t1
goo0o0°t
0000°T
0000°1
0000°T
goo00°tT
0000°¢
g000°1
0000°T
goo0°t
0000°¢

0000°%
0000°TI
0000°¢
0000°9
oogce*®

08L¢G0
08L4¢G0
08%0%0
08¢cHh0
084040
08¢cv0
0880H0
084040
080¢%0
084260
0890¢0
089¢¢0
0890%0
089C¢U
08%0+40
08%0%0
08v040
3890¢0
0890¢0
0390¢0
0890¢0
0890¢0
089C¢0
085040
0890¢0
084040
08LecS0
0890¢0
0890¢0
0890¢0
08L¢S0

0LL»13

SW3S SS SW THd QW Nvag 2/1 X ¢2€-9
SW3S SS SW 1THd OGH Nvd B/E X ¢2¢¢-9

dg TvSY3IAINN HOLIMS °*2°V HI4d
1G05-4000T8 (52°G 97) XT3 TINWYL dAD
8 0y 1 ng2g* Q40 062¢ GI 0%T°* ¥IdS
006¢513 Jx-GH0L-TGH 3ISN 313770S40
690G -40C0T0 LWGTIM ¥3LTI4 3NIT ¥3A0D
1¢06-%000140 A1ddNS ¥Y3IMO0d ¥ 3IACI
0¢€5G6T73 4X-9HT1-1G6% 3SNn 3I1370S80
£¢1-61894d 3LY1d30V4*3T0NVH
G80T=-002SA(MIYIEIuh CGHYNO NV

IXG WOJM0ID dWV S H¥3ILTI4 3NIT

AL MuviW LolW NIJ4NW NV

02V10GCA H¥OLSIYVA LI0A 0G2
(T/70000-09¢ H¥04)T20G06#47T ¥HSM MI01
1000-09¢ /7 0000-09¢ ¥04 LINN X3H
1000-09¢ / 0000-09¢ Y04 HYHSM y3dEnNy
9v¥¢ SSVI9 8S AJGC dWv 0°%

LIVLINOD 334930 06 ¥3GT0H 3snd

dW0D Q3XI4 %0T ‘Ml WHO M1 S3y
0€2/S61T1T 3NIN Jv 14dda 34I171S AMS
440/NO ¥3XJ0¥ 1SdQ HILIMS

MG2T*T NIML 0T 2078 W2l

RGZT"T NIML 3 %2078 W3l

w0GZ2°T Xu290°2 TVAO ¥OLIJVAVI dWVID
#19# 39 Z2H0g-00¢H HO4 1008 dVvd
22=3WJ 9N & HIONI #/1 T dWVIIJ dVI
9N € HINI ¢/1 ¢ dWV13 dvd

93d NON®ZH094JVA 099¢4n%y

L0°¥S3 12373 ACT 4N MIST dVI

dvJ JILAT0¥LI373 AGH 4N 00EL

h=LTTT9 dWV (I33¥)°V9 #T1-02C 13INJIO0S
INSNI 3N9INOL ONIY 3YIMOT-cT 9# WHil
WB8GZ ¥y TOd 220 °X0G6¢c® NOLSVY TTVYNIWY3L
(133¥/X¥2) W94-v1vd 3INTH 9N MY0d 9#&
18 QI 91/¢ 4NY 3dALl 9INIEGNL MNIYHS

'

-091¢=-369
=0ci¢=us59
-6hLL=-01C

-YX=-0CuT-38L%

=G100-<c9y

-3X-GH0L-16%
-gX=Icec=-1a#h
-4X-61¢c~-1SY
-3X=-9%11-1G6%

=LyZ0-ohh
~-100C-6%Y
-G00c-J1Y
-¢50T1-00+%
-100%-C38¢
~-¢006-03%
-2c006-09%
-0026=-09¢

-6S-0#%01-09¢

=0000-09¢
-0IG6¢-22%
-L11¢-G¢¢
-G500-6¢¢
-01c1-01¢%
-9021-01¢
-9206-00¢
-9c06-00¢
-6006=-00¢%
-9006-02¢
-¢0ce¢-00«
-130¢~-00¢
-¥L0¢-003%

Yy-¢911-4%59
Yy-8153-4%69
Y-H8060-4vG69
4-8900-4%S9

-¢210~G09

>4
NE
NI
I
NI
NI
NI
NI
Ni
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI

NI
NI
NI
NI
NI
NI
NI
NI

Sd
S4
sS4
S4d
S4

MM NON

ANANANNNONANN NN NNNNNNNNNNNNNN NN NN NN

HJV3
1334
HOv3
HI V3
HIVv3
HJIV3
HJIV3
HOV3
HJIV3
HJIV3
HJ V3
HIv3
HIV3
HJV3
HJV3
HJ V3
HOV3
HJv3
HJIv3

0009°1
LI9Ty*
0000°T
gooo°t
g0o00°T
0000°6
0000°%
0G00°ty
0000°¢
0000°8
0000°¢c
0000°8
0000°S
0000°¢
0000°071
0000°2
0000°%
0000°¢c
0000°%

08.2S0
08v1I40
0890¢0
084140
03%0%0
084040
08v0%0
08L¢G0
08h040
085040
08L¢40
082¢ch0
084040
084040
08LcS0
08%140
08#04H0
084%0%0
082cHd

0-98¢08%~T dWV SCOd U1 9NISNCH NId
SGOT°=-L¢0° T3INNVHI G30NYLXI L3WWOY9
$=-dSY¥S 431734 NIVYLS DJA3H

INdZE/€ 3T0H #/¢ 404 QI 2/1T L3IWWOY9
J0H ¢/1T 404 AI 8/¢ L3IWWOYUO

f=THT P AY3IJWNAN XHI078 TYNIW¥IL

9N dNNOYS 014

30vdS #/1T 370H 002°*9N7 TVNIWg3lL

SS LI7d4S Q0gGe*® QIini® 9 HSY M
1S L LNI Q00ggc¢*® QIO0ST® 9 HSVM
SS 74 910° 40GL¢* dlIev1® 9 HSVM
SS 14 91IC* Q021g* QIGCI® ¢ HSYM
SS 1Vvd T11VWS X3H JINNZg-9 1NN
SS 1¥d TIVWS X3IH JINNGv=-+ 1NN

00-008190-T1S Sd3IX LAN=-X201 2¢-9

Hd OHNd Tu2/TXv# d-1 dV¥1l 473S*M3¥0S
ONIZ SW XJ01-ZIHM 39NVI4 8/¢X2¢-0T
SS SW Hd TIHa 8/L ce-9 43S
SW3S TIHd GH Nvd #/€ X Z2&=-9¢M43S

-1¢02=-4¢9
-L1z1-%CO9
-8E€CI-%G69
-2cll-4G3
-20c¢1-%69
-¢801-vG9
-0101-%G9
~GC13-459
-200€-¢49
-100¢£-2G9
-000¢-¢G9
-900Z-2493
-400¢-cc3
~40GUc=-269
-¢¢00-265
-0%00-169
-¢cl19-069
-08c¢-069
-Ll92e-365

NI
NI
NI
NI
NI
NI
NI
NI
sS4
S4
S4d
S4d
S4
S4
NE
sS4
S
S4
S4

"

NN ANNNNNNNNNNN NN NN

NOTES

15-17

NOTES

15-18

APPENDIX A
2200LVP ERROR CODES

Refer to 2200VP BASIC-2 Language Reference Manual, WL #700-4080C
(IV.C.2), for more detailed information concerning the nature of, and the

recovery from the following errors.

Error Code: NONRECOVERABLE ERRORS

Misc. Errors:

A0l memory exceeded (overlap: text & symbol table)
A02 memory exceeded (overlap: text & value stack)
A03 not enough memory (LISTDC, MOVE, COPY)

AOL stack overflow (operator stack)

A05 line too long

A06 program protected

AOT illegal immediate mode statement

A08 statement not legal here

A09 program not resolved

Syntax Errors:

S10 missing left parenthesis

S11 missing right parenthesis

S12 missing equal sign

S13 missing comma

S1y missing asterisk

S15 missing angle brackets

S16 missing letter

S17 missing hex digit

S18 missing relation operator

S19 missing required word

S20 expected end of statement

S21 missing line number

S22 illegal PLOT argument

S23 missing literal string

S24 illegal expression or missing variable
S25 missing numeric scalar variable
S26 missing array variable

S27 missing numeric array

S28 missing alpha array

S29 missing alpha variable

Program Errors:

P32 starting address greater than ending address
P33 line number conflict

P34 illegal value

P35 no program

P36 underfined line number or CONTINUE illegal
P37 underfined special function subroutine

P38 underfined FN function

P39 FN nested too deep

P40 NEXT without FOR

P41 RETURN without GOSUB

A-1

P42 illegal image

P43 illegal matrix operand
PuL matrix not square
PUs5 operand dimensions not compatible
PU6 illegal microcommand
pPu7 missing buffer variable
P48 illegal device specification
Plg interrupt table full
P50 illegal dimensions or variable length
P51 variable or value too short
P52 variable or value too long
P53 noncommon variables already defined
P54 common variable required
P55 undefined array
P56 illegal subscripts
P57 illegal STR () arguments
P58 illegal field/delimiter specification
P59 illegal redimension
Error Code: RECOVERABLE ERRORS

Computation Errors:

C60 underflow

cé61 overflow

Cc62 division by zero

C63 zero divided by zero, or zero raised to zero power
céh zero raised to negative power

C65 negative number raised to noninteger power

C66 SQR of negative power

cé67 LOG of zero

c68 LOG of negative power

Cé9 argument too large

Execution Errors:

X70 insufficient data

X71 value exceeds format

X72 singular matrix

XT3 illegal INPUT data

XT4 wrong variable type

XT75 illegal number

XT77 invalid partition reference

Disk Errors:

D80 file not open

D81 file full

D82 file not in catalog

D83 file already catalogued
D8Y file not scratched

D85 index full

D86 catalog end error

D87 no end file

D88 wrong record type

D89 sector address beyond EOF

»

L Y

I/0 Errors:

I90 disk hardware error (X'CO' not rec'd)
191 disk hardware error

I92 disk hardware error (timeout)

193 disk format error

194 format key engaged

195 seek error

196 CRC error

197 LRC error

198 illegal sector address

199 read-after-write error

NOTES

A-Y

»

APPENDIX B
MECHANICAL DRAWINGS

TO BE SUPPLIED

NOTES

B-2

”»

APPENDIX C
SCHEMATICS

The following schematics are contained in this Appendix.

210-7697 Regulator

7698-100 Interconnection Diagram

210-7698 Motherboard

S | 10 ! 9 ! 8 N 7 ! v ! s | 4 1 3 ! 2 | !

t5VI06iC FEPRY PSYRY rsvRe e hvﬁ_w r24V
o B @ @ ﬂ +5VS/) 124vS r24FE H2VREG [c._,m._g Te
. £33 RL2 B3 P) . : L
e rort - oK ,h @] r5V LOGIC
+34yS +24F8 e e e
. (1E2) (D2 B
' R 4 03 £2) (o2) I nnn.wv n_.xv
] =S 1772 I3%) tms03 | 3 nee Red b pusg
N ook 4 I3 [S
tow { ri : cez eR > o3 -9 R
. . 4, e £ .
T _ ciap 3l Jov S{p— o T P]
.usvae 72 [Z] . | for M reox Lot L7 L] reser |
SR e @5 1) . = o] 3iex 74, =l F——1——14 PoR
) 8.2Kaf \ a. 7] im339 IeLR A< e |
i oo , omgnv 5 2/e387 E 3\ 272 [o3 t——{ P
F [S L. AIsA o,
SIS vAe TI[EE) ' -
: Ix _\Ni f
co
m.mxk
— |~
- 2sv (k)
cs toy +2HV INRES B
4K AF R4 .
=t 3 u,v(ﬁ >—¢ =7V
Jov (&) | Par 0 2w
E R23 20U(T) 017
cay siL
— —_— tov A m
o .
+5¥ Locic RI8 RIF 2ov (7, 4| vt
: — 2 2 L urev _ Erasere
10 IN4743 #24VS e 22
] . .umm L et 260 (1%6) \.\MWW» 0
é.svae T/ .lll: <1 w%u\b
asa || 1K, 1/2W
Lo gl f
A . oq I 4 s
- - 8.2Kxf - VREF VO
6. vacT2 .|: 4 2SVIE) tok R27 7 *
AISA . 22k L? »
72 cL
J HN 3 o2/
. ins230¢
- Rr28 1En
2.76
2w sl RTS -
- P - - N 5 LS5K
tor v- ¢ w
< R2S Y
tov S cig 8g.2K S$7% UM REG o
08¢ ! -
- N
N
~|
R7 P ~N
R3I3 ¢ 100 Re
18K S & RS R
A— AN~
024 024 2301 17 .
| 3T IWIR IV ME\ :.—y 1rvr - I
s 208 b
| 1o sTVIOPR.
. | : .
| tor I es it === +5v IOVK
! L I PP L) \T\v L5 B
N - . osan se U0
. tov = T e
I . A3 ,..\LII_
. :r AN z :
- 120k 5 a _ B
AL 0.]N tar -
7 w7712 p—
c2o0 | —
Sz " ATt | Arrtovir s | o
s >20 s e ua owN 5 8 l2-2-30 | € tneR
I 013, . N u vt
; WATERUL HODEL KO, wis twt
ov X 2200 wP bk A
. SIE (MG SPCIFKANIONS’ Immc_lbn_lom
S 2av - Ld
- - T 12 1 oty
- o n I 10 T
9 - T T T
8 7 4 5 ! 4 ! 3

_| D] 7698 |

1

1 € | 14 ! S ! 4 1 L ! 8 | 6) ol \ =
I l.ﬂtve.i TR] nane v e <« [&O] 8
/18592 | eese-on g eapesl |
1 7L HSINIE Xav|RE2 i
x. (328
QYVOBYIHLOW N
a7 ocze N m
Yo o vgon| RN} =t |age v
O WSS AT B wu FESS
vrn wve Toac R ; [
T v ne 2 1N 3[08/L/¢] AL R~ — e m vﬁg> [
v [1
uve AR QIA0BHY . |- p-5 108 -3 |m—»ch
gyl T
@ re ' "l o
[reairou
A3y-3 Figl ==
2 2 o
2 e ee=t
- 20 .ml_ = @ g
! 0 40 sp
e = b— — = -
T | = = & B &= PR = 7 % ﬂ s s 51 -
= y ot
ave e2r) jven) 1E0) |eer] €Lr) vr o Hi Ly s € ") Big % , v , f U
v v v E v 3 v e M v ol v v
Al (A S G A 0 Y S
(U0 s A =
O sni- ~
=] [+ = = 5 [B 5] &] o &4S - %
®
O "o \
O HATH %
. C A2+
o [Fir| s) || Jeen 2| e 2 | L
|
5 £ s St S 1
* .(IA v v ! t v v v vl v] v ! v
o e O O o o o [A 3
o [[) R R[5 [51 R4 e [- o
250 Yanl el lee| [er] o] |ne| Jme| fee| s (s [se] [er vy b e
o =)
3 N S -
v V.-I_ vil lool dodf vl fedf o] (v v e v = ~ w
A A LA R LA I A L LA LA
O OO0 O0O0o0cgdgoid
v 9 a0 HoY o2 2 82 o oz
2% 2z % oe § E B O3IZOG B
N - N x) m 3
AddO7d Q3xid
1200 -05e| nuoowd wb| ovr-bae 1 oD 2 nnod €m0y
- anne
. 1100-05€| NNOD NI OE| W -IpLI-9" o 2 o5 2 05 2 2
100E - 559 | 1ovinod 3yw SYVEr S e e T
2L11-$59 | wsovar tid 504 21 20 .
OL!1-»59 lustan nid $0d 8 "
ON 1dvd 1'M FIAL ANANOIWOD .
1% 10n 00

] - L. e -
. L i T
. 0 [VTER~ REG | ALU Tsrack | e, | mc) 5 (ot
B S | { SienaL |9 (s [umex[#ace [epu Tosk T see o O o [Pl [ome | comcomlcopm) fEC 321
IR) 2694 | 269 | 295 | (793 ¢792) ¢29| €290 | 6789 | 2586 |25se | 2582 | 7582 | i"g i
B TR Tov Co Tov os1] s L | A | I, I, 1, 1. L. 2 l TP (331 S A EXCY i’ﬁisii
=] 3.1 szl A [ar [A | A4 o A a1 a T4 Ta [A A |05 ggaS‘ ol =
- Bl beald |2 [z [3 2 [7 172 |27 [2 | 2 [2 [2 junaidslue i Hi
- 1Bl lasl 2z |22, | 22, | 22y | 22, | 22, | 22, | 22, | 22, | 225 | 2es | 22, Paes|525¥isn 'iifig 5
22,2%1 54,311 19,70 | 2 H
V2.5 8; [EE R T i ¢
- | 3333, B
e 221 G B
- v2-9 23,95 [41,93] —
J2-1] —
3 s
+5UR B, |+swalve-¢| B, B. B, 8, B, 8. B, 8. G, G. 8 8.
2 pe-i2] 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
R3 -2 | Y3 Y3 Y) Ya B | h Ty Y3 Ya Y ¥ Vs
-1 14, 2l | 25 | 2n 2y | en |2 e Tan 12 25 | 25, | 2 -
L) o
. ~5UR “svelor-e | C. C [} c, C. [c. c. | ¢ c
. v2-21 3, 3, 3/ 3 3. 3. 3, 3. 3. 3
' ' -8
' + 12V Sy |tgvlu-al s, S S s, S, S, S S, S, S, S S,
. 155 15, 15, 15, 15 15 15, 15, 15, 135, 15 15 15
e -i2v Ns_[-ev]o-8] 2. ER o ®
125 22, 22, | .
+34 v +24v|J3-/
J2-4 -
J2-/0 - R
CH GND M3 jer Gad)| :
I3]
~N
SPARE 4 i
A :
8, T
9
i /0, -
1,
72,
13,
L2 8
SPARE ‘fos é(—
. IR T 3
-
(3]
=
&
w
- ~N
wr 1 g
TRl B
Pk =
L % 3
2 |z, -
bl .
9le H
—$ -
pa)
3 [5filEs| ;
. -
=
I3
. H
T - T [649 | a T 7 T ™ T =

2 L - L v ! y L[0T 76981 L@ ! e S I
3
"
, &l ol .
- 7E k5 5397 X2 E 10 _\
N i A Thwl HHE 1L N Y
N <A IN] o022 SEH g v .
LY §§£ <)
- ——
~ [l] 1 ymz W
: 1 N 9 | '8 | ‘8 ayz =
2 : ol m Twivz =y 2
P S] i N -
Elsl |E
~ J [N 2l 7 7 40X o .
: ‘2 2 vdX !~ “lE
- &
. - |3
: i s -) iis
- b6 ad 24 1oR10Md FLIHM : ﬂN
oL | ov: x S |3avo asem | . - §
., 8’ . .| o2 [ETTT) ‘y
_ T3 v L] Fwym
T N
o). " X
! or- . ey asaai< omy
b | 2% ~ i 2 LLISETTPY
: A C 351
L
¢
f ;
1 :
‘Y ['y F1L
] TET T H N
o - ‘el ig e iy
. ‘: - ER) 5 orl.
. Y e s 2z 12 bl
v X7 Y 81
~ el W D N
= S E] 4] i 24
<] 2 Sd
W 7] % P + 1
J W N N N EL
3 Hi o) -ie 2L
”‘; T N T _ L
B
i 9 [d s I BOWoL
H ‘H arl 1. E
| HE 2 U 'S
BT el 22 HOL10
b1 =Y ‘a . JoLS
YE 9E NE) d3LS
~ © Tq Is
Ty "z 95 .
A A 55 -
i [+S
’s ‘s €S -
-1 W 75 N
an 7 B
2 72 5% <
7 5 oS
b1 T g/ 735 3915 .
© %]] 335 wav wiv35]| v le
o/) 711 BT -
b W 4 ¥7) M3 N
8 7yl PR
! 9, 03003735
. T e 205 ' .
2! 2Ll 85
'a a “TTa 224
o 3 '3 3 i2d o
= 5 3 o2y
20 2t 31
'Y 'Y '+ 81y
W | fo/)
- fj €9 (7 (7 91y -
A €N n n Sy
T | M M M vy
X b/ €1y -
oz | tal 204 .
=4 ‘N_ €7 A A ™ 1] 9
Ty A zx o
261 | *oe g1 by
2 t5 *3 8y
y s L9} 5 Ly
= 2z | NEEIE 94 —
£ c3 EN €5/ sy
YA 'l? (w €S FY]
B3 (¥ tA A I3
_ 1 | 8! | 81 e
- ‘el 22 | tee K] N
o €] i - od
E vmopl2 awop | 1 wwod é'i(a L,"ié B:T:/La g,?,f,‘; 63&7 067‘-; /)1’,)4'9” ?rﬁr;" 5315437 g":s/ra Zl;%L FEIC | Move ‘OZ/} IYNIIS
q
2! . ! w ' w T T T o T L -

I e . w | Y . [oT7%98] | @ L e
: 3
T % Ty ; Svd :
-] 3l B2 - v vy gl |.lz
]] 2o/ @Az FIEIE R S
3 i3 =8 vy ==lg] L
2 2 2 3 KZ] PEREES
E]] b ovy s «
. ul
=
24 24 MN1omMy :q_\ §
i N E] N a7y Ul ls
M X Il . swoy £ E -
~ . A 2 29y =
25/ ‘el N0 438 91 . ; ;
. 25 S o doz3y | H %; %
5 €7 "1 A A g g . N L 23y B
?9 29 - S bl QvIH 43 g§§ i
— X X K 51 | Asng /AavE ! b
I < e g [
a Ny
H o N '~ 7Y v R L34
2) g 'd 'd 30/ {4 914
‘v 2 22 ee 73 e . $d K
T vl ‘v ‘v 2 4 +7d. -
- 2 [2 | ‘8 5 5 | N S7d H
‘a ‘a b 2 =2 51 27d -
-1 9 9 s/ £s1 s A j 17d 5 L.
9/ 9/ cy 1 L 074 . Vi :
. el :
N 2 2 B W ikl LHd '
s 5 Y °y 2y *Z - 9 Hd
t 2 2 ‘s) i ol S HA
] 2] [o Tm] tHd |
‘c ‘r ‘a 'a N BE] € Hd
] 2 '3 E] v ‘X 2 Hd
‘8 g]] 222 ‘g I HA
— t, 3 W ‘w 61 €22 o Hd
'a 'q -
‘ol I3
A]
b} H 'H
v 'S hid
‘9 5 i .
G ‘0l :
‘3 3 B €l S-ir
% g %) 2m A N 71 €0 2y L-Ir -
B B
£ €)
2 5/ 9/ ~ v
3 B e z .
»i: N v [£
§ Tw Tw Q £
| ‘s fs
R w d E 850 :
n S 'S o L ‘4 Lao ! =
BN T i] H 900
| e 0l 5/ 02 3 80 -
2l ‘21 €21 o ! q b TO
Y B W w i) q0 ;'
< 5 "z <7 i Gl 260 ™
] € i‘g Oy Ty _QQ M
- 'H 'H S g0
- N oz | Bsw =
2y T ey _, sw
ETE AR 29/] T I SW. =
; T £ I5W -
L w9/ KA 1 AL
o TR VT T B ToW . «©
o ; . L el 25w
| | g8/ %3 15W
| |
| 3] 73 | Wy
B | ! : B ; 27 27 buva 3gm Waw .
Ty oty : LSl 2] 270 HYW .
— i '
1 { —
Zl 2N CL 407
" iy 'b Td7_ o
i 29 K1 :
W 2477
3 5 %81
] =} £1 901
; 3 € $100T N
; il ‘v €1 901
* T 3 21901
2 1 I R NN 17991 e
‘o e 01901
[IR b 90T
i T e e 8 201
el 2 £ 99T ’
- ‘N - 9201 . —
d d R - ;
‘y g ¥ 90T .
- I L € 201 R
el ‘el 2001 ‘ ’
= | 57 901
. 5/ b/ B 0 JJI
™
G TN R B WA A e I I A Il 0 e 3 R Sl I IR OIS
. b
4
st X N R w g T w ' 4 ' [¥) Iy \' @ L

ovav s a

S had 1 o] 1 m | n) Q
avision 4o
£
uJ . T
| L3EE SHEET & SIGNAL_[T70; Toner [ohr Pors | o | s |ovar | &0 £559 |S2an | F0eh |aa7 | G503 00w | comwe| coms
DACK O . P, P,
= DACK | P, 14, -
DACK 2 N, 13,
Disk_Roy 144 22 22
Do 5 5 |5 ‘
DI Fa Fa F> T
-1 b2 43 45 4 =
D3 Cs Cs Cs
D4 2, 2, 2,
D EN 3 33
D6 D3 (23} Ds
5 D7 [E, E, 3
DISK CHANGE /5, 72
- DISK DONE /85 18,
DIRECTN Yo 34 34
DiF 13, D, D
- 135 133 -
DIo 63 13, | 13,
. 16y | 14y
DI 175 P, [
17 i7
! DT e Rs i2, 12, ©°
5: Sy
DI3 . s, 6 6,
T k]
0I4 195 5, 5,
7 Us Us —
DIS [E, E,
L. 15, 15,
OIe /4, F. F,
145 14
DI7 P 4, 4, ®
B P
DMEM /00 - 73
WRITE DATA +
DMFmM Kz 1 74
E WRITE DATA- i u
DMFM N2 ! 77
READ DATA + T
DMFmM 122 /8
READ DATA-
Omel 20, /05 ~
OMmS 2 X3 103
ompPI . 22 EN
DMO ¢ T3 19, 193
1 Mo I - o, 20, 20, -
Dmo 2 17 Vi Vs
bmo 3 - 185 w: Wy
DMmo 4 Ss i8 /85
Dmo S 193 X, X3 8
> bmo 6 s TP T e
Dmo 7 Ha My M3 E
Dmo & o B I 104 2y ()
Dmo 9 . . 1 M. M,
bmo 10 10, L. L,
1 Dmo 11 L 10, 10, -
pMo 12 72, H, H.
DmMoO 13 J, g, 8.
Dmo i14 8, J, Je
Dmo 1S q, K. K,
' Dmo 16 H, 2 7 o
omo 1T K, q, a,
DREQ O R, R,
DREQ | 9, h
DREQ 2 M, 12, -
DRIVE SEL | 19, 26 26
DRIVE SEL 2 we 28 28
D-R/w2 120 N, Ny
0-R/W 83 N, N,
S
Eop As As A
EwC. EN ER 2 2
FBizcg (42 | Re
| FLOPPY 92 92
Igl FREAD DATA K, 36
4 w
E HaCT K, - K. _
HEAD LoAD A /8
= m HEAD SEL 2' 172 /78
r = 2 HEAD SELe* U 4
R Nz ! -
- 3N
i HER 53 Is 9 Fs
I: é % H Ip cLK L3 I3 .
R : ; TN DEX < <. =5 =5
> N
ERBE
H % = : Is1 18, 13, P, 1
E I NE igz S R, B,
oS S 83 Ia, . PR
= r:E] ITes R, 12, 12, —
= o T8 % N 2. Ca
5 O Z = s8¢ P 1" 1,
% E‘ - T8 7 Ly B Az —
_ ? 33 o Iz S IBg M Ly M
& o = 2 feq 2, 10y 10, -
il :
i =
Hi £
> T) T 8592 | Q] T [" T - T,

1 w 1 N | [D | 7698 1 | <
2
g P e e €2 050
b B N 5 75 | 22 050 s
_ T T g 3 3 12559 gl 1 lal -
7 7) 75 02 050 £ o
2 s] 2] L1050 ols|8) X |
T 5 e 3] N 8/ 059 = 2
S | % % L1032 = By
- £ i b 5 9/ 0SD YR
™~ N Tg 202 £1 0S50 E
T =7z %1 050 R 2
; [ow 7 07 €1 05D -
x ™ £/ €9/ 2] 052 E JE i
~ 'r 'r 'N 'd 11052 . B
N Y] Ty Ty 0] ©5O
ol | _or ? 2 b082
% Ty 5 7§ N § 050
7g g g B . Y - L 0SD
- il i)] *a .9 0S2
o7 a7 3 <5 S 050
€7 7 ‘Q ‘a ~T v 0S5V
cw W 3 3 € 0S50
‘gl 8/ °] 2 050
. Y] Y] BY [1 0%
o2 2 €7 ©7 B 2 0582
e =r L 508D
77 =7 9 3099
| o e S sna o
g Pl b $189
e/ g/ € sndd
57 2o/ ERE
B 57 | SPED
- 28/ i O Sng
m m i Iz
22 e . el 01D
Y] Y 20/ EX7] [X4%
- Ty X IV 24 I
A | A | 29 W LYD
r *r | "oz | "oz 2/ 2/ IvD
25 £ B3 1 SvI
TN Tw 2y 4 +)
n 2 2/ z4 2L €vo
=7 27 E) e 200
g e b T EZ
Sor | "or | 2 | 79 oo
— T TH LD
Ty B 99
“w cw ”—‘l S
. =77 27 1 +0
i 737 757 A €0
N 75 & NEF)
I 7S S]
T3/ Y 00
_]
1 Y L ‘v add
o7 o7 ainy ..
3 5 : o122
T Tl) h 2 39
~ i 3 ~3)
‘o2 e/ & $82
g g 2
_ 37 - (s 5 g
T 5 G 94
T A T ' B <8
2N 8 8 +8
57 B a F e €9
© T % % 28
DER 3 Ty]
2z’ . €7 to/ og
2 | £ HoNYHE]
Tor 1 70 PR
| W T g
= Y AWy
- " i X101y
o el T 23 ndG3zaavy
B 79 2q Lsnay
'] A =n 90 ay
W 201 | o2 Ssnay
7] =g/ 7z v SnB Y
.] g] € sna v
. g 7Y Ty 250D Y
2] oo 23 T seay
53 N Tg 0 snev
o T 'g '8 ‘r S8Y
o LA} €5/ g 88 Y
-) 5/ €a/ f [3-134
— 7 %] 98Y
7 L 4 S8Y
3 3 El ¥ey
—l 79 19 9 [3-1"
. < 3 3 ‘5 28V
q a el JR:1'4
i} N Y Ty -EV
o €4 [2V
- X7} e/ 14
LLXZA BT | ﬂ St e
5
AR AR AR el S I A R UG
e w T LY T ('R Vmosh et

0-8692] @

= ot
- <oV BUS 1z GA
- 1ZGA : .
4 POST STRIP
MOTHER
| BOLRD
1; ||||| B \6GA \.SFT.
: ORN iy ICGA I.SFT
] MW < . Tov
=
+] |
i INTIB3A
omn/aL ! ! ci G.5VACT2 +1ZVREG Wu@[leca —C13] +12VREG
i I e 65 VAC T
boabe, 1 oA fiw +T 1oV 6 _ =
\ S I
ORN | A ELECT THEAT STNK : Tz @ YTe
F “zmﬁ..\m__zx [/oGA JASIEMBLY [T POR (D &l por
X ; - - . ot i
aLue | ASSEMBLY | HNMMQm “ JNJ 5vsl RESET (0 | RESET
ca RED Coommo- - . [=T —(&}-5V PR TRRS [— @] PRNS
‘ - R ISVAC T
M %mrcmw W RVt —_ L @] -12vREG
] Y) -
- = & 1.5 vac T4 ~GVREG [P 1ach @1 -SVREG
BROWN veusin| presi 45V LOGIC (D IGGA @ +5L0GI1C
*OVREG L a)ssvReC
£ (RED SVACTL *OVRE - - 3 |
m el \S VAC T2 +5VRY Y +24VKREG
BRNJYEL 0 REGULATOR
i o GOA BOARD r —PrsvIo
ALK H'L w i 16 GA —@4rzaVv PR PR
— vio T P s N : @ r24V Vs 24V
20 '
vio/sLx HEATSINK 3w ' G A 3V
o ASSEMBLY | : e 3> 24vrs _
m;rmrww - = (7 r2av INREG f e
: ol
i) 3] - 5V IO PR
: < ™ 1+ov
POWER SUPALY LVP FAN S SV TOVS *
FAN AC. AC.
:)0 +5V I0VR
ey €
N i !
1 1SV
T] P
- [ri] T o lr2av
FIXED ' | +24VREG s
_J -5V
DISC Bﬂw i ! - VAT
c| A-C . G i T2]
! ! [l il el ol S B o B B B B }
: _ ! _)
e i _m&c @ ! 1)
-4 . O ; - | FLOPPY DISC DCIFIRED DISC D.C
. . M R e e L L
Frapey o ' _ WHT | AC BOX
prsc mﬂﬂw e ' ! : o
. - 1
AC. = IO WHT | 25y SYMBOL DESIGNATION
3) - . u 1S 230V L LINE LYARISTOR 44250y s D 4 PIN MOLEX O ran P
[— ! CONVERAION FUse ‘ REGULATOR BOARD
8-POST TERMINAL SWATCH FILTER ?% A.c O e mocex @ o PN MOLEX
- STRIP SA —] PLUG A 12 PIN MOLE DISC A.C. PLUG 4
§ o :u\ru.w\‘l H\.a..»u.bl\i ﬂ\#m< SENSE LINES
[2-PIN SOCKET 4 €W 6PIN MOLEX 2 PIN MOLEX
T L SOCKE T HOUSING —_ €) 8rivmoLEX OMAT N Lock
T3] M oart | arrrovo ot | oare
@y
w o ~SAFORATORNS PC oWNBTTR. [215-0[E ewer) N/ 12 sl
B WANG) “m=2= fmisulumy
NP B SN0 . . [Teang S o L un it
HNERN , — | ™ _LVP: POWER
ERECTN . INTERCONNECTIONS
N
f-|S8= e we " nes™ 11698-100 [p [698-00 |0
RS —H— mE ez e,
. so f— i T o [WARG PART HUBME ur DRAWWG MUt v,

\:
S

8 T 7 T 3 T 5 T 4 T 3 1 D) 1

9 L 8 ! 7 v ! s ! 4 L 3 ! 2 ! !
00 NOT SCALE .
° ComPomwENT W. L. PART Ny 7y PE
. . RI,13,2¢, +3 ,|33¢- /007|146 PoOT
B ’ RZ 330 - 2022|2204 Jow 12%|
e e e - R3.1%,16, $¢, §3 [330=30/5|1- 5K ppw 10D - - -- -
R+:5,/8 13f=0032|,021 3w 37,
’ RC,13 31#=-003/|.00cLIW 5g . |
. B R1,5 60 330- 2 cs0fr004 Ypwpuy MYEN2NIC | 222820 yarz
) +oLs8iC tSvIor C.5uACT Y R8 737-2037[7904 2W su7s| POR 1 E1
S ~13Y REG +3V TOVS. +24PR o.5VALT 2 R? 310~ 30333.0K VpwioTs PRMS 1 F1
~ 37 RsE WSV IOVR rIPRI e SVALT S R10, 11,12, 23 777~ 3 010|/K Viw s 7
F 1. 7vAZT2 R15,12,92, 50 330 = 20¢8|c80N Jpw /e RESET I F
+IRVAEG 12y REC tov - N
72 16+
) R Compontnr W iR A. Ty PE R20, #7,6#,66,0,63330— 3010 1K fyw iom
_ =2 503558 | AITH ReCTIAIR R2/,3#, 36,32, #1 1I39— 50121126k 1rw 127 *r24 58 /66
. eI R22,29,38, 52,05 [130 - 302220k fyw 107 r2% PR 1 E) [~
18,17 380~ 1001 | S/t provE R2s 536~ 3003 |6. 2k Vew 575 YtV onrEe| /G
D2 390 —205¢ |nr52a 22v 50 R2¢, # 7 330 3028[2.0K Jpw 57 F2E VS 166
D13 380~ 2729 |wN*3)2A2iN Iv R27,32, 51 J3o+~ 3048l6.88 Yfaw 107 |
20 380~ 2111 UNSIHCIV 11V R28 20~ JOo27(2.1k fpw /0% tYVAc T 1 FI
E LGCLocarion |\wWi Parr.v: T/ PE p2o 380~ 2113 |I4WIJ AN 134 Jmuo 730~ 2 O65¢|Tcon ywiore “ISVAC T2 | F Il E
L2, 4+,6 372~ octLée 723 P2/, 23 390~ 2098 |iws2200201 8. 74 RII 330~ 2033|3300 Jaw 10%
L3, 8 3726 —0z2p0|tm 239 b22 320— 0000 | G&R Dro0c R33 330 — 301819k Yawio%e +12V REG 16 5
L5 274-0crg|LtM7%/C D2r 8o~ 4000 |IN#+224 RIS 330~ 4033|335 Jaw 1072 -/2V REG /A6 ‘
L7 374-Cr134|LM 3o
N L7 37i-0054| 777 ¢ R79 336~ 1o2¢| 2k Por /.SVAC TI 1 G B
L 10 37¢é-0023| 7203 Q2,3 375-1053 |RcABpzO3A R4+ 370 - $01/2 188 3w & Te wsvacre | 16
at s 375~ 1052 |2wvé3B7 R35, +8 310 - 3 0232.2K jaw 5o |
& P~ Cus ke Kro Wi, 63 230~ 4310 [)IK Haw 18 7> C.SVAC T/} I DI
» Qz 3725- 1017 [2¥23064 RS+ 330~ J027{27A /4w 127, 6.5 VAC T2 1Dy
R 55 332- 30I5 15K IW 07 <
R5C 332- 2082{820 /W |4, SV IDPR 181
Ji Cs#= 1172 V12 P03, WELIER R53, 57 [370~ 3 0%1|4)K V1w icH FSY IO VR 181
T.r TyPE|Locaron J2 L5 1126 |1 P5. weavin) Rer 332- 30122k IW 1o% #5VIOoVs | |G+
- TM332 73 7 J3i, 5 65~ 1173 3P0 piposn +5VLioGic 168 =
7+23 Z 70 7 Jr oSp- 1182 |1PoL wEAPER s Joo-323c |¢Kkafrov (F) +5 PR/ 167
. IR 77 7T c, 2 700~ 2210 |./at 100 unax rEVRI (G7
c3 (320= 901 % |2.248200 (T) +IVR 2 1 66
s 3oo-poodl31acic, 7, +5VS/ /1 Gée ©
~ L - - . C6.7, 9 300-3078|8.2K4x25/{3) N
= N . . [co-ryr8-24 27 300~ 1928 |.0SakILY CER - 5V REG A7 .) M
. crt-17,2¢ |720— 022 [154r 200 (1)
L b caz 300- 30 10 |50 wn SOV (E) rov 1 E /1 N
- e c23 320-1930 |./4F oy <A -
— ' cz# 330-1703 [.o1arerrcix e =
- czs Joo- 182/ loolar’ 7000 d
! S B . B
. - . 1\ (A
3 212S
B TR I - - -
i N [[oare [arrovioar [oare
rm o1 L P . ,(<>.ZO vt TR 2577 (T TRVl X0
A Lo Ers, [ue
L) ﬂwa . - [WATESUL "WODEL %O,) W6 v -
IR R . - 2200LVP e Lars e A
Ry g [d% s E TR TGO REGYLATOR
RN . -
PEI unn FINISH 1oL £L A3 noTes <
AALRNT e : . 20-7602\D|7697 |1
DNIESY i mE s nmwy
2 s M] 1 | CTONESN TR Wiee Ful veunis | i | onawwe oo | w
BAR | 10 9 ! 8 I 7 [T 5 4 T 2 T 2 T 1

e , ® Sy la) . A m \ - oy Q e
lzni-, " neyision - §n . : , ' - ' R v . s " : ';35? ng
TELSHT S ks ' : ; . : : i
: TSI A 4 ; L S : , | ;'
= :i : i ‘} : ! v:;'
B R L R N o
e ; P
_ : : I‘ = » "tk ~ = i i
. < | "~ < ‘ k ‘
i H INE o h ~ .
: i ~U“ M ¥
: i i
o “w l’\"g " -
1 i § 8 : :
L7/0
[Re7)
A
o L 3
— 5 €
. 2 : 5 €
(o2 ~
a
| ® T
»
‘\a
- + ~ !
N (Y
[~ +
o T s[o]
+ N | T
§
> ,
f
— B
-1 210
U
a 1
+H =10
S
— —*
1l 20
3 ¥
“ l%J
| B
o % =3 8lo
gl = —rm
LN
HEE B '
HIN) -
ill‘i f -~
EI B = 1
x| | (W= — NN
X1 P = R
@ z
2 " = .
o RE L5 uzn ®a b c/
S [EEE ; | [® o2
3 il 77 ol [[P 62
’ g 769 7 RI

uv

[}

» I @ g.‘v}‘_iléé"ﬁlal ! * ! m ! - LIS [

United States '}
Alabama Florida Louisiana New Hampshire Oregon Vermont
Birmingham Miami Baton Rouge Manchester Eugene Montpelier »
Mobile Hialeah Metairie Portland

Jacksonville New Jersey Virginia
Alaska Orlando ':a': '?'" d Toms River Pennsylvania Newport News
Anchorage Tampa ockville Mountainside Allentown - Norfolk

Towson Clifton Camp Hill Richmond
Arizona Georgia Massachusetts . Erie .
Phoenix Atlanta Billerica New Mexico Philadelphia Washington
Tucson Savannah Boston Albuquerque Pittsburgh Richland
. Wayne Seattle
. . Hawaii Burlington New York Spokane
California Chelmsford Alb 7
Culver City Honolulu Lawrence any Rhode Island acoma
Fountain Valle Littleton Buffalo Cranston
Fresno Y Idaho Lowell Fairport Wisconsin
Inglewood Idaho Falls Tewksbury hz‘:: 3;::: ZS"S South Carolina E/:og_kfleld
Sacramento - Worcester v Charleston adison
San Diedo 1llinois Syracuse Columbia Wauwatosa
. 9 Chicago Michigan
an Francisco .

Morton Kentwood North Carolina
Santa Clara } ~ Tennessee
Ventur Park Ridge Okemos Charlotte Ch

entura Rock Island Southfield Greensboro c attarl\ooga

Rosemont Raleigh noxville
Colorado Minnesota Memphls
Englewood Indiana Eden Prairie Ohio Nashville

Indianapolis Mi . Cincinnati
Connecticut South Bend C |ssogn Cleveland Texas
New Haven reve Loeur Middleburg Heights Austin
Stamford Kansas Nebraska Toledo zallaf
Wetherstield Overland Park Omaha Worthington ouston

Wichita San Antonio
District of Nevada Oklahoma
Columbia Kentucky Las Vegas Oklahoma City Utah
Washington Louisville Reno Tulsa Salt Lake City

International Offices International Representatives
Australia France Singapore Abu-Dhabi Kenya
Wang Computer Pty., Ltd. Wang France S AR.L. Wang Computer (Pte) Ltd Argentina Korea
Adelaide, S.A. Paris Singapore Bahrain Kuwait
Brisbane, Qld Bordeaux Bolivia Lebanon
Canberra, AC.T Lyon Sweden Brazil Liberia
DarwinN.T Marseilles Wang Skandinaviska AB Canary Islands Malaysia
Perth, W.A Nantes Stockholm Chile Malta
South Melbourne, Vic3 Strasbourg Gothenburg Colombia Mexico
Sydney, NSW Toulouse Malmo Costa Rica Morocco
. Cyprus Nicaragua
Austria S\l’eat (BJ':(B)"E " Switzerland Denmark Nigeria
an) Ltd. .
Wang Gesellschaft, m.b.H. Ruchgwond ;Y,?:;%A ¢ E:J;g;?an Republic ;‘g;’v?;
Vienna Birmingham Basel Egypt Perug Y
London Geneva El Salvador Phillippines
Belgium Manchester . Finland Portugal
Wang Europe, S.A. Northwood Hills \ZNang Trading A.G. Ghana Saudi Arabia
Br | u
Eroe tere HomgKong Cummomla S
Hong Kong United States Haiti SriLanka
Canada Wang International Trade, Inc. Honduras Sudan
Wang Laboratories Jwapanc L Lowell, Mass. Iceland Syria
(Canada) Ltd. ang Computer Ltd India Thailand
Burnaby, B.C Tokyo West Germany Indonesia Turkey
Cal 'Al.b : Wang Laboratories, GmbH Ireland United Arab
gary, Alberta Netherlands Frankfurt £
Don Mills, Ontario Wang Nederland B.V. Berlin Israel V. mlrat(is
Edmonton, Alberta |Jsselstein Cologne Italy enezuela
Hamilton, Ontario Gronigen Dusseldorf Jamaica
Montreal, Quebec Essen Japan
Ottawa, Ontario waw Zgaland Lt Freiburg Jordan
Winni ang Computer Lt
peg, Manitoba Auckland ::nmn%lcg
China Wellington Kassel
Wang Industrial Co., Ltd. Panama Munich
Taipei Wang de Panama Nurnberg
Wang Laboratories Ltd (CPEC) S A. Saarbrucken
Taipei Panama City Stuttgart

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

(WANG)LABOMTDQ.ES. INC.)

"tk

	Cover
	Preface
	Table of Contents
	List of Figures
	Section 1: General Description
	1.1: System Overview
	1.2: Partition Generation and System Configuration
	1.3: Memory
	1.4: Foreground/Background Operation
	1.5: Compatibility with Other 2200 Systems
	1.6: Model Configuration
	1.7: Specifications
	1.7.1: 2200LVP CPU
	1.7.2: Disk Drives

	Section 2: System-Level Theory of Operation
	2.1: Memory Resources in the 2200LVP
	2.2: Memory Management in Multi-User Systems
	2.3: Partitioning 2200LVP User Memory
	2.3.1: Master Initialization
	2.3.2: Generating the Partitions
	2.3.3: Partition Size & Internal Allocations

	2.4: The Servicing of Paritions
	2.4.1: Time-Slice Processing
	2.4.2: Breakpointing

	2.5: Assignment, Attachment, and Foreground/Background Processing
	2.5.1: Assignment
	2.5.2: Attachment

	2.6: "Releasing" a Terminal
	2.7: "Releasing" a Partition
	2.8: "Global" Partitions
	2.9: "Universal Global" Partitions
	2.10: User Program Execution
	2.10.1: General
	2.10.2: Subroutines
	2.10.3: Text Pointer, Pointer Table, & Internal Stacks

	2.11: Allocation and Handling of Peripherals
	2.11.1: General
	2.11.2: Background Printing

	Section 3: Bootstrap Operation
	3.1: Bootstrap
	3.1.1: Master Initialization
	3.1.2: Reset
	3.1.3: Control and Data memory Parity Errors
	3.1.4: Load System Files

	3.2: Bootstrap Error Messages and Recovery
	3.2.1: Initialization Errors
	3.2.2: Reset Errors
	3.2.3: System Errors
	3.2.3.1: Control Memory Errors
	3.2.3.2: Data Memory Errors
	3.2.3.3: Disk Errors

	Section 4: System Generation
	4.1: General
	4.2: Power-Up, Master Initialization, and System Generation
	4.2.1: Power-Up
	4.2.2: Loading the Operating System
	4.2.3: Partition Generation
	4.2.4: Generating a Sample Configuration

	4.3: Generating Evenly-Divided Partitions: A Sample Program
	4.4: Customized Partition Generation
	4.5: Copying the System Disk
	4.6: Modifying Device Table Entries
	4.7: Special Programming Considerations
	4.7.1: Time-Dependent Software
	4.7.2: Peripherals
	4.7.3: $GIO Restrictions
	4.7.4: I/O Statement Restrictions
	4.7.5: Default Disk Address
	4.7.6: CONTINUE

	4.8: Programming the 2209A on the 2200LVP

	Section 5: Hardware Theory of Operation
	5.1: Functional Structure of the 2200LVP Computer System
	5.1.1: Central Processing Unit
	5.1.2: System Memory
	5.1.3: Input/Output Subsystem

	5.2: Functional Structure of the 2200LVP Central Processing Unit
	5.2.1: Work Registers
	5.2.2: Arithmetic/Logic Unit
	5.2.3: Control Circuitry

	5.3: 2200LVP CPU BLock Diagram Theory -- Basic
	5.4: 2200LVP CPU BLock Diagram Theory -- Detailed
	5.4.1: Control Memory
	5.4.2: Data Memory
	5.4.3: Registers
	5.4.4: ALU
	5.4.5: Auxiliary Registers and Subroutine Stack
	5.4.6: Input/Output Circuitry

	5.5: Disk Processing Unit
	5.5.1: Microcomputer and Memory
	5.5.2: 2200/Disk Interface
	5.5.3: Disk Controller

	Section 6: Site Preparation
	Section 7: Inspection, Unpacking, and Cabinet Leveling
	7.1: Tools Required
	7.2: Pre-Unpacking Inspection
	7.3: Unpacking Instructions
	7.4: Cabinet Leveling Procedure

	Section 8: Installation
	8.1: Pre-Installation Inspection
	8.2: Initial Setup
	8.2.1: 2200LVP Circuit Boards (w/layout)
	8.2.2: 2200LVP Power Supply-to-CPU-to-Disk Power Cable Connections
	8.2.3: Disk Drive I/O Cable Connections
	8.2.4: 2200LVP Power Supply AC Input Voltage Selection
	8.2.5: 2236MXD Multiplexer/Controller
	8.2.6: 22C32 Triple Controller
	8.2.7: I/O Controllers
	8.2.8: 2236DE Interactive Terminal
	8.2.9: Disk Drives
	8.2.10: Peripherals

	8.3: Installation and Power-On Procedures

	Section 9: Diagnostics
	Section 10: Preventive Maintenance
	Section 11: Removal/Replacement and Adjustment Procedures
	11.1: Recommended Test Equipment/Tool List
	11.2: CPU Voltage Check/Adjustment Procedure
	11.3: Disk Processing Unit Adjustment Procedure
	11.4: Removal/Replacement Procedures
	11.4.1: Cabinet Top Cover
	11.4.2: Cabinet Back Panel
	11.4.3: CPU Chassis Cover
	11.4.4: CPU Chassis
	11.4.5: Power Supply
	11.4.6: Power Supply Cover
	11.4.7: Power Supply Regulator
	11.4.8: Disk Drives

	Section 12: Troubleshooting
	12.1: General
	12.2: System Errors
	12.2.1: Control Memory Errors
	12.2.2: Data Memory Errors

	12.3: Memory Diagnostic Error Interpretation
	12.3.1: Control Memory
	12.3.2: Data Memory

	Section 13: Conversions
	Section 14: Parts List
	Section 15: Bill of Materials
	Appendix A: 2200LVP Error Codes
	Appendix B: Mechanical Drawings
	Appendix C: Schematics

